1,459 results on '"Zmuidzinas, Jonas"'
Search Results
1102. The NIKA 2013-2014 observation campaigns: control of systematic effects and results
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Catalano, A., Adam, R., Adane, A., Ade, P., André, P., Beelen, A., Belier, B., Benoît, A., Bideaud, A., Billot, N., Boudou, N., Bourrion, O., Calvo, M., Coiffard, G., Comis, B., D'Addabbo, A., Désert, F.-X., Doyle, S., Goupy, J., Kramer, C., Leclercq, S., Macías-Pérez, J.-F., Martino, J., Mauskopf, P., Mayet, F., Monfardini, A., Pajot, F., Pascale, E., Perotto, L., Pointecouteau, E., Ponthieu, N., Revéret, V., Ritacco, A., Rodriguez, L., Savini, G., Schuster, K., Sievers, A., Tucker, C., and Zylka, R.
- Published
- 2014
- Full Text
- View/download PDF
1103. BICEP2 and Keck array: upgrades and improved beam characterization
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Buder, I., Ade, P. A. R., Ahmed, Z., Aikin, R. W., Alexander, K. D., Amiri, M., Barkats, D., Benton, S. J., Bischoff, C. A., Bock, J. J., Bonetti, J. A., Brevik, J. A., Bullock, E., Burger, B., Crill, B. P., Davis, G., Dowell, C. D., Duband, L., Filippini, J. P., Fliescher, S., Golwala, S. R., Gordon, M. S., Halpern, M., Hasselfield, M., Hildebrandt, S. R., Hilton, G. C., Hristov, V. V., Hui, H., Irwin, K. D., Karkare, K. S., Kaufman, J. P., Keating, B. G., Kefeli, S., Kernasovskiy, S. A., Kovac, J. M., Kuo, C. L., Leitch, E. M., Lueker, M., Mason, P., Megerian, K. G., Netterfield, C. B., Nguyen, H. T., O’Brient, R., Ogburn, R. W., Orlando, A., Pryke, C., Reintsema, C. D., Richter, S., Schwarz, R., Sheehy, C. D., Staniszewski, Z. K., Sudiwala, R. V., Teply, G. P., Thompson, K. L., Tolan, J. E., Turner, A. D., Vieregg, A. G., Weber, A. C., Wiebe, D. V., Wilson, P., Wong, C. L., and Yoon, K. W.
- Published
- 2014
- Full Text
- View/download PDF
1104. The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX)
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, MacDermid, Kevin, Aboobaker, Asad M., Ade, Peter, Aubin, François, Baccigalupi, Carlo, Bandura, Kevin, Bao, Chaoyun, Borrill, Julian, Chapman, Daniel, Didier, Joy, Dobbs, Matt, Grain, Julien, Grainger, William, Hanany, Shaul, Helson, Kyle, Hillbrand, Seth, Hilton, Gene, Hubmayr, Hannes, Irwin, Kent, Johnson, Bradley, Jaffe, Andrew, Jones, Terry, Kisner, Ted, Klein, Jeff, Korotkov, Andrei, Lee, Adrian, Levinson, Lorne, Limon, Michele, Miller, Amber, Milligan, Michael, Pascale, Enzo, Raach, Katherine, Reichborn-Kjennerud, Britt, Reintsema, Carl, Sagiv, Ilan, Smecher, Graeme, Stompor, Radek, Tristram, Matthieu, Tucker, Greg, Westbrook, Ben, and Zilic, Kyle
- Published
- 2014
- Full Text
- View/download PDF
1105. ACTPol: on-sky performance and characterization
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Grace, E., Beall, J., Bond, J. R., Cho, H. M., Datta, R., Devlin, M. J., Dünner, R., Fox, A. E., Gallardo, P., Hasselfield, M., Henderson, S., Hilton, G. C., Hincks, A. D., Hlozek, R., Hubmayr, J., Irwin, K., Klein, J., Koopman, B., Li, D., Lungu, M., Newburgh, L., Nibarger, Jo. P., Niemack, M. D., Maurin, L., McMahon, J., Naess, S., Page, L. A., Pappas, C., Schmitt, B. L., Sievers, J., Staggs, S. T., Thornton, R., Van Lanen, J., and Wollack, E. J.
