678 results on '"Chen Xingang"'
Search Results
102. Back to the features: assessing the discriminating power of future CMB missions on inflationary models
- Author
-
Braglia, Matteo, primary, Chen, Xingang, additional, Kumar Hazra, Dhiraj, additional, and Pinol, Lucas, additional
- Published
- 2023
- Full Text
- View/download PDF
103. ABO Blood Group and the Risk and Prognosis of Lymphoma
- Author
-
Qin, Ling, primary, Gao, Dongli, additional, Wang, Qian, additional, Zheng, Xuewei, additional, Wang, Jingjing, additional, Chen, Xingang, additional, Fu, Dongliao, additional, Ma, Haodi, additional, Tan, Junjia, additional, and Yin, Qinan, additional
- Published
- 2023
- Full Text
- View/download PDF
104. Standard Model mass spectrum in inflationary universe
- Author
-
Chen, Xingang, Wang, Yi, and Xianyu, Zhong-Zhi
- Published
- 2017
- Full Text
- View/download PDF
105. 基于集成增强KNN的油纸绝缘原始拉曼光谱老化状态判别
- Author
-
Chen Xingang, 陈新岗, primary, Fan Yijie, 范益杰, additional, Ma Zhipeng, 马志鹏, additional, Tan Shiyao, 谭世耀, additional, Li Ningyi, 李宁一, additional, Song Xin, 宋欣, additional, Huang Yuyang, 黄宇杨, additional, Zhang Jinjing, 张金京, additional, and Zhang Wenxuan, 张文轩, additional
- Published
- 2023
- Full Text
- View/download PDF
106. Emotions in a Digital World: Social Research 4.0: by Adrian Scribano, New York, Routledge, 2022, 165 pp., $39.9 (Paperback), ISBN: 9781032334554.
- Author
-
Chen, Xingang and Liu, Dingxiang
- Subjects
- *
EMOTIONS , *SOCIAL science research , *NONFICTION - Published
- 2024
- Full Text
- View/download PDF
107. Study on Method of Identifying Dissolved Gases in Transformer Oil Based on Improved Artificial Neural Network Algorithm
- Author
-
Chen, Xingang, Chen, Weigen, Yang, Yi, Gu, Liangling, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, Yu, Wen, editor, He, Haibo, editor, and Zhang, Nian, editor
- Published
- 2009
- Full Text
- View/download PDF
108. Novel Approach for Partial Discharge Localization Based on Fiber-Optic F–P Sensing Array and Modified TDOA in a 110-kV Transformer
- Author
-
Zhang, Zhixian, Chen, Weigen, Wu, Kejie, Liu, Hong, Chen, Xingang, Jiang, Tianyan, Ma, Zhipeng, and Feng, Wenlin
- Abstract
Accurately and sensitively detecting and locating the partial discharge (PD) inside transformers is of great significance for ensuring the safe operation of transformers. Due to the obstruction of the ultrasonic signal by the transformer casing and electromagnetic interference in the field, the PD detection accuracy and sensitivity of piezoelectric ultrasonic sensors are limited. This study, based on a real 110-kV transformer, explored the installation method of the fiber-optic Fabry–Perot (F–P) sensor array and the localization method for PD and compared the detection performance of fiber-optic F–P sensors and piezoelectric sensors. In response to optical and acoustic noise present in the field, an adaptive Wiener filter-based noise reduction method was proposed to enhance the accuracy of arrival time extraction. Based on the time-difference-of-arrival (TDOA) principle, a localization equation considering ultrasonic time delay increment was constructed. A PD localization method based on the SOGWO was introduced, and the localization accuracy and its fluctuations were analyzed under conditions considering and not considering the ultrasonic time delay increment. The research results indicate that fiber-optic F–P sensors have higher sensitivity and better resistance to electromagnetic noise and external acoustic noise interference. The solid structure inside the transformer has a significant impact on ultrasonic localization accuracy. Considering the ultrasonic time delay increment can improve localization accuracy, but it may lead to greater fluctuations in the accuracy. The research findings of this article highlight the advantages of fiber-optic F–P sensors in detecting PD in transformers.
- Published
- 2024
- Full Text
- View/download PDF
109. Classical cosmological collider physics and primordial features
- Author
-
Chen, Xingang, primary, Ebadi, Reza, additional, and Kumar, Soubhik, additional
- Published
- 2022
- Full Text
- View/download PDF
110. Relationship between Corona Discharge Thrust and Applied Voltage's Polarity.
- Author
-
Gu, Liang, Tan, Wei, He, Juan, Jiang, Zheng, Chen, Xingang, Ren, Wenfa, and Jin, Zhuangzhuang
- Subjects
CORONA discharge ,THRUST ,NEGATIVE electrode ,VOLTAGE ,ELECTRIC fields - Abstract
The thrust from corona discharge might be a promising propulsion technology in future aviation due to its advantage of not requiring mechanical moving parts. Although the thrust from corona discharge has been researched by many scholars, the effect of the applied voltage's polarity on the thrust has received little attention. This polarity effect might be very important for some special electrohydrodynamic thrusters. This paper firstly built a test platform to reveal the effect of the applied voltage's polarity on both the thrust and the corona current from a pair of symmetrically distributed needle electrodes. Then the applied voltage's polarity on the electrical field distribution between a pair of needle-plate electrodes was simulated. Finally, the relationship between the space ions at the tip of the needle electrode and the thrust are discussed. The results show that a negative needle electrode with a smaller curvature radius has a stronger thrust than a positive one with a larger curvature radius, and a stronger thrust corresponds to a higher corona current. The local electric field is enhanced by the space ions at the tip of a negative needle electrode, while it is weakened by a positive needle electrode. This results in the polarity of thrust. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
111. Feature Extraction of Oil–Paper Insulation Raman Spectroscopy Based on Manifold Dimension Transformation.
- Author
-
Chen, Xingang, Fan, Yijie, Ma, Zhipeng, Tan, Shiyao, Li, Ningyi, Song, Xin, Huang, Yuyang, Zhang, Jinjing, and Zhang, Wenxuan
- Subjects
FEATURE extraction ,MULTIDIMENSIONAL scaling ,PRINCIPAL components analysis ,RAMAN scattering ,AGE discrimination ,RAMAN spectroscopy - Abstract
Transformers play a crucial role in power systems. In this respect, fault diagnosis and aging state assessment have garnered significant attention from researchers. Herein, accelerated thermal aging and Raman scattering experiments are conducted on oil–paper insulation samples to accurately detect aging states. The samples are categorized into different aging stages based on the polymerization degree of the insulating paper. Principal component analysis (PCA), multi-dimensional scale change method (MDS), and isometric mapping algorithm (Isomap) are employed to extract features from the Raman spectra. Subsequently, the XGBoost strong classifier, optimized through Bayesian hyperparameter optimization (BO-XGBoost), is utilized to distinguish between four and ten states among 175 groups of samples after feature extraction. The subsequent classification results of the three feature-extraction methods are compared. The results indicate that Isoamp, which pertains to the manifold dimension transformation, achieves the highest average discriminative accuracy after feature extraction. The discriminative accuracies for aging states four and ten are 97.0% and 95.1% respectively, demonstrating that Raman spectroscopy manifold dimension transformation enhances the distinctiveness between samples of different aging states in the feature-extraction process. The diagnostic model constructed with Isomap and BO-XGBoost enables accurate discrimination of the aging states of oil–paper insulation. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
112. Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B
- Author
-
Chen, Xingang, primary, Zhu, Lei, additional, Ma, Zhipeng, additional, Wang, Meilin, additional, Zhao, Rui, additional, Zou, Yueyue, additional, and Fan, Yijie, additional
- Published
- 2022
- Full Text
- View/download PDF
113. Primordial standard clock models and CMB residual anomalies
- Author
-
