Phalaenopsis was the genus with the highest ornamental and commercial values among orchids. Phalaenopsis with fragrance were rarely distributed in the market due to selection constraints, such as affinity, ploidy and breeding age. Therefore, research on transferring aroma traits into commercial Phalaenopsis are of great significance to the breeding of Phalaenopsis. In order to investigate the key aroma-causing components among different varieties of Phalaenopsis, the floral fragrance components of the eight new hybrid varieties in full blooming period were examined by headspace solid-phase microextraction and gas chromatography-mass spectrometry. The principal components, clustering and aroma quality analysis were performed based on the identification of floral substance components. The results were as follows:(1)96 substances were detected in eight varieties of Phalaenopsis, mainly divided into eight categories of terpenes, aldehydes, esters, alcohols, ketones, ethers, phenols and aromatic compounds, among which terpenes were dominant in quantity and content and were the main volatile substances of Phalaenopsis.(2)Principal component analysis showed that eight varieties were divided into three quadrants, F2 had the most volatile components and the most quantity, terpenes were mainly 1,8-cineole, α-bergamotene, linalool and(+)-calarene; F1, F4, F5 and F8 were divided into a group without ketones, ethers or phenols, and they had the least volatile components and terpenes were mainly linalool; F3, F6 and F7 were divided into a group with more volatile components and the terpenes were mainly α-bergamotene.(3)The results of cluster analysis were consistent with the principal component analysis, and the eight varieties were clustered into three categories, F1, F4, F5 and F8 were more closely related to each other as floral odor types; F3, F6 and F7 were more closely related to each other as woody floral quality; F2 showed a long genetic distance from the other seven varieties, with complex floral components and relatively average contribution of volatile substances, and both woody, minty and fruity types. This study shows that floral fragrance substances can be used as potential trait markers to distinguish between groups of varieties with different fragrance characteristics and provide a theoretical basis for further development and utilization research through cross selection to achieve specific floral fragrance Phalaenopsis selection and product processing and production. [ABSTRACT FROM AUTHOR]