416 results on '"Ekaykin, A."'
Search Results
102. Stable isotopic content of atmospheric precipitation and natural waters in the vicinity of Barentsburg (Svalbard) in 2016-2018.
- Author
-
Skakun, Aleksandra, primary, Ekaykin, Alexey, additional, Kozachek, Anna, additional, Tchikhachev, Kirill, additional, Vladimirova, Diana, additional, and Verkulich, Sergey, additional
- Published
- 2020
- Full Text
- View/download PDF
103. Causes and consequences of Southern Ocean change: the IPCC SROCC assessment
- Author
-
Meredith, Michael, primary, Sommerkorn, Martin, additional, Cassotta, Sandra, additional, Derksen, Chris, additional, Ekaykin, Alexey, additional, Hollowed, Anne, additional, Kofinas, Gary, additional, Mackintosh, Andrew, additional, Melbourne-Thomas, Jess, additional, Muelbert, Monica, additional, Ottersen, Geir, additional, Pritchard, Hamish, additional, Schuur, Ted, additional, Meijers, Andrew, additional, Hogg, Andrew, additional, Hallberg, Robert, additional, Tagliabue, Alessandro, additional, He, Shengping, additional, and Peck, Victoria, additional
- Published
- 2020
- Full Text
- View/download PDF
104. Estimation of gas record alteration in very low-accumulation ice cores
- Author
-
Fourteau, Kévin, primary, Martinerie, Patricia, additional, Faïn, Xavier, additional, Ekaykin, Alexey A., additional, Chappellaz, Jérôme, additional, and Lipenkov, Vladimir, additional
- Published
- 2020
- Full Text
- View/download PDF
105. On the possibility to restore the climatic signal in the disturbed record of stable water isotope content in the old (0.4–1.2 Ma) Vostok ice (Central Antarctica)
- Author
-
Ekaykin, A. A., primary, Lipenkov, V. Ya., additional, Veres, A. N., additional, Kozachek, A. V., additional, and Skakun, A. A., additional
- Published
- 2019
- Full Text
- View/download PDF
106. Phenol compounds in the borehole 5G, Vostok station, after the unlocking of the subglacial lake
- Author
-
V. Ya. Lipenkov, Alexey A. Ekaykin, Irina A. Alekhina, and A. L. Moskvin
- Subjects
Hydrology ,Pollution ,Global and Planetary Change ,secondary ice core ,media_common.quotation_subject ,Science ,Borehole ,Geochemistry ,Drilling ,antarctica ,freezing ,Ice core ,Geochemistry and Petrology ,Drilling fluid ,Lake Vostok ,Subglacial lake ,sale ,hydrocarbons ,drilling fluid ,Water pollution ,Geology ,Earth-Surface Processes ,Water Science and Technology ,media_common - Abstract
The main results after the first unlocking into the subglacial Lake Vostok were as follows: the Lake had been opened and not polluted; the water pressure within the lake was not balanced by a column of the drilling liquid that resulted in unplanned rise of water in the borehole up to 340 m. The main problem during the drilling in the lake ice was to prevent a pollution of water by the drilling fluid, which filled the borehole, and thus, to avoid a compression of the fluid which could be the main source of chemical and biological pollution of not only the Lake itself, but also the Lake water samples and ice cores. The article presents results of analysis of causes for the occurrence of phenolic compounds in the central channel in the core of secondary ice, being formed by the lake water that rose into the well after the first penetration (the range of depths was 3426–3450 m). It was found that the process, running within the borehole during the drilling, can be described as the fractionation of phenolic compounds, being contained in the filling liquid, to the water phase with its subsequent freezing. We have developed methods for the determination of concentrations of phenolic compounds in the original aviation kerosene and Freon HCFC-141b: 6. mg·l−1 and 0.032 mg·l−1, respectively. To analyze the composition of phenolic compounds in the extract of real filling liquid, located at the bottom of the borehole, the method of gas chromatography-mass spectrometry (GC-MS) was used. The corresponding peaks were quite well resolved and identified as phenol and its derivatives. The main components of the extract were phenol (20%), 2.5-dimethyl phenol (23,8%), 2,4,6-trimethylphenol, and other congeners of phenol. In our case, the Lake Vostok was not polluted during both, the first and second penetrations, however, the problem of human impact on these pristine and unique subglacial reservoirs remains extremely relevant. This impact includes not only direct water pollution of the lake by the drilling fluid, but also possible changes in organic components of the liquid when contacting with the lake water under natural conditions of a deep well. Our data have demonstrated that using of such complex organic liquids, like aviation kerosene formerly used in many drilling projects, is undesirable when exploring deep Antarctic subglacial lakes. Thus, we come to the conclusion that the drilling fluid, currently used at the Vostok station (in the Vostok borehole), has to be replaced by another more inert fluid that would allow further research and exploration of the Lake Vostok.
- Published
- 2017
107. Variations of snow accumulation rate in Central Antarctica over the last 250 years
- Author
-
V. Ya. Lipenkov, Alexey A. Ekaykin, and Diana Vladimirova
- Subjects
High probability ,Global and Planetary Change ,Global climate ,snow accumulation rate ,Science ,ice cores ,antarctica ,Snow ,Ice core ,Geochemistry and Petrology ,Climatology ,Paleoclimatology ,paleoclimate ,Period (geology) ,Antarctica ,Precipitation ,stable water isotopes ,Geology ,Sea level ,Earth-Surface Processes ,Water Science and Technology - Abstract
The present-day global climate changes, very likely caused by anthropogenic activity, may potentially present a serious threat to the whole human civilization in a near future. In order to develop a plan of measures aimed at elimination of these threats and adaptation to these undesirable changes, one should deeply understand the mechanism of past and present (and thus, future) climatic changes of our planet. In this study we compare the present-day data of instrumental observations of the air temperature and snow accumulation rate performed in Central Antarctica (the Vostok station) with the reconstructed paleogeographic data on a variability of these parameters in the past. First of all, the Vostok station is shown to be differing from other East Antarctic stations due to relatively higher rate of warming (1.6 °C per 100 years) since 1958. At the same time, according to paleogeographic data, from the late eighteenth century to early twenty-first one the total warming amounted to about 1 °C, which is consistent with data from other Antarctic regions. So, we can make a conclusion with high probability that the 30-year period of 1985–2015 was the warmest over the last 2.5 centuries. As for the snow accumulation rate, the paleogeographic data on this contain a certain part of noise that does not allow reliable concluding. However, we found a statistically significant relationship between the rate of snow accumulation and air temperature. This means that with further rise of temperature in Central Antarctica, the rate of solid precipitation accumulation will increase there, thus partially compensating increasing of the sea level.
- Published
- 2017
108. Supplementary material to 'Estimation of gas record alteration in very low accumulation ice cores'
- Author
-
Kévin Fourteau, Patricia Martinerie, Xavier Faïn, Alexey A. Ekaykin, Jérôme Chappellaz, and Vladimir Lipenkov
- Published
- 2019
109. Pingo development in Grøndalen, West Spitsbergen
- Author
-
Mikhail A. Anisimov, Lutz Schirmeister, Sergey Verkulich, Hanno Meyer, Andy Hodson, Aleksey Ekaykin, Sebastian Wetterich, Nikita Demidov, and Vasily Demidov
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,δ18O ,Landform ,0211 other engineering and technologies ,Geochemistry ,021107 urban & regional planning ,02 engineering and technology ,Groundwater recharge ,Permafrost ,01 natural sciences ,13. Climate action ,Aggradation ,Pingo ,Meltwater ,Groundwater ,Geology ,0105 earth and related environmental sciences - Abstract
Pingos are common features in permafrost regions that form by subsurface massive-ice aggradation and create hill-like landforms. Pingos on Spitsbergen have been previously studied to explore their structure, formation timing, connection to springs as well as their role in post-glacial landform evolution. However, detailed hydrochemical and stable-isotope studies of massive ice samples recovered by drilling has yet to be used to study the origin and freezing conditions in pingos. Our core record of 20.7 m thick massive pingo ice from Grøndalen differentiates into four units: two characterised by decreasing δ18O and δD and increasing d (units I and III), and two others show the opposite trend (units II and IV). These delineate changes between episodes of closed-system freezing with only slight recharge inversions of the water reservoir, and more complicated episodes of groundwater freezing under semi-closed conditions when the reservoir got recharged. The water source for pingo formation shows similarity to spring water data from the valley with prevalent Na+ and HCO3- ions. The sub-permafrost groundwater originates from subglacial meltwater that most probably followed the fault structures of Grøndalen and Bøhmdalen. Today the pingo of Grøndalen is relict and degrading due to warming surface temperatures. The state of pingos on Spitsbergen depends on complex interaction of climate, permafrost and groundwater hydrology conditions, and is thus highly sensitive to climate warming.