Braglia, Matteo, primary, Chen, Xingang, additional, and Hazra, Dhiraj Kumar, additional
- Published
- 2022
- Full Text
- View/download PDF
114. Du13 encodes a C 2 H 2 zinc‐finger protein that regulatesWx bpre‐mRNA splicing and microRNA biogenesis in rice endosperm
- Author
-
Cai, Yue, primary, Zhang, Wenwei, additional, Fu, Yushuang, additional, Shan, Zhuangzhuang, additional, Xu, Jiahuan, additional, Wang, Peng, additional, Kong, Fei, additional, Jin, Jie, additional, Yan, Haigang, additional, Ge, Xinyuan, additional, Wang, Yongxiang, additional, You, Xiaoman, additional, Chen, Jie, additional, Li, Xin, additional, Chen, Weiwei, additional, Chen, Xingang, additional, Ma, Jing, additional, Tang, Xiaojie, additional, Zhang, Jie, additional, Bao, Yiqun, additional, Jiang, Ling, additional, Wang, Haiyang, additional, and Wan, Jianmin, additional
- Published
- 2022
- Full Text
- View/download PDF
115. Chinese Electronic Media: Social Evolution and Social Change in the Digital Information Age
- Author
-
Zhou, Shuhua, primary, Lin, Carolyn A., additional, and Chen, Xingang, additional
- Published
- 2021
- Full Text
- View/download PDF
116. State and Market: A Historical Review and Theoretical Remapping of the Broadcast Media Transformation in China
- Author
-
Wang, Xiaohong, primary, Chen, Xingang, additional, and Tu, Lingbo, additional
- Published
- 2021
- Full Text
- View/download PDF
117. Early Universe Physics Insensitive and Uncalibrated Cosmic Standards: Constraints on Ωm and Implications for the Hubble Tension
- Author
-
Lin, Weikang, primary, Chen, Xingang, additional, and Mack, Katherine J., additional
- Published
- 2021
- Full Text
- View/download PDF
118. A global view on the search for de Sitter vacua in (Type IIA) string theory
- Author
-
Chen, Xingang, Shiu, Gary, Sumitomo, Yoske, and Tye, S.-H. Henry
- Published
- 2012
- Full Text
- View/download PDF
119. Dynamic QTL Analysis of Rice Protein Content and Protein Index Using Recombinant Inbred Lines
- Author
-
Zheng, Leina, Zhang, Wenwei, Chen, Xingang, Ma, Jing, Chen, Weiwei, Zhao, Zhigang, Zhai, Huqu, and Wan, Jianmin
- Published
- 2011
- Full Text
- View/download PDF
120. Comparing multi-field primordial feature models with the Planck data
- Author
-
Braglia, Matteo, primary, Chen, Xingang, additional, and Hazra, Dhiraj Kumar, additional
- Published
- 2021
- Full Text
- View/download PDF
121. Ptn(n= 1, 3, and 4) Cluster-Modified MoSe2Nanosheets: A Potential Sensing and Scavenging Candidate for Lithium-Ion Battery State Characteristic Gases
- Author
-
Zhang, Zhixian, Sang, Tian-Yi, Yu, Chutian, Ma, Lintao, Ao, Yi, Zhou, Chengzhi, Chen, Xingang, Ma, Zhipeng, Li, Chunyan, and Chen, Weigen
- Abstract
Realizing reliable online detection of characteristic gases (H2, C2H4, CO, and CO2) in lithium-ion batteries is crucial to maintain the safe and stable operation of power equipment and new energy storage power plants. In this study, transition metal Ptn(n= 1, 3, and 4) clusters are attached to MoSe2nanosheets for the first time based on density functional theory using the perfect crystalline facet modification method, and the adsorption characteristics and electronic behaviors of H2, C2H4, CO, and CO2are investigated and enhanced. The results show that Ptn(n= 1, 3, and 4) is reliably chemically connected to the substrate without any significant deformation of the geometry. The adsorption properties as well as the band gap, DOS, and LUMO–HOMO are optimized for the modified Gas/Ptn(n= 1, 3, and 4)-MoSe2system. The large electronic states near the Fermi level are further activated by the modification process, and Pt-MoSe2and Pt4-MoSe2can serve as battery state characteristic gas sensors suitably according to the detection needs of specific target gases, whereas Pt3-MoSe2can be used as a good adsorbent for effective and reliable scavenging of battery state characteristic gases and is further applied to energy and power equipment and new energy storage power plants.
- Published
- 2025
- Full Text
- View/download PDF
122. Quality Evaluation System of Oil-immersed Distribution Transformer Based on Big Data Technology
- Author
-
Yingyue Zhu, Chen Shuting, Hui Zhu, Chen Xingang, Tan Yue, Yun Yuxin, and Chao Gu
- Subjects
Relation (database) ,Computer science ,business.industry ,media_common.quotation_subject ,Big data ,Distribution transformer ,Weighting ,Reliability engineering ,Electromagnetic coil ,Entropy (information theory) ,Quality (business) ,business ,Test data ,media_common - Abstract
In order to better assess the health level of oil-immersed distribution transformers, the test data of the equipment in this paper was the entry point for quality assessment, and a more systematic quality assessment system for oil-immersed distribution transformers based on big data technology was constructed. The combined weighting of the order relation method and the entropy method was used to mine the test data of the oil-immersed distribution transformer, and the state parameters that can effectively characterize the quality of the oil-immersed distribution transformer was explored, combined with set pair analysis to build a multi-state variable-based distribution transformer quality evaluation model. The results show that the evaluation results of the system are basically consistent with the actual situation, indicating that the evaluation system has a certain effect on the quality evaluation of oil-immersed distribution transformers.
- Published
- 2020
- Full Text
- View/download PDF
123. A Conserved Phenylalanine Residue of Autographa Californica Multiple Nucleopolyhedrovirus AC75 Protein Is Required for Occlusion Body Formation
- Author
-
Chen, Xingang, primary, Yang, Jian, additional, Yang, Xiaoqin, additional, Lei, Chengfeng, additional, Sun, Xiulian, additional, and Hu, Jia, additional
- Published
- 2021
- Full Text
- View/download PDF
124. Probing primordial features with the stochastic gravitational wave background
- Author
-
Braglia, Matteo, primary, Chen, Xingang, additional, and Hazra, Dhiraj Kumar, additional
- Published
- 2021
- Full Text
- View/download PDF
125. Quantitative prediction of aging state of oil-paper insulation based on Raman spectroscopy
- Author
-
Chen, Xingang, primary, Chen, Shuting, additional, Yang, Dingkun, additional, Luo, Hao, additional, Yang, Ping, additional, and Cui, Weikang, additional
- Published
- 2021
- Full Text
- View/download PDF
126. Du13 encodes a C2H2 zinc‐finger protein that regulates Wxb pre‐mRNA splicing and microRNA biogenesis in rice endosperm.
- Author
-
Cai, Yue, Zhang, Wenwei, Fu, Yushuang, Shan, Zhuangzhuang, Xu, Jiahuan, Wang, Peng, Kong, Fei, Jin, Jie, Yan, Haigang, Ge, Xinyuan, Wang, Yongxiang, You, Xiaoman, Chen, Jie, Li, Xin, Chen, Weiwei, Chen, Xingang, Ma, Jing, Tang, Xiaojie, Zhang, Jie, and Bao, Yiqun
- Subjects
ENDOSPERM ,MICRORNA ,ZINC-finger proteins ,GENETIC engineering ,AMYLOSE ,ALTERNATIVE RNA splicing ,RICE ,RICE quality - Abstract
Summary: Amylose content is a crucial physicochemical property responsible for the eating and cooking quality of rice (Oryza sativa L.) grain and is mainly controlled by the Waxy (Wx) gene. Previous studies have identified several Dull genes that modulate the expression of the Wxb allele in japonica rice by affecting the splicing efficiency of the Wxb pre‐mRNA. Here, we uncover dual roles for a novel Dull gene in pre‐mRNA splicing and microRNA processing. We isolated the dull mutant, du13, with a dull endosperm and low amylose content. Map‐based cloning showed that Du13 encodes a C2H2 zinc‐finger protein. Du13 coordinates with the nuclear cap‐binding complex to regulate the splicing of Wxb transcripts in rice endosperm. Moreover, Du13 also regulates alternative splicing of other protein‐coding transcripts and affects the biogenesis of a subset of microRNAs. Our results reveal an evolutionarily conserved link between pre‐mRNA splicing and microRNA biogenesis in rice endosperm. Our findings also provide new insights into the functions of Dull genes in rice and expand our knowledge of microRNA biogenesis in monocots. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