- Published
- 2014
- Full Text
- View/download PDF
1106. Front Matter: Volume 9153
- Author
-
Holland, Wayne S. and Zmuidzinas, Jonas
- Published
- 2014
- Full Text
- View/download PDF
1107. An RFI monitoring system based on a hybrid configuration for radioastronomy
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Melis, Andrea, Gaudiomonte, Francesco, Barbaro, Massimo, Concu, Raimondo, Migoni, Carlo, Trois, Alessio, and Valente, Giuseppe
- Published
- 2014
- Full Text
- View/download PDF
1108. Development of a cryogenic DC-low noise amplifier for SQuID-based readout electronics
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Macculi, C., Torrioli, G., Di Giorgio, A., Spinoglio, L., and Piro, Luigi
- Published
- 2014
- Full Text
- View/download PDF
1109. Development and characterization of the readout system for POLARBEAR-2
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Barron, D., Ade, P. A. R., Akiba, Y., Aleman, C., Arnold, K., Atlas, M., Bender, A., Borrill, J., Chapman, S., Chinone, Y., Cukierman, A., Dobbs, M., Elleflot, T., Errard, J., Fabbian, G., Feng, G., Gilbert, A., Halverson, N. W., Hasegawa, M., Hattori, K., Hazumi, M., Holzapfel, W. L., Hori, Y., Inoue, Y., Jaehnig, G. C., Katayama, N., Keating, B., Kermish, Z., Keskitalo, R., Kisner, T., Le Jeune, M., Lee, A. T., Matsuda, F., Matsumura, T., Morii, H., Myers, M. J., Navroli, M., Nishino, H., Okamura, T., Peloton, J., Rebeiz, G., Reichardt, C. L., Richards, P. L., Ross, C., Sholl, M., Siritanasak, P., Smecher, G., Stebor, N., Steinbach, B., Stompor, R., Suzuki, A., Suzuki, J., Takada, S., Takakura, T., Tomaru, T., Wilson, B., Yamaguchi, H., and Zahn, O.
- Published
- 2014
- Full Text
- View/download PDF
1110. The QUIJOTE TGI
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Hoyland, R., Aguiar-González, M., Génova-Santosa, R., Gómez-Reñasco, F., López-Caraballo, C., Rebolo-López, R., Rubiño-Martín, J. A., Sánchez-de la Rosa, V., Vega-Moreno, A., Viera-Curbelo, T., Pelaez-Santos, A., Vignaga, R., Tramonte, D., Poidevin, F., Pérez-de-Taoro, M. R., Martínez-Gonzalez, E., Aja, B., Artal, E., Cagigas, J., Cano-de-Diego, J. L., Cuerno, E. M., de-la-Fuente, L., Pérez, A., Ortiz, D., Terán, J. V., Villa, E., Piccirillo, L., and Hobson, M.
- Published
- 2014
- Full Text
- View/download PDF
1111. The readout system for the ArTeMis camera
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Doumayrou, E., Lortholary, M., Dumaye, L., and Hamon, G.
- Published
- 2014
- Full Text
- View/download PDF
1112. Vector near-field beam scanner for the SMA
- Author
-
Holland, Wayne S., Zmuidzinas, Jonas, Christensen, Robert D., Rao, Ramprasad, Sridharan, T. K., and Tong, Edward
- Published
- 2014
- Full Text
- View/download PDF
1113. Electron distribution function of a weakly ionized gas in magnetic and time-dependent electric fields
- Author
-
Zmuidzinas, Jonas S and Wu, Ching-Sheng
- Published
- 1961
- Full Text
- View/download PDF
1114. Electron beam excitation of the liquid helium surface
- Author
-
Watkins, John L., Zmuidzinas, Jonas S., and Williams, Gary A.