- Published
- 2019
110. Holocene hydrological variability of Lake Ladoga, northwest Russia, as inferred from diatom oxygen isotopes
- Author
-
Kostrova, Svetlana, Meyer, Hanno, Bailey, Hannah, Ludikova, Anna V., Gromig, Raphael, Kuhn, Gerhard, Shibaev, Yury A., Kozachek, Anna V., Ekaykin, Alexey A., Chapligin, Bernhard, Kostrova, Svetlana, Meyer, Hanno, Bailey, Hannah, Ludikova, Anna V., Gromig, Raphael, Kuhn, Gerhard, Shibaev, Yury A., Kozachek, Anna V., Ekaykin, Alexey A., and Chapligin, Bernhard
- Abstract
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.
- Published
- 2019
111. Holocene hydrological variability of Lake Ladoga, northwest Russia, as inferred from diatom oxygen isotopes
- Author
-
Kostrova, Svetlana S., Meyer, Hanno, Bailey, Hannah L., Ludikova, Anna V., Gromig, Raphael, Kuhn, Gerhard, Shibaev, Yuri A., Kozachek, Anna V., Ekaykin, Alexey A., Chapligin, Bernhard, Kostrova, Svetlana S., Meyer, Hanno, Bailey, Hannah L., Ludikova, Anna V., Gromig, Raphael, Kuhn, Gerhard, Shibaev, Yuri A., Kozachek, Anna V., Ekaykin, Alexey A., and Chapligin, Bernhard
- Abstract
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (O-18(diatom)) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8cal. ka BP. The O-18(diatom) values range from +29.8 to +35.0 parts per thousand, and relatively higher O-18(diatom) values around +34.7 parts per thousand between c. 7.1 and 5.7cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in O-18(diatom) since c. 6.1cal. ka BP accelerates after c. 4cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8-0.2cal. ka BP, corresponding to the Little Ice Age. Lake-level rises result in lower O-18(diatom) values, whereas lower lake levels cause higher O-18(diatom) values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4-4.0cal. ka BP. Generally, overall high O-18(diatom) values around +33.5 parts per thousand characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga O-18(diatom) record is roughly in line with the 60 degrees N summer insolation, a linkage to broader-scale climate change is likely.
- Published
- 2019
112. Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
- Author
-
Demidov, Nikita, Wetterich, Sebastian, Verkulich, Sergey, Ekaykin, Alexey, Anisimov, Michael, Schirrmeister, Lutz, Demidov, Vasiliy, Hodson, A. J., Demidov, Nikita, Wetterich, Sebastian, Verkulich, Sergey, Ekaykin, Alexey, Anisimov, Michael, Schirrmeister, Lutz, Demidov, Vasiliy, and Hodson, A. J.
- Published
- 2019
113. Chapter 3: Polar Regions
- Author
-
Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M., Meredith, Michael, Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourn-Thomas, J., Muelbert, M.M.C., Ottersen, G., Pritchard, Hamish, Schuur, E.A.G., Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M., Meredith, Michael, Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourn-Thomas, J., Muelbert, M.M.C., Ottersen, G., Pritchard, Hamish, and Schuur, E.A.G.
- Published
- 2019
114. A global multiproxy database for temperature reconstructions of the Common Era
- Author
-
Dmitry Divine, Dmitriy V. Ovchinnikov, Hugues Goosse, Marit-Solveig Seidenkrantz, Anne Hormes, Narayan Prasad Gaire, Joelle Gergis, Katrine Husum, David J. Nash, Konrad Gajewski, Jens Zinke, Vladimir Mikhalenko, Darrell S. Kaufman, Eugene R. Wahl, Martin Grosjean, Nancy A. N. Bertler, Pierre Francus, Anastasia Gornostaeva, Diana Vladimirova, Kaustubh Thirumalai, Lucien von Gunten, Kevin J. Anchukaitis, Michael Sigl, Ryu Uemura, Michael N. Evans, Hideaki Motoyama, Scott St. George, Marie-Alexandrine Sicre, Chris S. M. Turney, Johannes P. Werner, Robert Mulvaney, Jianghao Wang, Brian M. Chase, Mark A. J. Curran, Julien Emile-Geay, Takeshi Nakatsuka, David J. Sauchyn, Nerilie J. Abram, Bronwyn C. Dixon, Raphael Neukom, Cody C. Routson, Trevor J. Porter, Selvaraj Kandasamy, Mirko Severi, Massimo Frezzotti, Steven J. Phipps, Hans W. Linderholm, A. E. Viau, P. Graham Mortyn, Jessica E. Tierney, Eric J. Steig, Heidi A. Roop, K. Halimeda Kilbourne, Jason A. Addison, Jonathan J. Tyler, Mandy Freund, Daniel A. Dixon, Belen Martrat, Chenxi Xu, Krystyna M. Saunders, Min Te Chen, Xuemei Shao, Vasile Ersek, Philipp Munz, Hans Oerter, Masaki Sano, Zhixin Hao, Meloth Thamban, Alexey A. Ekaykin, Barbara Stenni, Kazuho Horiuchi, Ignacio A. Mundo, Zicheng Yu, Gregory T. Pederson, James W. C. White, Nalan Koc, Elisabeth Isaksson, Kathryn Allen, Rixt de Jong, Jeannine-Marie St. Jacques, Andrew Lorrey, Guillaume Leduc, Quansheng Ge, Kristine L. DeLong, Kenji Kawamura, Anais Orsi, Thomas Opel, Edward R. Cook, Kate E. Sinclair, Benjamin J. Henley, Nicholas P. McKay, Helen McGregor, Andrew D. Moy, Elizabeth R. Thomas, Jesper Björklund, Helena L. Filipsson, Udya Kuwar Thapa, Casey Saenger, Northern Arizona University [Flagstaff], Australian National University (ANU), United States Geological Survey [Reston] (USGS), University of Maryland [College Park], University of Maryland System, Spanish National Research Council [Madrid] (CSIC), School of Biological, Earth and Environmental Sciences [Sydney] (BEES), University of New South Wales [Sydney] (UNSW), Oeschger Centre for Climate Change Research (OCCR), University of Bern, Dipartimento di Scienze Geologiche [Trieste], Università degli studi di Trieste, University of Texas at Austin [Austin], Department of Earth and Space Sciences [Seattle], University of Washington [Seattle], Department of Earth Sciences [Oxford], University of Oxford [Oxford], Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Climate Change Institute (CCI), University of Maine, University of Northumbria at Newcastle [United Kingdom], Lund University [Lund], Centre Eau Terre Environnement - INRS (INRS-ETE), Institut National de la Recherche Scientifique [Québec] (INRS), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Nepal Academy of Science and Technology, Université Catholique de Louvain (UCL), Quaternary Geology, The University Centre in Svalbard (UNIS), Norwegian Polar Institute, Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern]-Universität Bern [Bern], University of Maryland Center for Environmental Science, Horn Point Laboratory, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Universitat Autònoma de Barcelona [Barcelona] (UAB), National Institute of Polar Research [Tokyo] (NiPR), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), School of Environment and Technology, University of Brighton, Abteilung Klinische Sozialmedizin, Berufs- und Umweltdermatologie, Universität Heidelberg [Heidelberg], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), The University of Tokyo, Laboratoire de géographie physique : Environnements Quaternaires et Actuels (LGP), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Panthéon-Sorbonne (UP1), Aarhus University [Aarhus], Department of Chemistry, University of Florence (UNIFI), Biogéochimie-Traceurs-Paléoclimat (BTP), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN), Paul Scherrer Institute (PSI), University of the Ryukyus [Okinawa], Australian Institute of Marine Science (AIMS), PAGES 2k, Università degli studi di Trieste = University of Trieste, University of Oxford, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Climate Change Institute [Orono] (CCI), Centre Eau Terre Environnement [Québec] (INRS - ETE), Université Catholique de Louvain = Catholic University of Louvain (UCL), Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universitat Autònoma de Barcelona (UAB), Universität Heidelberg [Heidelberg] = Heidelberg University, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), The University of Tokyo (UTokyo), Université Paris 1 Panthéon-Sorbonne (UP1)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze = University of Florence (UniFI), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Emile-Geay, J., Mckay, N. P., Kaufman, D. S., Von