127. Evaluation on Voltage Withstand Index of XLPE Insulation Based on Mixed Stress Method.
- Author
-
CHEN Xingang, LIU Xinyu, MA Zhipeng, ZHU Yingyue, TAN Yue, CUI Weikang, and WANG Meilin
- Published
- 2022
- Full Text
- View/download PDF
128. Study on Method of Identifying Dissolved Gases in Transformer Oil Based on Improved Artificial Neural Network Algorithm
- Author
-
Chen, Xingang, primary, Chen, Weigen, additional, Yang, Yi, additional, and Gu, Liangling, additional
- Published
- 2009
- Full Text
- View/download PDF
129. Quality Evaluation System of Oil-immersed Distribution Transformer Based on Big Data Technology
- Author
-
Yun, Yuxin, primary, Gu, Chao, additional, Zhu, Yingyue, additional, Tan, Yue, additional, Chen, Shuting, additional, Zhu, Hui, additional, and Chen, Xingang, additional
- Published
- 2020
- Full Text
- View/download PDF
130. Planck residuals anomaly as a fingerprint of alternative scenarios to inflation
- Author
-
Domènech, Guillem, primary, Chen, Xingang, additional, Kamionkowski, Marc, additional, and Loeb, Abraham, additional
- Published
- 2020
- Full Text
- View/download PDF
131. Raman Spectral Signal Processing of Dissolved Gases in Transformer Oil Based on Compound Sparse Derivative Modeling
- Author
-
Chen, Xingang, primary, Chen, Shuting, additional, Li, Changxin, additional, Yang, Ping, additional, Luo, Hao, additional, and Chen, Linchi, additional
- Published
- 2020
- Full Text
- View/download PDF
132. Autographa californica Multiple Nucleopolyhedrovirus orf13 is Required for Efficient Nuclear Egress of Nucleocapsids
- Author
-
Chen, Xingang, primary, Yang, Xiaoqin, additional, Lei, Chengfeng, additional, Qin, Fujun, additional, Hu, Jia, additional, and Sun, Xiulian, additional
- Published
- 2020
- Full Text
- View/download PDF
133. Understanding the Bias between the Number of Confirmed Cases and Actual Number of Infections in the COVID-19 Pandemic
- Author
-
Chen, Xingang, primary and Hazra, Dhiraj Kumar, additional
- Published
- 2020
- Full Text
- View/download PDF
134. Astro2020 Science White Paper: Primordial Non-Gaussianity
- Author
-
Meerburg, P. Daniel, Green, Daniel, Abidi, Muntazir, Amin, Mustafa A., Adshead, Peter, Ahmed, Zeeshan, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Ávila, Santiago, Baccigalupi, Carlo, Baldauf, Tobias, Ballardini, Mario, Bandura, Kevin, Bartolo, Nicola, Battaglia, Nicholas, Baumann, Daniel, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Bischoff, Colin, Blazek, Jonathan, Bond, J. Richard, Borrill, Julian, Bouchet, François R., Bull, Philip, Burgess, Cliff, Byrnes, Christian, Calabrese, Erminia, Carlstrom, John E., Castorina, Emanuele, Challinor, Anthony, Chang, Tzu-Ching, Chaves-Montero, Jonas, Chen, Xingang, Yeche, Christophe, Cooray, Asantha, Coulton, William, Crawford, Thomas, Chisari, Elisa, Cyr-Racine, Francis-Yan, d'Amico, Guido, de Bernardis, Paolo, de La Macorra, Axel, Dore, Olivier, Duivenvoorden, Adri, Dunkley, Joanna, Dvorkin, Cora, Eggemeier, Alexander, Escoffier, Stephanie, Essinger-Hileman, Tom, Fasiello, Matteo, Ferraro, Simone, Flauger, Raphael, Font-Ribera, Andreu, Foreman, Simon, Friedrich, Oliver, Garcia-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Goon, Garrett, Gorski, Krzysztof M., Gudmundsson, Jon E., Gupta, Nikhel, Hanany, Shaul, Handley, Will, Hawken, Adam J., Hill, J. Colin, Hirata, Christopher M., Hložek, Renée, Holder, Gilbert, Huterer, Dragan, Kamionkowski, Marc, Karkare, Kirit S., Keeley, Ryan E., Kinney, William, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M., Kovetz, Ely D., Koyama, Kazuya, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Loverde, Marilena, Madhavacheril, Mathew, Maldacena, Juan, Marsh, M. C. David, Masui, Kiyoshi, Matarrese, Sabino, Mcallister, Liam, Mcmahon, Jeff, Mcquinn, Matthew, Meyers, Joel, Mirbabayi, Mehrdad, Dizgah, Azadeh Moradinezhad, Motloch, Pavel, Mukherjee, Suvodip, Muñoz, Julian B., Myers, Adam D., Nagy, Johanna, Naselsky, Pavel, Nati, Federico, Nicolis, Alberto, Niemack, Michael D., Niz, Gustavo, Nomerotski, Andrei, Page, Lyman, Pajer, Enrico, Padmanabhan, Hamsa, Palma, Gonzalo A., Peiris, Hiranya V., Percival, Will J., Piacentni, Francesco, Pimentel, Guilherme L., Pogosian, Levon, Prescod-Weinstein, Chanda, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Stompor, Radek, Raveri, Marco, Remazeilles, Mathieu, Rocha, Gracca, Ross, Ashley J., Rossi, Graziano, Ruhl, John, Sasaki, Misao, Schaan, Emmanuel, Schillaci, Alessandro, Schmittfull, Marcel, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shan, Huanyuan, Shandera, Sarah, Sherwin, Blake D., Silverstein, Eva, Simon, Sara, Slosar, Anže, Staggs, Suzanne, Starkman, Glenn, Stebbins, Albert, Suzuki, Aritoki, Switzer, Eric R., Timbie, Peter, Tolley, Andrew J., Tomasi, Maurizio, Tristram, Matthieu, Trodden, Mark, Tsai, Yu-Dai, Uhlemann, Cora, Umiltà, Caterina, van Engelen, Alexander, Vargas-Magaña, M., Vieregg, Abigail, Wallisch, Benjamin, Wands, David, Wandelt, Benjamin, Wang, Yi, Watson, Scott, Wise, Mark, Wu, W. L. K., Xianyu, Zhong-Zhi, Xu, Weishuang, Yasini, Siavash, Young, Sam, Yutong, Duan, Zaldarriaga, Matias, Zemcov, Michael, Zhao, Gong-Bo, Zheng, Yi, Zhu, Ningfeng, University of Cambridge [UK] (CAM), University of California [San Diego] (UC San Diego), University of California (UC), Universidad Autónoma de Madrid (UAM), Institute of Cosmology and Gravitation [Portsmouth] (ICG), University of Portsmouth, Ecole Polytechnique Fédérale de Lausanne (EPFL), Canadian Institute for Theoretical Astrophysics (CITA), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Argonne National Laboratory [Lemont] (ANL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Stanford University, Facultad de Ingeniería [Buenos Aires] (FIUBA), Universidad de Buenos Aires [Buenos Aires] (UBA), Dipartimento di Fisica [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), University College of London [London] (UCL), National Oceanography Centre [Southampton] (NOC), University of Southampton, Johns Hopkins University (JHU), Korea Astronomy and Space Science Institute (KASI), ICRA and Physics Department, Columbia University [New York], Dipartimento di Fisica 'G. Galilei', Università degli Studi di Padova = University of Padua (Unipd), Kavli Institute for Cosmological Physics [Chicago] (KICP), University of Chicago, School of Physics and Astronomy [Nottingham], University of Nottingham, UK (UON), Institute for Astronomy [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Waterloo [Waterloo], University of New Hampshire (UNH), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Catania (INGV), Istituto Nazionale di Geofisica e Vulcanologia, Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Manchester [Manchester], Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre for Theoretical Cosmology, Institute for Advanced Study Princeton, School of physics and astronomy, Rochester Institute of Technology, University of California, Universidad Autonoma de Madrid (UAM), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Universidad Nacional Autónoma de México (UNAM), Okayama University, Universita degli Studi di Padova, Smithsonian Institution-Harvard University [Cambridge], Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Universidad Nacional Autónoma de México - UNAM (MEXICO)
- Subjects
[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
5 pages + references; Submitted to the Astro2020 call for science white papers. This version: fixed author list; International audience; Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
- Published
- 2019
135. Inflation and Dark Energy from spectroscopy at z > 2
- Author
-
