101. Arithmetical properties of double Möbius-Bernoulli numbers
- Author
-
Abdelmejid Bayad, Daeyeoul Kim, and Yan Li
- Subjects
Pure mathematics ,General Mathematics ,11a05 ,010102 general mathematics ,Dedekind sum ,möbius-bernoulli numbers ,33e99 ,01 natural sciences ,barnes-bernoulli numbers ,010101 applied mathematics ,symbols.namesake ,symbols ,QA1-939 ,Arithmetic function ,dedekind sums ,0101 mathematics ,Bernoulli number ,Mathematics - Abstract
Given positive integers n, n′ and k, we investigate the Möbius-Bernoulli numbers Mk(n), double Möbius-Bernoulli numbers Mk(n,n′), and Möbius-Bernoulli polynomials Mk(n)(x). We find new identities involving double Möbius-Bernoulli, Barnes-Bernoulli numbers and Dedekind sums. In part of this paper, the Möbius-Bernoulli polynomials Mk(n)(x), can be interpreted as critical values of the following Dirichlet type L-function $$\begin{array}{} \displaystyle L_{HM}(s;n,x):=\sum_{d|n} \sum_{m= 0}^\infty \frac{\mu(d)}{(md+x)^s} \, \, \text{(for Re} (s) \gt 1), \end{array} $$ which has analytic continuation to the whole s-complex plane, where μ is the Möbius function.
- Published
- 2019