Gunten, L., Wang, Junrong, Anchukaitis, K. J., Abram, N. J., Addison, J. A., Curran, M. A. J., Evans, M. N., Henley, B. J., Hao, Z., Martrat, B., Mcgregor, H. V., Neukom, R., Pederson, G. T., Stenni, B., Thirumalai, K., Werner, J. P., Xu, C., Divine, D. V., Dixon, B. C., Gergis, J., Mundo, I. A., Nakatsuka, T., Phipps, S. J., Routson, C. C., Steig, E. J., Tierney, J. E., Tyler, J. J., Allen, K. J., Bertler, N. A. N., Bjorklund, J., Chase, B. M., Chen, M. -T., Cook, E., De Jong, R., Delong, K. L., Dixon, D. A., Ekaykin, A. A., Ersek, V., Filipsson, H. L., Francus, P., Freund, M. B., Frezzotti, M., Gaire, N. P., Gajewski, K., Ge, Q., Goosse, H., Gornostaeva, A., Grosjean, M., Horiuchi, K., Hormes, A., Husum, K., Isaksson, E., Kandasamy, S., Kawamura, K., Kilbourne, K. H., Koc, N., Leduc, G., Linderholm, H. W., Lorrey, A. M., Mikhalenko, V., Mortyn, P. G., Motoyama, H., Moy, A. D., Mulvaney, R., Munz, P. M., Nash, D. J., Oerter, H., Opel, T., Orsi, A. J., Ovchinnikov, D. V., Porter, T. J., Roop, H. A., Saenger, C., Sano, M., Sauchyn, D., Saunders, K. M., Seidenkrantz, M. -S., Severi, M., Shao, X., Sicre, M. -A., Sigl, M., Sinclair, K., St George, S., St Jacques, J. -M., Thamban, M., Thapa, U. K., Thomas, E. R., Turney, C., Uemura, R., Viau, A. E., Vladimirova, D. O., Wahl, E. R., White, J. W. C., Yu, Z., Zinke, J., École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de recherche pour le développement [IRD] : UR226, and UCL - SST/ELI/ELIC - Earth & Climate
- Subjects
Data Descriptor ,010504 meteorology & atmospheric sciences ,VDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412 ,VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410::Statistikk: 412 ,F800 ,computer.software_genre ,Palaeoclimate ,01 natural sciences ,Proxy (climate) ,CECI [CISM] ,calcification ,data integration objective ,Climate change ,trace metal analysis ,910 Geography & travel ,geography.geographical_feature_category ,Database ,G500 ,data acquisition system ,temperature of environmental material ,Computer Science Applications ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,Temperature reconstruction ,Statistics, Probability and Uncertainty ,Tree ring ,Geology ,wood ,Information Systems ,Statistics and Probability ,glacial ice ,radiance ,010506 paleontology ,observation design ,Library and Information Sciences ,archaeal metabolite ,Education ,time series design ,stable isotope analysis ,Dendrochronology ,550 Earth sciences & geology ,0105 earth and related environmental sciences ,geography ,Global temperature ,Glacier ,15. Life on land ,Sea surface temperature ,sediment ,13. Climate action ,North Atlantic oscillation ,Oceanic basin ,computer - Abstract
Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python., PAGES, a core project of Future Earth, is supported by the U.S. and Swiss National Science Foundations. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Some of this work was conducted as part of the North America 2k Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. B. Bauer, W. Gross, and E. Gille (NOAA National Centers for Environmental Information) are gratefully acknowledged for helping assemble the data citations and creating the NCEI versions of the PAGES 2k data records. We thank all the investigators whose commitment to data sharing enables the open science ethos embodied by this project.
- Published
- 2017
115. Radionuclides deposition over Antarctica
- Author
-
Pourchet, M., Magand, O., Frezzotti, M., Ekaykin, A., and Winther, J.-G.
- Published
- 2003
- Full Text
- View/download PDF
116. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia
- Author
-
Anna Kozachek, P. A. Toropov, Patrick Ginot, Vladimir Mikhalenko, Michel Legrand, Saehee Lim, Sergey Sokratov, Alexey A. Ekaykin, Ulrich Schotterer, Stanislav Kutuzov, Xavier Faïn, S. Preunkert, Ivan Lavrentiev, Vladimir Ya. Lipenkov, Institute of Geography, Russian Academy of Sciences [Moscow] (RAS), Arctic Environment Laboratory, Lomonosov Moscow State University (MSU), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern]-Universität Bern [Bern], Observatoire des Sciences de l'Univers de Grenoble (OSUG), and Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,Plateau ,010504 meteorology & atmospheric sciences ,δ18O ,lcsh:QE1-996.5 ,Borehole ,Glacier ,010502 geochemistry & geophysics ,Snow ,01 natural sciences ,lcsh:Geology ,Ice core ,13. Climate action ,[SDE]Environmental Sciences ,Paleoclimatology ,Ice age ,Geomorphology ,lcsh:Environmental sciences ,Geology ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology - Abstract
A 182 m ice core has been recovered from a borehole drilled through the glacier to the bedrock at the Western Plateau of Mt Elbrus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.), the Caucasus, Russia, in 2009. This is the first ice core in the region which represents a paleoclimate record practically undisturbed by seasonal melting. Relatively high snow accumulation rate at the drilling site enabled analysis of the intra-seasonal climate proxies' variability. Borehole temperatures ranged from −17 °C at 10 m depth and −2.4 °C at 182 m. A detailed radio-echo sounding survey showed that the glacier thickness ranged from 45 m near marginal zone of the plateau up to 255 m at the central part. The ice core has been analyzed for stable isotopes (δ18O and δ D), major ions (K+, Na+, Ca2+, Mg2+, NH4+, SO42-, NO3-, Cl-, F-), succinic acid (HOOCCH2COOH), and tritium content. The mean annual net accumulation rate was estimated from distinct annual oscillations of δ18O, δ D, succinic acid, and NH4+ and is 1455 mm w.e. for the last 140 years. Using annual layer counting also for the dating of the ice core, a good agreement with the absolute markers of the tritium 1963 bomb test time horizon located at the core depth of 50.7 m w.e. and the sulfate peak of the Katmai eruption (1912) at 87.7 m w.e. was obtained. According to mathematical modeling results, the bottom ice age at the maximal glacier depth is predicted to be about 660 years BP. As the 2009 borehole was situated downstream of this point, the estimated bottom ice age of the drilling site does not exceed 350–400 years BP. Taking into account the information that we have acquired on the Western Plateau Elbrus glacier and first results of the ice core analysis, these data can be used to reconstruct the atmospheric history of the European region.
- Published
- 2015
117. Chemistry of snow and ice cores along the ice flow lines at Lake Vostok (Antarctica)
- Author
-
A.A. Ekaykin, T. V. Khodzher, E. Y. Osipov, L. P. Golobokova, and M.M. Maslenikova
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Ice stream ,Geochemistry ,010502 geochemistry & geophysics ,Snow ,01 natural sciences ,Geophysics ,Volcano ,Ice core ,Geochemistry and Petrology ,Ridge ,Lake Vostok ,Snow cover ,0105 earth and related environmental sciences ,Line (formation) - Abstract
The authors present the results of high resolution chemical studies of snow cover from pits and cores along the ice flow lines from Ridge B to Lake Vostok across its southern (profile VFL) and northern (profile NVFL) parts. The sampling was performed between 2006–2013 during the seasonal 52nd–57th Russian Antarctic expeditions (RAE). Chemical signals of non-sea-salt sulphates and an analysis of the morphology, size and composition of microparticles allowed for the identification of the products of large volcanic eruptions during the 19th and 20th centuries, including the eruptions of Tambora (1815), Krakatoa (1883), Agung (1963) and Pinatubo (1991). In the layers with high non-sea-salt sulphate concentrations, we found small aluminosilicate particles with K, Fe and Mg inclusions, which could be of volcanic origin. Using volcanic markers, we calculated snow accumulation rates for the past 200 years along the two ice flow lines. The maximal snow accumulation rates (33 mm in water equivalent yr−1) were found in the northern ice flow line, and the minimal rates (25 mm in water equivalent yr−1) were found in the southern ice flow line.