Ferraro, Simone, Wilson, Michael J., Abidi, Muntazir, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Avelino, Arturo, Baccigalupi, Carlo, Bandura, Kevin, Battaglia, Nicholas, Bavdhankar, Chetan, Bernal, Jos�� Luis, Beutler, Florian, Biagetti, Matteo, Blanc, Guillermo A., Blazek, Jonathan, Bolton, Adam S., Borrill, Julian, Frye, Brenda, Buckley-Geer, Elizabeth, Bull, Philip, Burgess, Cliff, Byrnes, Christian T., Cai, Zheng, Castander, Francisco J, Castorina, Emanuele, Chang, Tzu-Ching, Chaves-Montero, Jon��s, Chen, Shi-Fan, Chen, Xingang, Balland, Christophe, Y��che, Christophe, Cohn, J. D., Coulton, William, Courtois, Helene, Croft, Rupert A. C., Cyr-Racine, Francis-Yan, D'Amico, Guido, Dawson, Kyle, Delabrouille, Jacques, Dey, Arjun, Dor��, Olivier, Douglass, Kelly A., Yutong, Duan, Dvorkin, Cora, Eggemeier, Alexander, Eisenstein, Daniel, Fan, Xiaohui, Ferreira, Pedro G., Font-Ribera, Andreu, Foreman, Simon, Garc��a-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Gontcho, Satya Gontcho A, Green, Daniel, Guy, Julien, Hahn, ChangHoon, Hanany, Shaul, Handley, Will, Hathi, Nimish, Hawken, Adam J., Hern��ndez-Aguayo, C��sar, Hlo��ek, Ren��e, Huterer, Dragan, Ishak, Mustapha, Kamionkowski, Marc, Karagiannis, Dionysios, Keeley, Ryan E., Kehoe, Robert, Khatri, Rishi, Kim, Alex, Kneib, Jean-Paul, Kollmeier, Juna A., Kovetz, Ely D., Krause, Elisabeth, Krolewski, Alex, L'Huillier, Benjamin, Landriau, Martin, Levi, Michael, Liguori, Michele, Linder, Eric, Luki��, Zarija, de la Macorra, Axel, Plazas, Andr��s A., Marshall, Jennifer L., Martini, Paul, Masui, Kiyoshi, McDonald, Patrick, Meerburg, P. Daniel, Meyers, Joel, Mirbabayi, Mehrdad, Moustakas, John, Myers, Adam D., Palanque-Delabrouille, Nathalie, Newburgh, Laura, Newman, Jeffrey A., Niz, Gustavo, Padmanabhan, Hamsa, Palunas, Povilas, Percival, Will J., Piacentini, Francesco, Pieri, Matthew M., Piro, Anthony L., Prakash, Abhishek, Rhodes, Jason, Ross, Ashley J., Rossi, Graziano, Rudie, Gwen C., Samushia, Lado, Sasaki, Misao, Schaan, Emmanuel, Schlegel, David J., Schmittfull, Marcel, Schubnell, Michael, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shafieloo, Arman, Shan, Huanyuan, Simon, Joshua D., Simon, Sara, Slepian, Zachary, Slosar, An��e, Sridhar, Srivatsan, Stebbins, Albert, Escoffier, Stephanie, Switzer, Eric R., Tarl��, Gregory, Trodden, Mark, Uhlemann, Cora, Uren��a-L��pez, L. Arturo, Di Valentino, Eleonora, Vargas-Maga��a, M., Wang, Yi, Watson, Scott, White, Martin, Xu, Weishuang, Yu, Byeonghee, Zhao, Gong-Bo, Zheng, Yi, and Zhu, Hong-Ming
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Astrophysics of Galaxies (astro-ph.GA) ,astro-ph.GA ,astro-ph.CO ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics - Abstract
The expansion of the Universe is understood to have accelerated during two epochs: in its very first moments during a period of Inflation and much more recently, at $z < 1$, when Dark Energy is hypothesized to drive cosmic acceleration. The undiscovered mechanisms behind these two epochs represent some of the most important open problems in fundamental physics. The large cosmological volume at $2 < z < 5$, together with the ability to efficiently target high-$z$ galaxies with known techniques, enables large gains in the study of Inflation and Dark Energy. A future spectroscopic survey can test the Gaussianity of the initial conditions up to a factor of ~50 better than our current bounds, crossing the crucial theoretical threshold of $��(f_{NL}^{\rm local})$ of order unity that separates single field and multi-field models. Simultaneously, it can measure the fraction of Dark Energy at the percent level up to $z = 5$, thus serving as an unprecedented test of the standard model and opening up a tremendous discovery space., Science white paper submitted to the Astro2020 Decadal Survey
- Published
- 2019
136. Cosmological Synergies Enabled by Joint Analysis of Multi-probe data from WFIRST, Euclid, and LSST
- Author
-
Rhodes, Jason, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Avelino, Arturo, Blazek, Jonathan, Castander, Francisco J., Chary, Ranga Ram, Chen, Xingang, Choi, Ami, Clowe, Douglas, Cohen-Tanugi, Johann, Comparat, Johan, Croft, Rupert A. C., Doré, Olivier, Escoffier, Stephanie, Foley, Ryan, Fosalba, Pablo, Gruen, Daniel, Gupta, Nikhel, GUZZO, Luigi, Hawken, Adam J., Hemmati, Shoubaneh, Heitmann, Katrin, Hernquist, Lars, Heymans, Catherine, Hirata, Christopher M., Hoekstra, Henk, Huterer, Dragan, Iliev, Ilian T., Jain, Bhuvnesh, Jha, Saurabh W., Keeley, Ryan E., Kiessling, Alina, Kitching, Thomas, Koekemoer, Anton, Koushiappas, Savvas M., Kovetz, Ely D., Kruk, Jeff, L'Huillier, Benjamin, Lahav, Ofer, Lemos, Pablo, Macorra, Axel de la, Malagón, Andrés Plazas, Mandelbaum, Rachel, Masters, Daniel, McQuinn, Matthew, Melchior, Peter, Miyatake, Hironao, Newman, Jeffrey A., Nichol, Robert, Niz, Gustavo, O'Connor, Paul, Penna-Lima, Mariana, Percival, Will J., Perlmutter, Saul, Pisani, Alice, Rigault, Mickael, Rossi, Graziano, Schmittfull, Marcel, Schuhmann, Robert, Scolnic, Dan, Sereno, Mauro, Shan, Huanyuan, Shirasaki, Masato, Simon, Sara, Slosar, Anže, Spergel, David, Sridhar, Srivatsan, Takada, Masahiro, Troxel, M. A., Wang, Yun, Weinberg, David, Yoshida, Naoki, Zhang, Yuanyuan, and LSST Dark Energy Science Collaboration
- Abstract
WFIRST, Euclid, and LSST are all missions designed to perform dedicated cosmology surveys that offer unprecedented statistical constraining power and control of systematic uncertainties. There is a growing realization that these missions will be significantly more powerful when the data are processed and analyzed in unison.
- Published
- 2019
137. A Temperature Monitoring System for SF6 Circuit Breaker Quenching Pot Based on Temperature Field Analysis
- Author
-
Ma Jun, LI Changxin, and Chen Xingang
- Subjects
Quenching ,Materials science ,Field (physics) ,Nuclear engineering ,Heat transfer ,High voltage ,Surface acoustic wave sensor ,computer.software_genre ,computer ,Circuit breaker ,Finite element method ,Simulation software - Abstract
Quenching pot’s temperature monitoring has been one of the most important problems in on-line monitoring of power equipment. A system of quenching pot of SF 6 circuit breaker temperature online monitoring is designed. According to the heat transfer theory, a mathematical model of quenching pot of high voltage circuit breaker is established. Having finite element calculation through COMSOL simulation software, the simulation results reflect the heat transfer law of each part of quenching pot and the temperature field distribution. Analyzing the characteristic of quenching pot temperature field gas flow field model. Using surface acoustic wave sensor to collect temperature, through the data processing module, sending the data to host computer’s interface, analyzing, displaying and storing the temperature data. Though the experimental test, the temperature monitoring system can meet the requirements of SF 6 circuit breaker quenching pot’s real-time monitoring.
- Published
- 2018
- Full Text
- View/download PDF
138. Multi-Objective Distribution Network Reconfiguration Based on Deep Learning Algorithm
- Author
-
Chen Xiaoqing, Tan Hao, Yu Bing, Chen Xingang, and LI Changxin
- Subjects
021103 operations research ,Distribution networks ,Computer science ,business.industry ,Deep learning ,0211 other engineering and technologies ,Particle swarm optimization ,Control reconfiguration ,020206 networking & telecommunications ,02 engineering and technology ,AC power ,Load balancing (computing) ,Convolutional neural network ,Nonlinear system ,0202 electrical engineering, electronic engineering, information engineering ,Artificial intelligence ,business ,Algorithm - Abstract
Distribution network reconfiguration is an important means to improve power supply reliability and reduce network loss. In this paper, a deep learning CNN (convolution neural network) model is established to solve the problem of switch status optimization under the constraints of distribution network operation. Deep learning is a branch of machine learning, for some complex issues, deep learning CNN can autonomously combine basic features into more complex features and learning the rules to solve practical problems. Firstly, a distribution network reconfiguration model with multi-objective as active power loss, average power supply availability indicator and load balancing indicator of the system is established. With the judgement matrix, the weight of each target is optimized according to the expert experience, and the multi-objective is transformed into a single-objective. Then, under different loads situation, the optimization model of single-objective distribution network reconfiguration model is solved by the particle swarm optimization algorithm to get the optimized switch open/closed combination. Taking the load of each node as input, the optimized switch open/closed combination is output, trained in deep learning CNN model, and the load characteristic is extracted by deep convolution neural network to simulate the nonlinear relationship of reconfiguration. The trained deep learning model can well simulate the switch status combinations under different loads and meet the requests of the optimization objective without Iteration and improve the reconfiguration efficiency in the actual distribution network.
