1151. Double-diffusive convection in a porous medium
- Author
-
C. F. Chen and Bruce T. Murray
- Subjects
Flow visualization ,Convection ,Materials science ,Mechanical Engineering ,Heat flux sensor ,Mechanics ,Condensed Matter Physics ,Supercritical fluid ,Physics::Fluid Dynamics ,Viscosity ,Heat flux ,Mechanics of Materials ,Porous medium ,Double diffusive convection - Abstract
An experimental study has been carried out to examine double-diffusive convection in a porous medium. The experiments were performed in a horizontal layer of porous medium consisting of 3 mm diameter glass beads contained in a box 24 cm × 12 cm × 4 cm high. The top and bottom walls were made of brass and were kept at different constant temperatures by separate baths, with the bottom temperature higher than that of the top. The onset of convection was detected by a heat flux sensor and by the temperature distribution in the porous medium. When the porous medium was saturated with distilled water, the onset of convection was marked by a change in slope of the heat flux curve. The temperature distribution in the longitudinal direction in the middle of the layer indicated a convection pattern consisting of two-dimensional rolls with axes parallel to the short side. This pattern was confirmed by flow visualization. When the porous medium was saturated with salinity gradients of 0.15% cm−1 and 0.225% cm−1, the onset of convection was marked by a dramatic increase in heat flux at the critical ΔT, and the convection pattern was three-dimensional. When the temperature difference was reduced from supercritical to subcritical values, the heat flux curve established a hysteresis loop. Results from linear stability theory, taking into account effects of temperature-dependent viscosity, volumetric expansion coefficients, and a nonlinear basic state salinity profile, are discussed.
- Published
- 1989