- Published
- 2020
118. Djankuat Glacier Station in the North Caucasus, Russia: A Database of complex glaciological, hydrological, meteorological observations and stable isotopes sampling results during 2007-2017
- Author
-
Ekaterina P. Rets, Viktor V. Popovnin, Pavel A. Toropov, Andrew M. Smirnov, Igor V. Tokarev, Julia N. Chizhova, Nadine A. Budantseva, Yurij K. Vasil’chuk, Maria B. Kireeva, Alexey A. Ekaykin, Anna V. Kozachek, Alexander A. Aleynikov, Natalia L. Frolova, Anatoly S. Tsyplenkov, Alexey A. Polukhov, Sergey R. Chalov, Maria A. Aleshina, and Ekaterina D. Kornilova
- Abstract
The study presents a dataset on long-term complex glaciological, hydrological, meteorological observations and isotopes sampling in an extremely underreported alpine zone of the North Caucasus. The Djankuat research basin is of 9.1 km2, situated on elevations between 2500–4000 m, by 30 % covered with glaciers. The biggest in the basin – the Djankuat glacier was chosen as representative of the central North Caucasus during the International Hydrological Decade and is one of 30 "reference" glaciers in the world that have annual mass balance series longer than 50 years (Zemp et al., 2009). The dataset covers 2007–2017 and contains the result of yearly measurements of snow thickness and density; dynamics of snow and ice melting; measurements of water runoff, conductivity, turbidity, temperature, δ18O, δ2H on the main gauging station (844 samples in sum) with a one-hour or several-hours step depending on the parameter; data on δ18O and δ2H sampling of liquid precipitation, snow, ice, firn, groundwater in different parts of the watershed regularly in time during melting season (485 samples in sum); precipitation amount, air temperature, relative humidity, shortwave incoming and reflected radiation, longwave downward and upward radiation, atmospheric pressure, wind speed and direction – measured on several automatic weather stations within the basin with 15 min – one-hour step; gradient meteorological measurements to estimate turbulent fluxes of heat and moisture, measuring three components of wind speed at a frequency of 10 hertz to estimate the turbulent impulse heat fluxes over the glacier surface by the eddy covariance method. All the observations were done during ablation period (June–September) and were interrupted in winter. The dataset was published on knb.ecoinformatics.org long-term repository doi:https://doi.org/10.5063/F1H1307Q and will be further updated. The dataset can be useful for developing and verifying hydrological, glaciological and meteorological models for high elevation territories, to study impact of climate change on hydrology of mountain regions, using isotopic and hydrochemical approaches to study mountain territories. As the dataset includes the measurements of hydrometeorological and glaciological parameters during the catastrophic proglacial lake outburst in the neighboring Bashkara valley in September 2017, it is a valuable contribution to the study of this dangerous hydrological phenomena.
- Published
- 2018
119. Non-climatic signal in ice core records: lessons from Antarctic megadunes
- Author
-
Alexey A. Ekaykin, Lutz Eberlein, Alexey V. Turkeev, Vladimir Ya. Lipenkov, Ludwig Schröder, Mirko Scheinert, and S. V. Popov
- Subjects
lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,δ18O ,lcsh:QE1-996.5 ,East antarctica ,010502 geochemistry & geophysics ,Snow ,01 natural sciences ,lcsh:Geology ,Altitude ,Ice core ,Ridge ,Climatology ,Ground-penetrating radar ,Spatial variability ,Geology ,lcsh:Environmental sciences ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology - Abstract
We present the results of glaciological investigations in the megadune area located 30 km to the east of Vostok Station (central East Antarctica) implemented during the 58th, 59th and 60th Russian Antarctic Expedition (January 2013–2015). Snow accumulation rate and isotope content (δD, δ18O and δ17O) were measured along the 2 km profile across the megadune ridge accompanied by precise GPS altitude measurements and ground penetrating radar (GPR) survey. It is shown that the spatial variability of snow accumulation and isotope content covaries with the surface slope. The accumulation rate regularly changes by 1 order of magnitude within the distance δD and 17O-excess ∕ δD slopes (where dxs = δD − 8 ⋅ δ18O and 17O-excess = ln(δ17O ∕ 1000 + 1) −0.528 ⋅ ln (δ18O ∕ 1000 + 1)), we conclude that the spatial variability of the snow isotopic composition in the megadune area could be explained by post-depositional snow modifications. Using the GPR data, we estimated the apparent dune drift velocity (4.6 ± 1.1 m yr−1). The full cycle of the dune drift is thus about 410 years. Since the spatial anomalies of snow accumulation and isotopic composition are supposed to drift with the dune, a core drilled in the megadune area would exhibit the non-climatic 410-year cycle of these two parameters. We simulated a vertical profile of snow isotopic composition with such a non-climatic variability, using the data on the dune size and velocity. This artificial profile is then compared with the real vertical profile of snow isotopic composition obtained from a core drilled in the megadune area. We note that the two profiles are very similar. The obtained results are discussed in terms of interpretation of data obtained from ice cores drilled beyond the megadune areas.
- Published
- 2018
120. Post-depositional changes in snow isotope content: preliminary results of laboratory experiments
- Author
-
V. Lipenkov, T. Hondoh, A. Miyamoto, and A. A. Ekaykin
- Subjects
Sedimentary depositional environment ,Atmospheric water ,Meteorology ,Ice core ,Isotope ,Firn ,Environmental science ,Sublimation (phase transition) ,Snow ,Atmospheric sciences ,Isotope exchange - Abstract
Isotopic content of the snow and firn thickness is assumed to be altered significantly due to the post-depositional (PD) mass- and isotope exchange with the atmospheric water vapor. If so, these effects should be accounted for in the ice core-based isotope-temperature paleo-reconstructions. In order to study the intensity of the PD processes we set up a series of laboratory experiments. In this paper we describe in detail the experimental technique and briefly overview preliminary results. It is shown that the PD modifications in the upper layer of snow thickness are noticeably strong even under such a low temperature as −35°C (the value typical for the Central Antarctic summer). It is demonstrated that the PD isotopic changes in snow can be approximated as a linear function of the relative mass loss due to snow sublimation. Possible applications for improving the isotope-temperature paleo-reconstructions are shortly discussed.
- Published
- 2018
121. Postglacial history of Lake Ladoga documented by diatom oxygen isotopes
- Author
-
Kostrova, Svetlana, Meyer, Hanno, Bailey, Hannah, Ludikova, Anna, Gromig, Raphael, Kuhn, Gerhard, Shibaev, Yury, Kozachek, Anna, Ekaykin, Alexey, and Chapligin, Bernhard
- Published
- 2018
122. Archival processes of the water stable isotope signal in East Antarctic ice cores
- Author
-
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, Jean Jouzel, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] ( LSCE ), Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de glaciologie et géophysique de l'environnement ( LGGE ), Observatoire des Sciences de l'Univers de Grenoble ( OSUG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Chrono-environnement ( LCE ), Université Bourgogne Franche-Comté ( UBFC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Department of Geological, Environmental and Marine Sciences, Universita di Trieste, University of Ca’ Foscari [Venice, Italy], Arctic and Antarctic Research Institute ( AARI ), Russian Federal Service for Hydrometeorology and Environmental Monitoring ( Roshydromet ), Laboratoire Géomatériaux ( DGCB-LGM ), École Nationale des Travaux Publics de l'État ( ENTPE ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Department of Geological, Environmental and Marine Sciences [Trieste], Università degli studi di Trieste = University of Trieste, Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Recherche pour le Développement (IRD)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Università degli studi di Trieste, Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Chrono-environnement - UFC (UMR 6249) (LCE), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Laboratoire Géomatériaux (DGCB-LGM), and École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[ SDU.OCEAN ] Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,010502 geochemistry & geophysics ,01 natural sciences ,13. Climate action ,Settore GEO/08 - Geochimica e Vulcanologia ,ddc:550 ,[ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment ,Institut für Geowissenschaften ,Mathematisch-Naturwissenschaftliche Fakultät ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,human activities ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,ddc:910 - Abstract
International audience; The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.