- Published
- 2018
- Full Text
- View/download PDF
139. Unique Fingerprints of Alternatives to Inflation in the Primordial Power Spectrum
- Author
-
Chen, Xingang, primary, Loeb, Abraham, additional, and Xianyu, Zhong-Zhi, additional
- Published
- 2019
- Full Text
- View/download PDF
140. Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics
- Author
-
Green, Daniel, Green, Daniel, Amin, Mustafa A, Meyers, Joel, Wallisch, Benjamin, Abazajian, Kevork N, Abidi, Muntazir, Adshead, Peter, Ahmed, Zeeshan, Ansarinejad, Behzad, Armstrong, Robert, Baccigalupi, Carlo, Bandura, Kevin, Barron, Darcy, Battaglia, Nicholas, Baumann, Daniel, Bechtol, Keith, Bennett, Charles, Benson, Bradford, Beutler, Florian, Bischoff, Colin, Bleem, Lindsey, Bond, J Richard, Borrill, Julian, Buckley-Geer, Elizabeth, Burgess, Cliff, Carlstrom, John E, Castorina, Emanuele, Challinor, Anthony, Chen, Xingang, Cooray, Asantha, Coulton, William, Craig, Nathaniel, Crawford, Thomas, Cyr-Racine, Francis-Yan, D'Amico, Guido, Demarteau, Marcel, Doré, Olivier, Yutong, Duan, Dunkley, Joanna, Dvorkin, Cora, Ellison, John, Engelen, Alexander van, Escoffier, Stephanie, Essinger-Hileman, Tom, Fabbian, Giulio, Filippini, Jeffrey, Flauger, Raphael, Foreman, Simon, Fuller, George, Garcia, Marcos AG, García-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Gontcho, Satya Gontcho A, Górski, Krzysztof M, Grin, Daniel, Grohs, Evan, Gudmundsson, Jon E, Hanany, Shaul, Handley, Will, Hill, J Colin, Hirata, Christopher M, Hložek, Renée, Holder, Gilbert, Horiuchi, Shunsaku, Huterer, Dragan, Kadota, Kenji, Kamionkowski, Marc, Keeley, Ryan E, Khatri, Rishi, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M, Kovetz, Ely D, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Lin, Tongyan, Loverde, Marilena, Madhavacheril, Mathew, Masui, Kiyoshi, McMahon, Jeff, McQuinn, Matthew, Meerburg, P Daniel, Mirbabayi, Mehrdad, Motloch, Pavel, Mukherjee, Suvodip, Munõz, Julian B, Nagy, Johanna, Newburgh, Laura, Niemack, Michael D, Nomerotski, Andrei, Page, Lyman, Piacentni, Francesco, Pierpaoli, Elena, Pogosian, Levon, Pryke, Clement, Green, Daniel, Green, Daniel, Amin, Mustafa A, Meyers, Joel, Wallisch, Benjamin, Abazajian, Kevork N, Abidi, Muntazir, Adshead, Peter, Ahmed, Zeeshan, Ansarinejad, Behzad, Armstrong, Robert, Baccigalupi, Carlo, Bandura, Kevin, Barron, Darcy, Battaglia, Nicholas, Baumann, Daniel, Bechtol, Keith, Bennett, Charles, Benson, Bradford, Beutler, Florian, Bischoff, Colin, Bleem, Lindsey, Bond, J Richard, Borrill, Julian, Buckley-Geer, Elizabeth, Burgess, Cliff, Carlstrom, John E, Castorina, Emanuele, Challinor, Anthony, Chen, Xingang, Cooray, Asantha, Coulton, William, Craig, Nathaniel, Crawford, Thomas, Cyr-Racine, Francis-Yan, D'Amico, Guido, Demarteau, Marcel, Doré, Olivier, Yutong, Duan, Dunkley, Joanna, Dvorkin, Cora, Ellison, John, Engelen, Alexander van, Escoffier, Stephanie, Essinger-Hileman, Tom, Fabbian, Giulio, Filippini, Jeffrey, Flauger, Raphael, Foreman, Simon, Fuller, George, Garcia, Marcos AG, García-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Gontcho, Satya Gontcho A, Górski, Krzysztof M, Grin, Daniel, Grohs, Evan, Gudmundsson, Jon E, Hanany, Shaul, Handley, Will, Hill, J Colin, Hirata, Christopher M, Hložek, Renée, Holder, Gilbert, Horiuchi, Shunsaku, Huterer, Dragan, Kadota, Kenji, Kamionkowski, Marc, Keeley, Ryan E, Khatri, Rishi, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M, Kovetz, Ely D, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Lin, Tongyan, Loverde, Marilena, Madhavacheril, Mathew, Masui, Kiyoshi, McMahon, Jeff, McQuinn, Matthew, Meerburg, P Daniel, Mirbabayi, Mehrdad, Motloch, Pavel, Mukherjee, Suvodip, Munõz, Julian B, Nagy, Johanna, Newburgh, Laura, Niemack, Michael D, Nomerotski, Andrei, Page, Lyman, Piacentni, Francesco, Pierpaoli, Elena, Pogosian, Levon, and Pryke, Clement
- Abstract
The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or sterile neutrinos) or gravitational waves. The gravitational effects of any such light relics can be observed through their unique imprint in the cosmic microwave background (CMB), the large-scale structure, and the primordial light element abundances, and are important in determining the initial conditions of the universe. We argue that future cosmological observations, in particular improved maps of the CMB on small angular scales, can be orders of magnitude more sensitive for probing the thermal history of the early universe than current experiments. These observations offer a unique and broad discovery space for new physics in the dark sector and beyond, even when its effects would not be visible in terrestrial experiments or in astrophysical environments. A detection of an excess light relic abundance would be a clear indication of new physics and would provide the first direct information about the universe between the times of reheating and neutrino decoupling one second later.
- Published
- 2019
141. Primordial Non-Gaussianity
- Author
-
Meerburg, P. Daniel, Green, Daniel, Abidi, Muntazir, Amin, Mustafa A., Adshead, Peter, Ahmed, Zeeshan, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Avila, Santiago, Baccigalupi, Carlo, Baldauf, Tobias, Ballardini, Mario, Bandura, Kevin, Bartolo, Nicola, Battaglia, Nicholas, Baumann, Daniel, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Bischoff, Colin, Blazek, Jonathan, Bond, J. Richard, Borrill, Julian, Bouchet, François R., Bull, Philip, Burgess, Cliff, Byrnes, Christian, Calabrese, Erminia, Carlstrom, John E., Castorina, Emanuele, Challinor, Anthony, Chang, Tzu-Ching, Chaves-Montero, Jonas, Chen, Xingang, Yeche, Christophe, Cooray, Asantha, Coulton, William, Crawford, Thomas, Chisari, Elisa, Cyr-Racine, Francis-Yan, D'Amico, Guido, de Bernardis, Paolo, de la Macorra, Axel, Doré, Olivier, Duivenvoorden, Adri, Dunkley, Joanna, Dvorkin, Cora, Eggemeier, Alexander, Escoffier, Stephanie, Essinger-Hileman, Tom, Fasiello, Matteo, Ferraro, Simone, Flauger, Raphael, Font-Ribera, Andreu, Foreman, Simon, Friedrich, Oliver, Garcia-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Goon, Garrett, Gorski, Krzysztof M., Gudmundsson, Jon E., Gupta, Nikhel, Hanany, Shaul, Handley, Will, Hawken, Adam J., Hill, J. Colin, Hirata, Christopher M., Hložek, Renée, Holder, Gilbert, Huterer, Dragan, Kamionkowski, Marc, Karkare, Kirit S., Keeley, Ryan E., Kinney, William, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M., Kovetz, Ely D., Koyama, Kazuya, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Loverde, Marilena, Madhavacheril, Mathew, Maldacena, Juan, Marsh, M. C. David, Masui, Kiyoshi, Matarrese, Sabino, McAllister, Liam, McMahon, Jeff, McQuinn, Matthew, Meyers, Joel, Mirbabayi, Mehrdad, Dizgah, Azadeh Moradinezhad, Motloch, Pavel, Mukherjee, Suvodip, Muñoz, Julian B., Myers, Adam D., Nagy, Johanna, Naselsky, Pavel, Nati, Federico, Newburgh, Nicolis, Alberto, Niemack, Michael D., Niz, Gustavo, Nomerotski, Andrei, Page, Lyman, Pajer, Enrico, Padmanabhan, Hamsa, Palma, Gonzalo A., Peiris, Hiranya V., Percival, Will J., Piacentni, Francesco, Pimentel, Guilherme L., Pogosian, Levon, Prescod-Weinstein, Chanda, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Stompor, Radek, Raveri, Marco, Remazeilles, Mathieu, Rocha, Gracca, Ross, Ashley J., Rossi, Graziano, Ruhl, John, Sasaki, Misao, Schaan, Emmanuel, Schillaci, Alessandro, Schmittfull, Marcel, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shan, Huanyuan, Shandera, Sarah, Sherwin, Blake D., Silverstein, Eva, Simon, Sara, Slosar, Anže, Staggs, Suzanne, Starkman, Glenn, Stebbins, Albert, Suzuki, Aritoki, Switzer, Eric R., Timbie, Peter, Tolley, Andrew J., Tomasi, Maurizio, Tristram, Matthieu, Trodden, Mark, Tsai, Yu-Dai, Uhlemann, Cora, Umilta, Caterina, van