101. Reverse vaccinology and subtractive genomics approaches for identifying common therapeutics against Mycobacterium leprae and Mycobacterium lepromatosis .
- Author
-
Jaiswal AK, Tiwari S, Jamal SB, Oliveira LC, Sales-Campos H, Andrade-Silva LE, Oliveira CJF, Ghosh P, Barh D, Azevedo V, Soares SC, Rodrigues VR, and da Silva MV
- Abstract
Background: Mycobacterium leprae and Mycobacterium lepromatosis are gram-positive bacterial pathogens and the causative agents of leprosy in humans across the world. The elimination of leprosy cannot be achieved by multidrug therapy alone, and highlights the need for new tools and drugs to prevent the emergence of new resistant strains., Methods: In this study, our contribution includes the prediction of vaccine targets and new putative drugs against leprosy, using reverse vaccinology and subtractive genomics. Six strains of Mycobacterium leprae and Mycobacterium lepromatosis (4 and 2 strains, respectively) were used for comparison taking Mycobacterium leprae strain TN as the reference genome. Briefly, we used a combined reverse vaccinology and subtractive genomics approach., Results: As a result, we identified 12 common putative antigenic proteins as vaccine targets and three common drug targets against Mycobacterium leprae and Mycobacterium lepromatosis. Furthermore , the docking analysis using 28 natural compounds with three drug targets was done., Conclusions: The bis-naphthoquinone compound Diospyrin (CID 308140) obtained from indigenous plant Diospyros spp . showed the most favored binding affinity against predicted drug targets, which can be a candidate therapeutic target in the future against leprosy., Competing Interests: Competing interests: The authors declare that they have no competing interests.
- Published
- 2021
- Full Text
- View/download PDF