- Published
- 2018
123. Holocene hydrological variability of Lake Ladoga, NW Russia as inferred by diatom oxygen isotopes
- Author
-
Kostrova, Svetlana, Meyer, Hanno, Bailey, Hannah, Ludikova, Anna, Gromig, Raphael, Kuhn, Gerhard, Shibaev, Yury, Kozachek, Anna, Ekaykin, Alexey, and Chapligin, Bernhard
- Published
- 2018
124. Holocene hydrological variability of Lake Ladoga as inferred from diatom oxygen isotopes
- Author
-
Kostrova, Svetlana, Meyer, Hanno, Bailey, Hannah, Ludikova, Anna, Gromig, Raphael, Kuhn, Gerhard, Shibaev, Yury, Kozachek, Anna, Ekaykin, Alexey, and Chapligin, Bernhard
- Published
- 2018
125. Climatic variability in the era of MIS-11 (370-440 ka BP) according to isotope composition (delta D, delta O-18, delta O-17) of ice from the Vostok station cores
- Author
-
Veres, A. N., Ekaykin, A. A., Vladimirova, D. O., Kozachek, A. V., Lipenkov, V. Ya., and Skakun, A. A.
- Subjects
paleoclimate ,ice cores ,Antarctica ,stable water isotopes ,Marine Isotope Stage 11 - Published
- 2018
126. Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
- Author
-
Demidov, Nikita, primary, Wetterich, Sebastian, additional, Verkulich, Sergey, additional, Ekaykin, Aleksey, additional, Meyer, Hanno, additional, Anisimov, Mikhail, additional, Schirrmeister, Lutz, additional, Demidov, Vasily, additional, and Hodson, Andrew J., additional
- Published
- 2019
- Full Text
- View/download PDF
127. Djankuat glacier station in the North Caucasus, Russia: a database of glaciological, hydrological, and meteorological observations and stable isotope sampling results during 2007–2017
- Author
-
Rets, Ekaterina P., primary, Popovnin, Viktor V., additional, Toropov, Pavel A., additional, Smirnov, Andrew M., additional, Tokarev, Igor V., additional, Chizhova, Julia N., additional, Budantseva, Nadine A., additional, Vasil'chuk, Yurij K., additional, Kireeva, Maria B., additional, Ekaykin, Alexey A., additional, Veres, Arina N., additional, Aleynikov, Alexander A., additional, Frolova, Natalia L., additional, Tsyplenkov, Anatoly S., additional, Poliukhov, Aleksei A., additional, Chalov, Sergey R., additional, Aleshina, Maria A., additional, and Kornilova, Ekaterina D., additional
- Published
- 2019
- Full Text
- View/download PDF
128. Supplementary material to "Estimation of gas record alteration in very low accumulation ice cores"
- Author
-
Fourteau, Kévin, primary, Martinerie, Patricia, additional, Faïn, Xavier, additional, Ekaykin, Alexey A., additional, Chappellaz, Jérôme, additional, and Lipenkov, Vladimir, additional
- Published
- 2019
- Full Text
- View/download PDF
129. Estimation of gas record alteration in very low accumulation ice cores
- Author
-
Fourteau, Kévin, primary, Martinerie, Patricia, additional, Faïn, Xavier, additional, Ekaykin, Alexey A., additional, Chappellaz, Jérôme, additional, and Lipenkov, Vladimir, additional
- Published
- 2019
- Full Text
- View/download PDF
130. Seasonal variations of snowpack temperature and thermal conductivity of snow in the vicinity of Vostok station, Antarctica
- Author
-
Shibayev, Yu. A., primary, Tchikhatchev, K. B., additional, Lipenkov, V. Ya., additional, Ekaykin, A. A., additional, Lefebvre, E., additional, Arnaud, L., additional, and Petit, J.-R., additional
- Published
- 2019
- Full Text
- View/download PDF
131. The Components of the Glacial Runoff of the Tsambagarav Massif from Stable Water Isotope Data
- Author
-
Bantcev, Dmitry V., primary, Ganyushkin, Dmitry A., additional, Chistyakov, Kirill V., additional, Volkov, Ilya V., additional, Ekaykin, Alexey A., additional, Veres, Arina N., additional, Tokarev, Igor V., additional, Shtykova, Natalya B., additional, and Andreeva, Tatiana A., additional
- Published
- 2019
- Full Text
- View/download PDF
132. Pingo development in Grøndalen, West Spitsbergen
- Author
-
Demidov, Nikita, primary, Wetterich, Sebastian, additional, Verkulich, Sergey, additional, Ekaykin, Aleksey, additional, Meyer, Hanno, additional, Anisimov, Mikhail, additional, Schirmeister, Lutz, additional, Demidov, Vasily, additional, and Hodson, Andrew J., additional
- Published
- 2019
- Full Text
- View/download PDF
133. Spatial variability of snow isotopic composition and accumulation rate at the stake farm of Vostok station (Сentral Antarctica)
- Author
-
Ekaykin, A. A., primary, Vladimirova, D. O., additional, Tebenkova, N. A., additional, Brovkov, E. V., additional, Veres, A. N., additional, Kovyazin, A. V., additional, Kozachek, A. V., additional, Lindren, M., additional, Shibaev, Yu. A., additional, Preobrazhenskaya, A. V., additional, and Lipenkov, V. Ya, additional
- Published
- 2019
- Full Text
- View/download PDF
134. Holocene hydrological variability of Lake Ladoga, northwest Russia, as inferred from diatom oxygen isotopes
- Author
-
Kostrova, Svetlana S., primary, Meyer, Hanno, additional, Bailey, Hannah L., additional, Ludikova, Anna V., additional, Gromig, Raphael, additional, Kuhn, Gerhard, additional, Shibaev, Yuri A., additional, Kozachek, Anna V., additional, Ekaykin, Alexey A., additional, and Chapligin, Bernhard, additional
- Published
- 2019
- Full Text
- View/download PDF
135. VOLCANIC EVENTS RECORD OVER THE LAST 900 YEARS FROM SNOW AND FIRN SEQUENCE IN VOSTOK STATION AREA
- Author
-
V. Yu. Lipenkov, L. P. Golobokova, N. A. Onishchuk, U. G. Filippova, T. V. Hodzher, Alexey A. Ekaykin, and E. Yu. Osipov
- Subjects
Global and Planetary Change ,geography ,sulfates ,Low latitude ,geography.geographical_feature_category ,Science ,High resolution ,antarctic ,volcanoes ,Snow ,tephra ,Volcano ,Geochemistry and Petrology ,Physical geography ,snow-firn cores ,Tephra ,accumulation ,vostok station ,Geomorphology ,Geology ,Earth-Surface Processes ,Water Science and Technology - Abstract
The results of chemical analyses of snow samples from five pits and cores drilled in the vicinities of Vostok Station, Antarctica, are presented. High resolution (every 2–3 cm, or about three samples per year) ion measurements allowed to compile a new detailed record of volcanic events for the past 900 years. About 30 low latitude volcanic eruptions were identified In core intervals with high content of nonmarine sulphates and decreased values of acidity during XIII–XX centuries. Global ones analysed in the literature were detected in the cores: Pinatubo (1991), Agung (1963), Krakatau (1883), Tambora (1815), unknown (1809), Gamkonora (1673), Huaynaputina (1600), Kuwae (1453), unknown (1259).