Engelen, Alexander, Vargas-Magaña, M., Vieregg, Abigail, Wallisch, Benjamin, Wands, David, Wandelt, Benjamin, Wang, Yi, Watson, Scott, Wise, Mark, Wu, W. L. K., Xianyu, Zhong-Zhi, Xu, Weishuang, Yasini, Siavash, Young, Sam, Yutong, Duan, Zaldarriaga, Matias, Zemcov, Michael, Zhao, Gong-Bo, Zheng, Yi, Zhu, Ningfeng, Meerburg, P. Daniel, Green, Daniel, Abidi, Muntazir, Amin, Mustafa A., Adshead, Peter, Ahmed, Zeeshan, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Avila, Santiago, Baccigalupi, Carlo, Baldauf, Tobias, Ballardini, Mario, Bandura, Kevin, Bartolo, Nicola, Battaglia, Nicholas, Baumann, Daniel, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Bischoff, Colin, Blazek, Jonathan, Bond, J. Richard, Borrill, Julian, Bouchet, François R., Bull, Philip, Burgess, Cliff, Byrnes, Christian, Calabrese, Erminia, Carlstrom, John E., Castorina, Emanuele, Challinor, Anthony, Chang, Tzu-Ching, Chaves-Montero, Jonas, Chen, Xingang, Yeche, Christophe, Cooray, Asantha, Coulton, William, Crawford, Thomas, Chisari, Elisa, Cyr-Racine, Francis-Yan, D'Amico, Guido, de Bernardis, Paolo, de la Macorra, Axel, Doré, Olivier, Duivenvoorden, Adri, Dunkley, Joanna, Dvorkin, Cora, Eggemeier, Alexander, Escoffier, Stephanie, Essinger-Hileman, Tom, Fasiello, Matteo, Ferraro, Simone, Flauger, Raphael, Font-Ribera, Andreu, Foreman, Simon, Friedrich, Oliver, Garcia-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Goon, Garrett, Gorski, Krzysztof M., Gudmundsson, Jon E., Gupta, Nikhel, Hanany, Shaul, Handley, Will, Hawken, Adam J., Hill, J. Colin, Hirata, Christopher M., Hložek, Renée, Holder, Gilbert, Huterer, Dragan, Kamionkowski, Marc, Karkare, Kirit S., Keeley, Ryan E., Kinney, William, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M., Kovetz, Ely D., Koyama, Kazuya, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Loverde, Marilena, Madhavacheril, Mathew, Maldacena, Juan, Marsh, M. C. David, Masui, Kiyoshi, Matarrese, Sabino, McAllister, Liam, McMahon, Jeff, McQuinn, Matthew, Meyers, Joel, Mirbabayi, Mehrdad, Dizgah, Azadeh Moradinezhad, Motloch, Pavel, Mukherjee, Suvodip, Muñoz, Julian B., Myers, Adam D., Nagy, Johanna, Naselsky, Pavel, Nati, Federico, Newburgh, Nicolis, Alberto, Niemack, Michael D., Niz, Gustavo, Nomerotski, Andrei, Page, Lyman, Pajer, Enrico, Padmanabhan, Hamsa, Palma, Gonzalo A., Peiris, Hiranya V., Percival, Will J., Piacentni, Francesco, Pimentel, Guilherme L., Pogosian, Levon, Prescod-Weinstein, Chanda, Pryke, Clement, Puglisi, Giuseppe, Racine, Benjamin, Stompor, Radek, Raveri, Marco, Remazeilles, Mathieu, Rocha, Gracca, Ross, Ashley J., Rossi, Graziano, Ruhl, John, Sasaki, Misao, Schaan, Emmanuel, Schillaci, Alessandro, Schmittfull, Marcel, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shan, Huanyuan, Shandera, Sarah, Sherwin, Blake D., Silverstein, Eva, Simon, Sara, Slosar, Anže, Staggs, Suzanne, Starkman, Glenn, Stebbins, Albert, Suzuki, Aritoki, Switzer, Eric R., Timbie, Peter, Tolley, Andrew J., Tomasi, Maurizio, Tristram, Matthieu, Trodden, Mark, Tsai, Yu-Dai, Uhlemann, Cora, Umilta, Caterina, van Engelen, Alexander, Vargas-Magaña, M., Vieregg, Abigail, Wallisch, Benjamin, Wands, David, Wandelt, Benjamin, Wang, Yi, Watson, Scott, Wise, Mark, Wu, W. L. K., Xianyu, Zhong-Zhi, Xu, Weishuang, Yasini, Siavash, Young, Sam, Yutong, Duan, Zaldarriaga, Matias, Zemcov, Michael, Zhao, Gong-Bo, Zheng, Yi, and Zhu, Ningfeng
- Abstract
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale., Comment: 5 pages + references; Submitted to the Astro2020 call for science white papers. This version: fixed author list
- Published
- 2019
142. Inflation and Dark Energy from spectroscopy at $z > 2$
- Author
-
Ferraro, Simone, Wilson, Michael J., Abidi, Muntazir, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Avelino, Arturo, Baccigalupi, Carlo, Bandura, Kevin, Battaglia, Nicholas, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Blanc, Guillermo A., Blazek, Jonathan, Bolton, Adam S., Borrill, Julian, Frye, Brenda, Buckley-Geer, Elizabeth, Bull, Philip, Burgess, Cliff, Byrnes, Christian T., Cai, Zheng, Castander, Francisco J, Castorina, Emanuele, Chang, Tzu-Ching, Chaves-Montero, Jonás, Chen, Shi-Fan, Chen, Xingang, Balland, Christophe, Yèche, Christophe, Cohn, J. D., Coulton, William, Courtois, Helene, Croft, Rupert A. C., Cyr-Racine, Francis-Yan, D'Amico, Guido, Dawson, Kyle, Delabrouille, Jacques, Dey, Arjun, Doré, Olivier, Douglass, Kelly A., Yutong, Duan, Dvorkin, Cora, Eggemeier, Alexander, Eisenstein, Daniel, Fan, Xiaohui, Ferreira, Pedro G., Font-Ribera, Andreu, Foreman, Simon, García-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Gontcho, Satya Gontcho A, Green, Daniel, Guy, Julien, Hahn, ChangHoon, Hanany, Shaul, Handley, Will, Hathi, Nimish, Hawken, Adam J., Hernández-Aguayo, César, Hložek, Renée, Huterer, Dragan, Ishak, Mustapha, Kamionkowski, Marc, Karagiannis, Dionysios, Keeley, Ryan E., Kehoe, Robert, Khatri, Rishi, Kim, Alex, Kneib, Jean-Paul, Kollmeier, Juna A., Kovetz, Ely D., Krause, Elisabeth, Krolewski, Alex, L'Huillier, Benjamin, Landriau, Martin, Levi, Michael, Liguori, Michele, Linder, Eric, Lukić, Zarija, de la Macorra, Axel, Plazas, Andrés A., Marshall, Jennifer L., Martini, Paul, Masui, Kiyoshi, McDonald, Patrick, Meerburg, P. Daniel, Meyers, Joel, Mirbabayi, Mehrdad, Moustakas, John, Myers, Adam D., Palanque-Delabrouille, Nathalie, Newburgh, Laura, Newman, Jeffrey A., Niz, Gustavo, Padmanabhan, Hamsa, Palunas, Povilas, Percival, Will J., Piacentini, Francesco, Pieri, Matthew M., Piro, Anthony L., Prakash, Abhishek, Rhodes, Jason, Ross, Ashley J., Rossi, Graziano, Rudie, Gwen C., Samushia, Lado, Sasaki, Misao, Schaan, Emmanuel, Schlegel, David J., Schmittfull, Marcel, Schubnell, Michael, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shafieloo, Arman, Shan, Huanyuan, Simon, Joshua D., Simon, Sara, Slepian, Zachary, Slosar, Anže, Sridhar, Srivatsan, Stebbins, Albert, Escoffier, Stephanie, Switzer, Eric R., Tarlé, Gregory, Trodden, Mark, Uhlemann, Cora, Urenña-López, L. Arturo, Di Valentino, Eleonora, Vargas-Magaña, M., Wang, Yi, Watson, Scott, White, Martin, Xu, Weishuang, Yu, Byeonghee, Zhao, Gong-Bo, Zheng, Yi, Zhu, Hong-Ming, Ferraro, Simone, Wilson, Michael J., Abidi, Muntazir, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Avelino, Arturo, Baccigalupi, Carlo, Bandura, Kevin, Battaglia, Nicholas, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Blanc, Guillermo A., Blazek, Jonathan, Bolton, Adam S., Borrill, Julian, Frye, Brenda, Buckley-Geer, Elizabeth, Bull, Philip, Burgess, Cliff, Byrnes, Christian T., Cai, Zheng, Castander, Francisco J, Castorina, Emanuele, Chang, Tzu-Ching, Chaves-Montero, Jonás, Chen, Shi-Fan, Chen, Xingang, Balland, Christophe, Yèche, Christophe, Cohn, J. D., Coulton, William, Courtois, Helene, Croft, Rupert A. C., Cyr-Racine, Francis-Yan, D'Amico, Guido, Dawson, Kyle, Delabrouille, Jacques, Dey, Arjun, Doré, Olivier, Douglass, Kelly A., Yutong, Duan, Dvorkin, Cora, Eggemeier, Alexander, Eisenstein, Daniel, Fan, Xiaohui, Ferreira, Pedro G., Font-Ribera, Andreu, Foreman, Simon, García-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Gontcho, Satya Gontcho A, Green, Daniel, Guy, Julien, Hahn, ChangHoon, Hanany, Shaul, Handley, Will, Hathi, Nimish, Hawken, Adam J., Hernández-Aguayo, César, Hložek, Renée, Huterer, Dragan, Ishak, Mustapha, Kamionkowski, Marc, Karagiannis, Dionysios, Keeley, Ryan E., Kehoe, Robert, Khatri, Rishi, Kim, Alex, Kneib, Jean-Paul, Kollmeier, Juna A., Kovetz, Ely D., Krause, Elisabeth, Krolewski, Alex, L'Huillier, Benjamin, Landriau, Martin, Levi, Michael, Liguori, Michele, Linder, Eric, Lukić, Zarija, de la Macorra, Axel, Plazas, Andrés A., Marshall, Jennifer L., Martini, Paul, Masui, Kiyoshi, McDonald, Patrick, Meerburg, P. Daniel, Meyers, Joel, Mirbabayi, Mehrdad, Moustakas, John, Myers, Adam D., Palanque-Delabrouille, Nathalie, Newburgh, Laura, Newman, Jeffrey A., Niz, Gustavo, Padmanabhan, Hamsa, Palunas, Povilas, Percival, Will J., Piacentini, Francesco, Pieri, Matthew M., Piro, Anthony L., Prakash, Abhishek, Rhodes, Jason, Ross, Ashley J., Rossi, Graziano, Rudie, Gwen C., Samushia, Lado, Sasaki, Misao, Schaan, Emmanuel, Schlegel, David J., Schmittfull, Marcel, Schubnell, Michael, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shafieloo, Arman, Shan, Huanyuan, Simon, Joshua D., Simon, Sara, Slepian, Zachary, Slosar, Anže, Sridhar, Srivatsan, Stebbins, Albert, Escoffier, Stephanie, Switzer, Eric R., Tarlé, Gregory, Trodden, Mark, Uhlemann, Cora, Urenña-López, L. Arturo, Di Valentino, Eleonora, Vargas-Magaña, M., Wang, Yi, Watson, Scott, White, Martin, Xu, Weishuang, Yu, Byeonghee, Zhao, Gong-Bo, Zheng, Yi, and Zhu, Hong-Ming
