101. Wasserstein complexity penalization priors: a new class of penalizing complexity priors
- Author
-
Bolin, David, Simas, Alexandre B., and Xiong, Zhen
- Subjects
Statistics - Methodology - Abstract
Penalizing complexity (PC) priors is a principled framework for designing priors that reduce model complexity. PC priors penalize the Kullback-Leibler Divergence (KLD) between the distributions induced by a ``simple'' model and that of a more complex model. However, in many common cases, it is impossible to construct a prior in this way because the KLD is infinite. Various approximations are used to mitigate this problem, but the resulting priors then fail to follow the designed principles. We propose a new class of priors, the Wasserstein complexity penalization (WCP) priors, by replacing KLD with the Wasserstein distance in the PC prior framework. These priors avoid the infinite model distance issues and can be derived by following the principles exactly, making them more interpretable. Furthermore, principles and recipes to construct joint WCP priors for multiple parameters analytically and numerically are proposed and we show that they can be easily obtained, either numerically or analytically, for a general class of models. The methods are illustrated through several examples for which PC priors have previously been applied.
- Published
- 2023