- Published
- 2015
136. ISOTOPIC REGIME OF SUBGLACIAL LAKE VOSTOK ON EVIDENCE FROM DEEP ICE CORE STUDIES
- Author
-
V. Ya. Lipenkov, Anna Kozachek, and Alexey A. Ekaykin
- Subjects
Global and Planetary Change ,geography ,geography.geographical_feature_category ,hydrological regime ,isotope content ,Ice stream ,Science ,ice cores ,Glacier ,antarctica ,subglacial lake vostok ,Arctic ice pack ,Ice core ,Geochemistry and Petrology ,Sea ice thickness ,Subglacial lake ,Cryosphere ,Geomorphology ,Geology ,Earth-Surface Processes ,Water Science and Technology ,Frazil ice - Abstract
On the 5 th of February 2012 the long-lasting project of deep ice drilling at Russian Antarctic station of Vostok was completed by the penetration to the subglacial lake at the depth of 3769.3 m. The study of the ice core representing the frozen lake water and obtained as a result of the drilling, has allowed to make preliminary conclusions on the lake hydrological regime before its direct studies. In this work we present the new isotopic data (dD and d 18 O) from the 5G-2 ice core from the depth interval 3600–3720 m. The measurements were performed in the recently established Climate and Environment Research Laboratory of Arctic and Antarctic Research Institute (St. Petersburg,Russia). The comparison of the new isotope profile with the previously published 5G-1 data (3540–3650 m) demonstrates a good reproducibility, which means a satisfying quality of the measurements. The analysis of the whole available lake ice thickness isotope profile (3540–3720 m) has allowed to obtain a new information on theLakeVostok’s hydrological regime. Based on the isotopic behavior, the lake ice core is divided into three sections. The first (3540–3619 m) corresponds to the so-called «lake ice 1», the ice containing visible mineral inclusions that was formed close to the western lake shore. The isotopic variability in this section was formed due to the changing conditions and mechanisms of the ice formation (ice accretion rate, concentrations of the frazil ice crystals and frozen water pockets). The second (3619–3647 m) is characterized by a weak correlation between deuterium and oxygen 18, which is interpreted as an influence of the hydrothermal activity on the lake’s isotopic regime. In the third section (3647–3720 m), formed over the deep basin in the southern part of the lake, the isotopic variability is reduced due to the relatively stable steady-state conditions of the ice formation. At the same time, the signature of the lake water isotopic variability is observed here, which is attributed to the pulsations of the flux and/or isotope content of the melt glacier waters coming from the northern part of the lake. In turn, this means not complete mixing of the lake source waters with the resident water of the lake and, thus, that the water layer just beneath the glacier in the Vostok station area is not representative in terms of the conditions in the main lake body. We suggest that the future direct lake studies must include water sampling at different depths from the lake-water interface to the bottom. Meanwhile, in the nearest future this study will be developed by the completing of the measurements of the whole 5G-2 core (to the depth of3769 m), as well as the analysis of the short-term (1 cm) variations in the bottom part of the ice core, where the isotopic signal must be fully preserved without being erased by the molecular diffusion. Also, the measurement of the first lake water sample recovered from the drill after the penetration will allow the comparison with the lake ice isotope content in order to experimentally define the effective isotope fractionation coefficient and thus constrain the possible mechanism of the lake ice formation.
- Published
- 2015
137. Archival processes of the water stable isotope signal in East Antarctic ice cores
- Author
-
Casado, Mathieu, Landais, Amaelle, Picard, Ghislain, Münch, Thomas, Laepple, Thomas, Stenni, Barbara, Dreossi, Giuliano, Ekaykin, Alexey, Arnaud, Laurent, Genthon, Christophe, Touzeau, Alexandra, Masson-Delmotte, Valérie, Jouzel, Jean, Casado, Mathieu, Landais, Amaelle, Picard, Ghislain, Münch, Thomas, Laepple, Thomas, Stenni, Barbara, Dreossi, Giuliano, Ekaykin, Alexey, Arnaud, Laurent, Genthon, Christophe, Touzeau, Alexandra, Masson-Delmotte, Valérie, and Jouzel, Jean
- Published
- 2018
138. Supplementary material to 'Archival processes of the water stable isotope signal in East Antarctic ice cores'
- Author
-
Mathieu Casado, Amaelle Landais, Ghislain Picard, Thomas Münch, Thomas Laepple, Barbara Stenni, Giuliano Dreossi, Alexey Ekaykin, Laurent Arnaud, Christophe Genthon, Alexandra Touzeau, Valérie Masson-Delmotte, and Jean Jouzel
- Published
- 2017
139. Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era
- Author
-
Emile-Geay, Julien, McKay, Nicholas P., Kaufman, Darrell S., Von Gunten, Lucien, Wang, Jianghao, Anchukaitis, Kevin J., Abram, Nerilie J., Addison, Jason A., Curran, Mark A J, Evans, Michael N., Henley, Benjamin J., Hao, Zhixin, Martrat, Belen, McGregor, Helen V., Neukom, Raphael, Pederson, Gregory T., Stenni, Barbara, Thirumalai, Kaustubh, Werner, Johannes P., Xu, Chenxi, Divine, Dmitry V., Dixon, Bronwyn C., Gergis, Joelle, Mundo, Ignacio A., Nakatsuka, Takeshi, Phipps, Steven J., Routson, Cody C., Steig, Eric J., Tierney, Jessica E., Tyler, Jonathan J., Allen, Kathryn J., Bertler, Nancy A. N., Bjorklund, Jesper, Chase, Brian M., Chen, Min-Te, Cook, Ed, de Jong, Rixt, DeLong, Kristine L., Dixon, Daniel A., Ekaykin, Alexey A., Ersek, Vasile, Filipsson, Helena L., Francus, Pierre, Freund, Mandy B., Frezzotti, Massimo, Gaire, Narayan P., Gajewski, Konrad, Ge, Quansheng, Goosse, Hugues, and Seidenkrantz, Marit-Solveig
- Subjects
TROPICAL CLIMATE VARIABILITY ,ICE-CORE RECORDS ,SEA-SURFACE TEMPERATURE ,PAST 3 CENTURIES ,HIGH-RESOLUTION PALEOCLIMATOLOGY ,NORTH-ATLANTIC OSCILLATION ,TREE-RING WIDTH ,OXYGEN-ISOTOPE RECORD ,SUMMER TEMPERATURE ,PACIFIC WARM POOL - Abstract
Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike.
- Published
- 2017
140. Supplementary material to 'Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low accumulation conditions'
- Author
-
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Jérôme Chappellaz
- Published
- 2017
141. Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data
- Author
-
Bénédicte Minster, Amaelle Landais, Frédéric Prié, Ghislain Picard, Valerie Masson-Delmotte, Laurent Arnaud, Alexandra Touzeau, Michel Fily, Alexey A. Ekaykin, Jean-Robert Petit, Jean Jouzel, Olivier Magand, Anais J Orsi, Sentia Goursaud, Mathieu Casado, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Global and Planetary Change ,010504 meteorology & atmospheric sciences ,010502 geochemistry & geophysics ,Atmospheric temperature ,Snow ,01 natural sciences ,Proxy (climate) ,Ice core ,13. Climate action ,Climatology ,General Earth and Planetary Sciences ,Cryosphere ,Polar ,Mean radiant temperature ,Transect ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Geology ,0105 earth and related environmental sciences - Abstract
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records ( δ D or δ 18 O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ 18 O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (∼ 0.7–0.8‰·°C −1 for δ 18 O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C −1 ). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ 18 O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ 18 O of snow and surface temperature, but is associated with a much slower δ 18 O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m −2 .yr −1 may record a seasonal cycle at shallow depths.