- Abstract
The expansion of the Universe is understood to have accelerated during two epochs: in its very first moments during a period of Inflation and much more recently, at $z < 1$, when Dark Energy is hypothesized to drive cosmic acceleration. The undiscovered mechanisms behind these two epochs represent some of the most important open problems in fundamental physics. The large cosmological volume at $2 < z < 5$, together with the ability to efficiently target high-$z$ galaxies with known techniques, enables large gains in the study of Inflation and Dark Energy. A future spectroscopic survey can test the Gaussianity of the initial conditions up to a factor of ~50 better than our current bounds, crossing the crucial theoretical threshold of $\sigma(f_{NL}^{\rm local})$ of order unity that separates single field and multi-field models. Simultaneously, it can measure the fraction of Dark Energy at the percent level up to $z = 5$, thus serving as an unprecedented test of the standard model and opening up a tremendous discovery space., Comment: Science white paper submitted to the Astro2020 Decadal Survey
- Published
- 2019
143. Dark Matter Science in the Era of LSST
- Author
-
Bechtol, Keith, Drlica-Wagner, Alex, Abazajian, Kevork N., Abidi, Muntazir, Adhikari, Susmita, Ali-Haïmoud, Yacine, Annis, James, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Baccigalupi, Carlo, Banerjee, Arka, Banik, Nilanjan, Bennett, Charles, Beutler, Florian, Bird, Simeon, Birrer, Simon, Biswas, Rahul, Biviano, Andrea, Blazek, Jonathan, Boddy, Kimberly K., Bonaca, Ana, Borrill, Julian, Bose, Sownak, Bovy, Jo, Frye, Brenda, Brooks, Alyson M., Buckley, Matthew R., Buckley-Geer, Elizabeth, Bulbul, Esra, Burchat, Patricia R., Burgess, Cliff, Calore, Francesca, Caputo, Regina, Castorina, Emanuele, Chang, Chihway, Chapline, George, Charles, Eric, Chen, Xingang, Clowe, Douglas, Cohen-Tanugi, Johann, Comparat, Johan, Croft, Rupert A. C., Cuoco, Alessandro, Cyr-Racine, Francis-Yan, D'Amico, Guido, Davis, Tamara M, Dawson, William A., de la Macorra, Axel, Di Valentino, Eleonora, Rivero, Ana Díaz, Digel, Seth, Dodelson, Scott, Doré, Olivier, Dvorkin, Cora, Eckner, Christopher, Ellison, John, Erkal, Denis, Farahi, Arya, Fassnacht, Christopher D., Ferreira, Pedro G., Flaugher, Brenna, Foreman, Simon, Friedrich, Oliver, Frieman, Joshua, García-Bellido, Juan, Gawiser, Eric, Gerbino, Martina, Giannotti, Maurizio, Gill, Mandeep S. S., Gluscevic, Vera, Golovich, Nathan, Gontcho, Satya Gontcho A, González-Morales, Alma X., Grin, Daniel, Gruen, Daniel, Hearin, Andrew P., Hendel, David, Hezaveh, Yashar D., Hirata, Christopher M., Hložek, Renee, Horiuchi, Shunsaku, Jain, Bhuvnesh, Jee, M. James, Jeltema, Tesla E., Kamionkowski, Marc, Kaplinghat, Manoj, Keeley, Ryan E., Keeton, Charles R., Khatri, Rishi, Koposov, Sergey E., Koushiappas, Savvas M., Kovetz, Ely D., Lahav, Ofer, Lam, Casey, Lee, Chien-Hsiu, Li, Ting S., Liguori, Michele, Lin, Tongyan, Lisanti, Mariangela, LoVerde, Marilena, Lu, Jessica R., Mandelbaum, Rachel, Mao, Yao-Yuan, McDermott, Samuel D., McNanna, Mitch, Medford, Michael, Meerburg, P. Daniel, Meyer, Manuel, Mirbabayi, Mehrdad, Mishra-Sharma, Siddharth, Marc, Moniez, More, Surhud, Moustakas, John, Muñoz, Julian B., Murgia, Simona, Myers, Adam D., Nadler, Ethan O., Necib, Lina, Newburgh, Laura, Newman, Jeffrey A., Nord, Brian, Nourbakhsh, Erfan, Nuss, Eric, O'Connor, Paul, Pace, Andrew B., Padmanabhan, Hamsa, Palmese, Antonella, Peiris, Hiranya V., Peter, Annika H. G., Piacentni, Francesco, Piacentini, Francesco, Plazas, Andrés, Polin, Daniel A., Prakash, Abhishek, Prescod-Weinstein, Chanda, Read, Justin I., Ritz, Steven, Robertson, Brant E., Rose, Benjamin, Rosenfeld, Rogerio, Rossi, Graziano, Samushia, Lado, Sánchez, Javier, Sánchez-Conde, Miguel A., Schaan, Emmanuel, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shafieloo, Arman, Shan, Huanyuan, Shipp, Nora, Simon, Joshua D., Simon, Sara, Slatyer, Tracy R., Slosar, Anže, Sridhar, Srivatsan, Stebbins, Albert, Straniero, Oscar, Strigari, Louis E., Tait, Tim M. P., Tollerud, Erik, Troxel, M. A., Tyson, J. Anthony, Uhlemann, Cora, Urenña-López, L. Arturo, Verma, Aprajita, Vilalta, Ricardo, Walter, Christopher W., Wang, Mei-Yu, Watson, Scott, Wechsler, Risa H., Wittman, David, Xu, Weishuang, Yanny, Brian, Young, Sam, Yu, Hai-Bo, Zaharijas, Gabrijela, Zentner, Andrew R., Zuntz, Joe, Bechtol, Keith, Drlica-Wagner, Alex, Abazajian, Kevork N., Abidi, Muntazir, Adhikari, Susmita, Ali-Haïmoud, Yacine, Annis, James, Ansarinejad, Behzad, Armstrong, Robert, Asorey, Jacobo, Baccigalupi, Carlo, Banerjee, Arka, Banik, Nilanjan, Bennett, Charles, Beutler, Florian, Bird, Simeon, Birrer, Simon, Biswas, Rahul, Biviano, Andrea, Blazek, Jonathan, Boddy, Kimberly K., Bonaca, Ana, Borrill, Julian, Bose, Sownak, Bovy, Jo, Frye, Brenda, Brooks, Alyson M., Buckley, Matthew R., Buckley-Geer, Elizabeth, Bulbul, Esra, Burchat, Patricia R., Burgess, Cliff, Calore, Francesca, Caputo, Regina, Castorina, Emanuele, Chang, Chihway, Chapline, George, Charles, Eric, Chen, Xingang, Clowe, Douglas, Cohen-Tanugi, Johann, Comparat, Johan, Croft, Rupert A. C., Cuoco, Alessandro, Cyr-Racine, Francis-Yan, D'Amico, Guido, Davis, Tamara M, Dawson, William A., de la Macorra, Axel, Di Valentino, Eleonora, Rivero, Ana Díaz, Digel, Seth, Dodelson, Scott, Doré, Olivier, Dvorkin, Cora, Eckner, Christopher, Ellison, John, Erkal, Denis, Farahi, Arya, Fassnacht, Christopher D., Ferreira, Pedro G., Flaugher, Brenna, Foreman, Simon, Friedrich, Oliver, Frieman, Joshua, García-Bellido, Juan, Gawiser, Eric, Gerbino, Martina, Giannotti, Maurizio, Gill, Mandeep S. S., Gluscevic, Vera, Golovich, Nathan, Gontcho, Satya Gontcho A, González-Morales, Alma X., Grin, Daniel, Gruen, Daniel, Hearin, Andrew P., Hendel, David, Hezaveh, Yashar D., Hirata, Christopher M., Hložek, Renee, Horiuchi, Shunsaku, Jain, Bhuvnesh, Jee, M. James, Jeltema, Tesla E., Kamionkowski, Marc, Kaplinghat, Manoj, Keeley, Ryan E., Keeton, Charles R., Khatri, Rishi, Koposov, Sergey E., Koushiappas, Savvas M., Kovetz, Ely D., Lahav, Ofer, Lam, Casey, Lee, Chien-Hsiu, Li, Ting S., Liguori, Michele, Lin, Tongyan, Lisanti, Mariangela, LoVerde, Marilena, Lu, Jessica R., Mandelbaum, Rachel, Mao, Yao-Yuan, McDermott, Samuel D., McNanna, Mitch, Medford, Michael, Meerburg, P. Daniel, Meyer, Manuel, Mirbabayi, Mehrdad, Mishra-Sharma, Siddharth, Marc, Moniez, More, Surhud, Moustakas, John, Muñoz, Julian B., Murgia, Simona, Myers, Adam D., Nadler, Ethan O., Necib, Lina, Newburgh, Laura, Newman, Jeffrey A., Nord, Brian, Nourbakhsh, Erfan, Nuss, Eric, O'Connor, Paul, Pace, Andrew B., Padmanabhan, Hamsa, Palmese, Antonella, Peiris, Hiranya V., Peter, Annika H. G., Piacentni, Francesco, Piacentini, Francesco, Plazas, Andrés, Polin, Daniel A., Prakash, Abhishek, Prescod-Weinstein, Chanda, Read, Justin I., Ritz, Steven, Robertson, Brant E., Rose, Benjamin, Rosenfeld, Rogerio, Rossi, Graziano, Samushia, Lado, Sánchez, Javier, Sánchez-Conde, Miguel A., Schaan, Emmanuel, Sehgal, Neelima, Senatore, Leonardo, Seo, Hee-Jong, Shafieloo, Arman, Shan, Huanyuan, Shipp, Nora, Simon, Joshua D., Simon, Sara, Slatyer, Tracy R., Slosar, Anže, Sridhar, Srivatsan, Stebbins, Albert, Straniero, Oscar, Strigari, Louis E., Tait, Tim M. P., Tollerud, Erik, Troxel, M. A., Tyson, J. Anthony, Uhlemann, Cora, Urenña-López, L. Arturo, Verma, Aprajita, Vilalta, Ricardo, Walter, Christopher W., Wang, Mei-Yu, Watson, Scott, Wechsler, Risa H., Wittman, David, Xu, Weishuang, Yanny, Brian, Young, Sam, Yu, Hai-Bo, Zaharijas, Gabrijela, Zentner, Andrew R., and Zuntz, Joe