- Published
- 2017
142. Review of regional Antarctic snow accumulation over the past 1000 years
- Author
-
Jason L. Roberts, Brooke Medley, Massimo Frezzotti, Alexey A. Ekaykin, Elisabeth Isaksson, Tyler J. Fudge, Jan T. M. Lenaerts, Michiel R. van den Broeke, Mark A. J. Curran, Elizabeth R. Thomas, Paul Vallelonga, Elisabeth Schlosser, Barbara Stenni, Nancy A. N. Bertler, J. Melchior van Wessem, and Daniel A. Dixon
- Subjects
0301 basic medicine ,geography ,geography.geographical_feature_category ,Plateau ,010504 meteorology & atmospheric sciences ,Antarctic ice sheet ,Snow ,01 natural sciences ,03 medical and health sciences ,Glacier mass balance ,030104 developmental biology ,Ice core ,13. Climate action ,Peninsula ,Climatology ,Cryosphere ,Environmental science ,Precipitation ,0105 earth and related environmental sciences - Abstract
Here we review Antarctic snow accumulation variability, at the regional scale, over the past 1000 years. A total of 80 ice core snow accumulation records were gathered, as part of a community led project coordinated by the PAGES Antarctica 2k working group. The ice cores were assigned to seven geographical regions, separating the high accumulation coastal zones below 2000 m elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.4 and precipitation from ERA-interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability. The central Antarctic sites lack coherency and are either not representing regional precipitation or indicate the models inability to capture relevant precipitation processes in the cold, dry central plateau. The drivers of precipitation are reviewed for each region and the temporal variability and trends evaluated over the past 100, 200 and 1000 years. Our study suggests an overall increase in SMB across the grounded Antarctic ice sheet of ~ 44 GT since 1800 AD, with the largest (area-weighted) contribution from the Antarctic Peninsula (AP). Only four ice core records cover the full 1000 years and suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low elevation coastal zones (especially AP and DML), which have been underrepresented in previous investigations of temporal snow accumulation.
- Published
- 2017
143. Antarctic climate variability at regional and continental scales over the last 2,000 years
- Author
-
Hugues Goosse, Raphael Neukom, Sentia Goursaud, Nancy A. N. Bertler, Martin Werner, Barbara Stenni, Mark A. J. Curran, Anais Orsi, D. Divine, Tas van Ommen, Elisabeth Isaksson, Daniel A. Dixon, Nerilie J. Abram, Massimo Frezzotti, Alexey A. Ekaykin, Eric J. Steig, Valérie Masson-Delmotte, and Elisabeth R. Thomas
- Subjects
0301 basic medicine ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,European Project for Ice Coring in Antarctica ,Antarctic ice sheet ,Context (language use) ,Future sea level ,01 natural sciences ,Ice-sheet model ,03 medical and health sciences ,030104 developmental biology ,Ice cap climate ,Ice core ,13. Climate action ,Peninsula ,Climatology ,Geology ,0105 earth and related environmental sciences - Abstract
Climate trends in the Antarctic region remain poorly characterised, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica 2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O) composites and temperature reconstructions since 0 CE, binned at 5 and 10-year resolution, for 7 climatically-distinct regions covering the Antarctic continent. Following earlier work of the Antarctica 2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica, and the whole continent. We use three methods for our temperature reconstructions: i) a temperature scaling based on the δ18O-temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data; ii) a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and iii) a composite-plus-scaling approach used in a previous continental scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0–1900 CE we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the Antarctic Peninsula regions, and these trends are robust across the distribution of records that contribute to the unweighted isotopic composites and also significant in the weighted temperature reconstructions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of natural variability over the last 2000-years. However, projected warming of the Antarctic continent during the 21st Century may soon see significant and unusual warming develop across other parts of the Antarctic continent. The extended Antarctica 2k ice core isotope database developed by this working group opens up many avenues for developing a deeper understanding of the response of Antarctic climate to natural and anthropogenic climate forcings. The first long-term quantification of regional climate in Antarctica presented herein is a basis for data-model comparison and assessments of past, present and future driving factors of Antarctic climate.
- Published
- 2017
144. Supplementary material to 'Antarctic climate variability at regional and continental scales over the last 2,000 years'
- Author
-
Barbara Stenni, Mark A. J. Curran, Nerilie J. Abram, Anais Orsi, Sentia Goursaud, Valerie Masson-Delmotte, Raphael Neukom, Hugues Goosse, Dmitry Divine, Tas van Ommen, Eric J. Steig, Daniel A. Dixon, Elisabeth R. Thomas, Nancy A. N. Bertler, Elisabeth Isaksson, Alexey Ekaykin, Massimo Frezzotti, and Martin Werner
- Published
- 2017
145. Climatic variability in Princess Elizabeth Land (East Antarctica) over the last 350 years
- Author
-
Valérie Masson-Delmotte, Diana Vladimirova, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, Saint Petersburg State University (SPBU), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,lcsh:Environmental protection ,Stratigraphy ,010502 geochemistry & geophysics ,01 natural sciences ,lcsh:Environmental pollution ,Ice core ,lcsh:TD169-171.8 ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Southern Hemisphere ,lcsh:Environmental sciences ,0105 earth and related environmental sciences ,Temperature record ,lcsh:GE1-350 ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Global and Planetary Change ,Interdecadal Pacific Oscillation ,Anomaly (natural sciences) ,Paleontology ,13. Climate action ,Climatology ,lcsh:TD172-193.5 ,Period (geology) ,Indian Ocean Dipole ,Antarctic oscillation ,Geology - Abstract
We use isotopic composition (δD) data from six sites in Princess Elizabeth Land (PEL) in order to reconstruct air temperature variability in this sector of East Antarctica over the last 350 years. First, we use the present-day instrumental mean annual surface air temperature data to demonstrate that the studied region (between Russia's Progress, Vostok and Mirny research stations) is characterized by uniform temperature variability. We thus construct a stacked record of the temperature anomaly for the whole sector for the period of 1958–2015. A comparison of this series with the Southern Hemisphere climatic indices shows that the short-term inter-annual temperature variability is primarily governed by the Antarctic Oscillation (AAO) and Interdecadal Pacific Oscillation (IPO) modes of atmospheric variability. However, the low-frequency temperature variability (with period > 27 years) is mainly related to the anomalies of the Indian Ocean Dipole (IOD) mode. We then construct a stacked record of δD for the PEL for the period of 1654–2009 from individual normalized and filtered isotopic records obtained at six different sites (PEL2016 stacked record). We use a linear regression of this record and the stacked PEL temperature record (with an apparent slope of 9 ± 5.4 ‰ °C−1) to convert PEL2016 into a temperature scale. Analysis of PEL2016 shows a 1 ± 0.6 °C warming in this region over the last 3 centuries, with a particularly cold period from the mid-18th to the mid-19th century. A peak of cooling occurred in the 1840s – a feature previously observed in other Antarctic records. We reveal that PEL2016 correlates with a low-frequency component of IOD and suggest that the IOD mode influences the Antarctic climate by modulating the activity of cyclones that bring heat and moisture to Antarctica. We also compare PEL2016 with other Antarctic stacked isotopic records. This work is a contribution to the PAGES (Past Global Changes) and IPICS (International Partnerships in Ice Core Sciences) Antarctica 2k projects.
- Published
- 2017
146. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores
- Author
-
Susanne Preunkert, Alexey A. Ekaykin, Anna Kozachek, Vladimir Ya. Lipenkov, Vladimir Mikhalenko, Patrick Ginot, Valérie Masson-Delmotte, Michel Legrand, Stanislav Kutuzov, Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Russian Academy of Sciences [Moscow] (RAS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Atmospheric circulation ,Stratigraphy ,lcsh:Environmental protection ,Borehole ,010502 geochemistry & geophysics ,01 natural sciences ,Proxy (climate) ,Ice core ,lcsh:Environmental pollution ,lcsh:TD169-171.8 ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,lcsh:Environmental sciences ,0105 earth and related environmental sciences ,lcsh:GE1-350 ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Stable isotope ratio ,Bedrock ,Paleontology ,Snow ,13. Climate action ,Climatology ,lcsh:TD172-193.5 ,Physical geography ,Seasonal cycle ,Geology - Abstract
A 181.8 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt El'brus (43°20′53.9′′ N, 42°25′36.0′′ E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009 (Mikhalenko et al., 2015). Here, we report on the results of the water stable isotope composition from this ice core with additional data from the shallow cores. The distinct seasonal cycle of the isotopic composition allows dating by annual layer counting. Dating has been performed for the upper 126 m of the deep core combined with 20 m from the shallow cores. The whole record covers 100 years, from 2013 back to 1914. Due to the high accumulation rate (1380 mm w.e. year−1) and limited melting, we obtained isotopic composition and accumulation rate records with seasonal resolution. These values were compared with available meteorological data from 13 weather stations in the region and also with atmosphere circulation indices, back-trajectory calculations, and Global Network of Isotopes in Precipitation (GNIP) data in order to decipher the drivers of accumulation and ice core isotopic composition in the Caucasus region. In the warm season (May–October) the isotopic composition depends on local temperatures, but the correlation is not persistent over time, while in the cold season (November–April), atmospheric circulation is the predominant driver of the ice core's isotopic composition. The snow accumulation rate correlates well with the precipitation rate in the region all year round, which made it possible to reconstruct and expand the precipitation record at the Caucasus highlands from 1914 until 1966, when reliable meteorological observations of precipitation at high elevation began.