- Abstract
Astrophysical observations currently provide the only robust, empirical measurements of dark matter. In the coming decade, astrophysical observations will guide other experimental efforts, while simultaneously probing unique regions of dark matter parameter space. This white paper summarizes astrophysical observations that can constrain the fundamental physics of dark matter in the era of LSST. We describe how astrophysical observations will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational interactions with the Standard Model, and compact object abundances. Additionally, we highlight theoretical work and experimental/observational facilities that will complement LSST to strengthen our understanding of the fundamental characteristics of dark matter., Comment: 11 pages, 2 figures, Science Whitepaper for Astro 2020, more information at https://lsstdarkmatter.github.io
- Published
- 2019
144. Primordial Non-Gaussianity
- Author
-
Meerburg, P Daniel, Meerburg, P Daniel, Green, Daniel, Abidi, Muntazir, Amin, Mustafa A, Adshead, Peter, Ahmed, Zeeshan, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Avila, Santiago, Baccigalupi, Carlo, Baldauf, Tobias, Ballardini, Mario, Bandura, Kevin, Bartolo, Nicola, Battaglia, Nicholas, Baumann, Daniel, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Bischoff, Colin, Blazek, Jonathan, Bond, J Richard, Borrill, Julian, Bouchet, François R, Bull, Philip, Burgess, Cliff, Byrnes, Christian, Calabrese, Erminia, Carlstrom, John E, Castorina, Emanuele, Challinor, Anthony, Chang, Tzu-Ching, Chaves-Montero, Jonas, Chen, Xingang, Yeche, Christophe, Cooray, Asantha, Coulton, William, Crawford, Thomas, Chisari, Elisa, Cyr-Racine, Francis-Yan, D'Amico, Guido, de Bernardis, Paolo, de la Macorra, Axel, Doré, Olivier, Duivenvoorden, Adri, Dunkley, Joanna, Dvorkin, Cora, Eggemeier, Alexander, Escoffier, Stephanie, Essinger-Hileman, Tom, Fasiello, Matteo, Ferraro, Simone, Flauger, Raphael, Font-Ribera, Andreu, Foreman, Simon, Friedrich, Oliver, Garcia-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Goon, Garrett, Gorski, Krzysztof M, Gudmundsson, Jon E, Gupta, Nikhel, Hanany, Shaul, Handley, Will, Hawken, Adam J, Hill, J Colin, Hirata, Christopher M, Hložek, Renée, Holder, Gilbert, Huterer, Dragan, Kamionkowski, Marc, Karkare, Kirit S, Keeley, Ryan E, Kinney, William, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M, Kovetz, Ely D, Koyama, Kazuya, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Loverde, Marilena, Madhavacheril, Mathew, Maldacena, Juan, Marsh, MC David, Masui, Kiyoshi, Matarrese, Sabino, McAllister, Liam, McMahon, Jeff, McQuinn, Matthew, Meyers, Joel, Mirbabayi, Mehrdad, Dizgah, Azadeh Moradinezhad, Meerburg, P Daniel, Meerburg, P Daniel, Green, Daniel, Abidi, Muntazir, Amin, Mustafa A, Adshead, Peter, Ahmed, Zeeshan, Alonso, David, Ansarinejad, Behzad, Armstrong, Robert, Avila, Santiago, Baccigalupi, Carlo, Baldauf, Tobias, Ballardini, Mario, Bandura, Kevin, Bartolo, Nicola, Battaglia, Nicholas, Baumann, Daniel, Bavdhankar, Chetan, Bernal, José Luis, Beutler, Florian, Biagetti, Matteo, Bischoff, Colin, Blazek, Jonathan, Bond, J Richard, Borrill, Julian, Bouchet, François R, Bull, Philip, Burgess, Cliff, Byrnes, Christian, Calabrese, Erminia, Carlstrom, John E, Castorina, Emanuele, Challinor, Anthony, Chang, Tzu-Ching, Chaves-Montero, Jonas, Chen, Xingang, Yeche, Christophe, Cooray, Asantha, Coulton, William, Crawford, Thomas, Chisari, Elisa, Cyr-Racine, Francis-Yan, D'Amico, Guido, de Bernardis, Paolo, de la Macorra, Axel, Doré, Olivier, Duivenvoorden, Adri, Dunkley, Joanna, Dvorkin, Cora, Eggemeier, Alexander, Escoffier, Stephanie, Essinger-Hileman, Tom, Fasiello, Matteo, Ferraro, Simone, Flauger, Raphael, Font-Ribera, Andreu, Foreman, Simon, Friedrich, Oliver, Garcia-Bellido, Juan, Gerbino, Martina, Gluscevic, Vera, Goon, Garrett, Gorski, Krzysztof M, Gudmundsson, Jon E, Gupta, Nikhel, Hanany, Shaul, Handley, Will, Hawken, Adam J, Hill, J Colin, Hirata, Christopher M, Hložek, Renée, Holder, Gilbert, Huterer, Dragan, Kamionkowski, Marc, Karkare, Kirit S, Keeley, Ryan E, Kinney, William, Kisner, Theodore, Kneib, Jean-Paul, Knox, Lloyd, Koushiappas, Savvas M, Kovetz, Ely D, Koyama, Kazuya, L'Huillier, Benjamin, Lahav, Ofer, Lattanzi, Massimiliano, Lee, Hayden, Liguori, Michele, Loverde, Marilena, Madhavacheril, Mathew, Maldacena, Juan, Marsh, MC David, Masui, Kiyoshi, Matarrese, Sabino, McAllister, Liam, McMahon, Jeff, McQuinn, Matthew, Meyers, Joel, Mirbabayi, Mehrdad, and Dizgah, Azadeh Moradinezhad
- Abstract
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
- Published
- 2019
145. Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations
- Author
-
Slosar, Anže, Chen, Xingang, Dvorkin, Cora, Green, Daniel, Meerburg, P. Daniel, Silverstein, Eva, Wallisch, Benjamin, Slosar, Anže, Chen, Xingang, Dvorkin, Cora, Green, Daniel, Meerburg, P. Daniel, Silverstein, Eva, and Wallisch, Benjamin
- Abstract
Inflation may provide unique insight into the physics at the highest available energy scales that cannot be replicated in any realistic terrestrial experiment. Features in the primordial power spectrum are generically predicted in a wide class of models of inflation and its alternatives, and are observationally one of the most overlooked channels for finding evidence for non-minimal inflationary models. Constraints from observations of the cosmic microwave background cover the widest range of feature frequencies, but the most sensitive constraints will come from future large-scale structure surveys that can measure the largest number of linear and quasi-linear modes., Comment: 5 pages + references, 1 figure; science white paper submitted to the Astro2020 decadal survey
- Published
- 2019
146. Revisiting non-Gaussianity from non-attractor inflation models
- Author
-
Massachusetts Institute of Technology. Department of Physics, Namjoo, Mohammad Hossein, Cai, Yi-Fu, Chen, Xingang, Sasaki, Misao, Wang, Dong-Gang, Wang, Ziwei, Massachusetts Institute of Technology. Department of Physics, Namjoo, Mohammad Hossein, Cai, Yi-Fu, Chen, Xingang, Sasaki, Misao, Wang, Dong-Gang, and Wang, Ziwei
- Abstract
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large., United States. Department of Energy (Contract de-sc0012567)
- Published
- 2019
147. Fault type Identification of Distribution Network Based on Transient Current Sequence Component
- Author
-
Chen, Xiaoqing, primary, Chen, Xingang, primary, Feng, Yuxuan, primary, Luo, Hao, primary, and Wang, Shuai, primary
- Published
- 2019
- Full Text
- View/download PDF
148. Observational Signatures and Non-Gaussianities ofGeneral Single Field Inflation
- Author
-
Chen, Xingang, primary, Huang, Min-xin, additional, Kachru, Shamit, additional, and Shiu, Gary, additional
- Published
- 2006
- Full Text
- View/download PDF
149. Reconstructing the Inflationary Landscape with Cosmological Data
- Author
-
Chen, Xingang, primary, Palma, Gonzalo A., additional, Scheihing H., Bruno, additional, and Sypsas, Spyros, additional
- Published
- 2018
- Full Text
- View/download PDF
150. Landscape tomography through primordial non-Gaussianity
- Author
-
Chen, Xingang, primary, Palma, Gonzalo A., additional, Riquelme, Walter, additional, Scheihing H., Bruno, additional, and Sypsas, Spyros, additional
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.