- Published
- 2017
147. Analytical constraints on layered gas trapping and smoothing of atmospheric variability in ice under low-accumulation conditions
- Author
-
Kévin Fourteau, Xavier Faïn, Patricia Martinerie, Amaëlle Landais, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, Jérôme Chappellaz, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Institut de Recherche pour le Développement (IRD)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
lcsh:GE1-350 ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,paleoenvironment ,lcsh:Environmental protection ,methane ,plateau ,numerical method ,analytical method ,smoothing ,atmospheric modeling ,East Antarctica ,low temperature ,carbon monoxide ,climate variation ,mixing ratio ,lcsh:Environmental pollution ,13. Climate action ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,lcsh:TD172-193.5 ,Antarctica ,lcsh:TD169-171.8 ,Dansgaard-Oeschger cycle ,ice core ,lcsh:Environmental sciences - Abstract
We investigate for the first time the loss and alteration of past atmospheric information from air trapping mechanisms under low-accumulation conditions through continuous CH4 (and CO) measurements. Methane concentration changes were measured over the Dansgaard-Oeschger event 17 (DO-17, ĝ1/4 ĝ€†60ĝ€†000ĝ€†yrĝ€†BP) in the Antarctic Vostok 4G-2 ice core. Measurements were performed using continuous-flow analysis combined with laser spectroscopy. The results highlight many anomalous layers at the centimeter scale that are unevenly distributed along the ice core. The anomalous methane mixing ratios differ from those in the immediate surrounding layers by up to 50ĝ€†ppbv. This phenomenon can be theoretically reproduced by a simple layered trapping model, creating very localized gas age scale inversions. We propose a method for cleaning the record of anomalous values that aims at minimizing the bias in the overall signal. Once the layered-trapping-induced anomalies are removed from the record, DO-17 appears to be smoother than its equivalent record from the high-accumulation WAIS Divide ice core. This is expected due to the slower sinking and densification speeds of firn layers at lower accumulation. However, the degree of smoothing appears surprisingly similar between modern and DO-17 conditions at Vostok. This suggests that glacial records of trace gases from low-accumulation sites in the East Antarctic plateau can provide a better time resolution of past atmospheric composition changes than previously expected. We also developed a numerical method to extract the gas age distributions in ice layers after the removal of the anomalous layers based on comparison with a weakly smoothed record. It is particularly adapted for the conditions of the East Antarctic plateau, as it helps to characterize smoothing for a large range of very low-temperature and low-accumulation conditions. © Author(s) 2017.
- Published
- 2017
148. Height changes over subglacial Lake Vostok, East Antarctica: Insights from GNSS observations
- Author
-
V. V. Lukin, Martin Horwath, S. V. Popov, Reinhard Dietrich, Lutz Eberlein, Mathias Fritsche, Heiko Ewert, Alexey Y Matveev, A. Richter, Denis Fedorov, Alexey A. Ekaykin, Vladimir Ya. Lipenkov, and Ludwig Schröder
- Subjects
geography ,geography.geographical_feature_category ,Accretion (meteorology) ,Firn ,Geodesy ,Geophysics ,Ice core ,GNSS applications ,Lake Vostok ,Subglacial lake ,Altimeter ,Ice sheet ,Geomorphology ,Geology ,Earth-Surface Processes - Abstract
Height changes of the ice surface above subglacial Lake Vostok, East Antarctica, reflect the integral effect of different processes within the subglacial environment and the ice sheet. Repeated GNSS (Global Navigation Satellite Systems) observations on 56 surface markers in the Lake Vostok region spanning 11 years and continuous GNSS observations at Vostok station over 5 years are used to determine the vertical firn particle movement. Vertical marker velocities are derived with an accuracy of 1 cm/yr or better. Repeated measurements of surface height profiles around Vostok station using kinematic GNSS observations on a snowmobile allow the quantification of surface height changes at 308 crossover points. The height change rate was determined at 1 ± 5 mm/yr, thus indicating a stable ice surface height over the last decade. It is concluded that both the local mass balance of the ice and the lake level of the entire lake have been stable throughout the observation period. The continuous GNSS observations demonstrate that the particle heights vary linearly with time. Nonlinear height changes do not exceed ±1 cm at Vostok station and constrain the magnitude of spatiotemporal lake-level variations. ICESat laser altimetry data confirm that the amplitude of the surface deformations over the lake is restricted to a few centimeters. Assuming the ice sheet to be in steady state over the entire lake, estimates for the surface accumulation, on basal accretion/melt rates and on flux divergence, are derived.
- Published
- 2014
149. High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica
- Author
-
O. P. Osipova, L. P. Golobokova, Yu. A. Shibaev, N. A. Onischuk, T. V. Khodzher, E. Y. Osipov, Alexey A. Ekaykin, and Vladimir Ya. Lipenkov
- Subjects
lcsh:GE1-350 ,geography ,geography.geographical_feature_category ,Plateau ,Atmospheric circulation ,Dome ,Firn ,lcsh:QE1-996.5 ,Snow ,lcsh:Geology ,Volcano ,Ice core ,Climatology ,Period (geology) ,Geology ,lcsh:Environmental sciences ,Earth-Surface Processes ,Water Science and Technology - Abstract
Ion chromatography measurements of 1730 snow and firn samples obtained from three short cores and one pit in the Vostok station area, East Antarctica, allowed for the production of the combined volcanic record of the last 900 years (AD 1093–2010). The resolution of the record is 2–3 samples per accumulation year. In total, 24 volcanic events have been identified, including seven well-known low-latitude eruptions (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452, El Chichon 1259) found in most of the polar ice cores. In comparison with three other East Antarctic volcanic records (South Pole, Plateau Remote and Dome C), the Vostok record contains more events within the last 900 years. The differences between the records may be explained by local glaciological conditions, volcanic detection methodology, and, probably, differences in atmospheric circulation patterns. The strongest volcanic signal (both in sulfate concentration and flux) was attributed to the AD 1452 Kuwae eruption, similar to the Plateau Remote and Talos Dome records. The average snow accumulation rate calculated between volcanic stratigraphic horizons for the period AD 1260–2010 is 20.9 mm H2O. Positive (+13%) anomalies of snow accumulation were found for AD 1661–1815 and AD 1992–2010, and negative (−12%) for AD 1260–1601. We hypothesized that the changes in snow accumulation are associated with regional peculiarities in atmospheric transport.
- Published
- 2014
150. Multiple climate shifts in the Southern Hemisphere over the past three centuries based on central Antarctic snow pits and core studies
- Author
-
V. Ya. Lipenkov, Yu. A. Shibaev, Alexey A. Ekaykin, and Anna Kozachek
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Stack (geology) ,Climate change ,010502 geochemistry & geophysics ,Snow ,01 natural sciences ,Sedimentary depositional environment ,Ice core ,Climatology ,Subglacial lake ,Precipitation ,Southern Hemisphere ,Geology ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
Based on the results of geochemical and glaciological investigations in snow pits and shallow cores, regional stack series of air temperature in central Antarctica (in the southern part of Vostok Subglacial Lake) were obtained, covering the last 350 years. It is shown that this parameter varied quasi-periodically with a wavelength of 30–50 years. The correlation of the newly obtained record with the circulation indices of the Southern Hemisphere (SH) shows that the central Antarctic climate is mainly governed by the type of circulation in the SH: under conditions of zonal circulation, negative anomalies of temperature and precipitation rate are observed, whereas the sign of the anomalies is positive during meridional circulation. In the 1970s the sign of the relationship between many climatic parameters changed, which is likely related to the rearrangement of the climatic system of the SH. The data suggest that during the past 350 years such events have taken place at least five times. The stable water isotope content of the central Antarctic snow is governed by the summer temperature rather than the mean annual temperature, which is interpreted as the influence of ‘postdepositional’ effects.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.