- Published
- 1981
- Full Text
- View/download PDF
1115. ON THE USE OF SHOT NOISE FOR PHOTON COUNTING
- Author
-
Zmuidzinas, Jonas [Division of Physics, Mathematics, and Astronomy, California Institute Institute of Technology, Pasadena, CA 91125 (United States)]
- Published
- 2015
- Full Text
- View/download PDF
1116. Observing low elevation sky and the CMB Cold Spot with BICEP3 at the South Pole
- Author
-
Lingzhen Zeng, Paul K. Grimes, Denis Barkats, G. Hall, J. Cornelison, P. A. R. Ade, Jeffrey P. Filippini, E. V. Denison, Ki Won Yoon, S. Henderson, S. Richter, Edward D. Young, R. Schwarz, Y. Nakato, N. Precup, Shengyu Zhang, Sarah M. Harrison, Lorenzo Moncelsi, Che-Hang Yu, Lionel Duband, C. Pryke, Rashmikant V. Sudiwala, G. P. Teply, J. Kang, S. Fliescher, C. Umiltà, A. Wandui, Abigail G. Vieregg, A. C. Weber, Kent D. Irwin, J. Willmert, Gene C. Hilton, H. Boenish, Bryan Steinbach, A. Cukierman, John M Kovac, H. T. Nguyen, Donald V. Wiebe, Kirit Karkare, E. M. Leitch, King Tong Lau, J. Cheshire, Colin A. Bischoff, Toshiya Namikawa, Ahmed Soliman, S. Kefeli, Benjamin L. Schmitt, Eui-Hyeok Yang, E. Bullock, Johannes Hubmayr, W. L. K. Wu, Mark Halpern, Roger O'Brient, D. C. Goldfinger, Anthony D. Turner, T. Prouve, E. Karpel, C. L. Wong, J. E. Tolan, Keith L. Thompson, Sergi R. Hildebrandt, Alessandro Schillaci, Chao-Lin Kuo, Jake Connors, Victor Buza, S. Fatigoni, S. A. Kernasovskiy, James J. Bock, S. Palladino, Carl D. Reintsema, C. D. Sheehy, T. St. Germaine, Marion Dierickx, M. Crumrine, R. W. Ogburn, Zeeshan Ahmed, R. Basu Thakur, M. Eiben, J. A. Grayson, Carole Tucker, B. Racine, Howard Hui, K. G. Megerian, Neil Goeckner-Wald, L. Minutolo, Chao Zhang, Mandana Amiri, Institut Laue-Langevin (ILL), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Zmuidzinas, Jonas, Gao, Jian-Rong, ILL, and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
gravitational radiation: polarization ,detector: performance ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic microwave background ,cosmic background radiation: polarization ,anomaly ,FOS: Physical sciences ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,BICEP3 ,010309 optics ,0103 physical sciences ,Cosmic Microwave Background ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,mirror ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common ,Gravitational Waves ,Beam diameter ,polarization ,Cold spot ,Gravitational wave ,beam: width ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,021001 nanoscience & nanotechnology ,Polarization (waves) ,BICEP ,Flat mirror ,Inflation ,B-mode ,Sky ,Refracting telescope ,power spectrum: angular dependence ,Cold Spot ,0210 nano-technology ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Instrumentation and Methods for Astrophysics ,Geology ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
BICEP3 is a 520 mm aperture on-axis refracting telescope at the South Pole, which observes the polarization of the cosmic microwave background (CMB) at 95 GHz to search for the B-mode signal from inflationary gravitational waves. In addition to this main target, we have developed a low-elevation observation strategy to extend coverage of the Southern sky at the South Pole, where BICEP3 can quickly achieve degree-scale E-mode measurements over a large area. An interesting E-mode measurement is probing a potential polarization anomaly around the CMB Cold Spot. During the austral summer seasons of 2018-19 and 2019-20, BICEP3 observed the sky with a flat mirror to redirect the beams to various low elevation ranges. The preliminary data analysis shows degree-scale E-modes measured with high signal-to-noise ratio., 12 pages, 10 figures; Figure 7 shows the correct file
- Published
- 2020
1117. Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole
- Author
-
Zeeshan Ahmed, G. Hall, B. Racine, Lingzhen Zeng, P. A. R. Ade, Colin A. Bischoff, K. G. Megerian, L. Minutolo, E. M. Leitch, S. Palladino, Denis Barkats, K. L. Thompson, B. L. Schmitt, M. Crumrine, Rashmikant V. Sudiwala, Kent D. Irwin, E. V. Denison, Alessandro Schillaci, J. Kang, T. Namikawa, S. Fatigoni, L. Duband, P. Grimes, Edward D. Young, Howard Hui, Neil Goeckner-Wald, M. Amiri, S. Henderson, N. Precup, A. C. Weber, C. Umiltà, D. C. Goldfinger, Victor Buza, J. Cornelison, T. Prouvé, Jeffrey P. Filippini, A. Wandui, Ahmed Soliman, Shou-Cheng Zhang, K. W. Yoon, Sarah M. Harrison, W. L. K. Wu, Anthony D. Turner, J. A. Grayson, Y. Nakato, Chao-Lin Kuo, H. T. Nguyen, John M Kovac, Kirit Karkare, James J. Bock, Carole Tucker, Jake Connors, Sergi R. Hildebrandt, S. Kefeli, J. Willmert, C. Yu, A. J. Cukierman, Johannes Hubmayr, Mark Halpern, D. V. Wiebe, Chao Zhang, R. Basu Thakur, M. Eiben, Gene C. Hilton, C. Pryke, T. St. Germaine, Lorenzo Moncelsi, Marion Dierickx, Abigail G. Vieregg, Kam Y. Lau, Carl D. Reintsema, Eui-Hyeok Yang, Bryan Steinbach, J. Cheshire, Roger O'Brient, Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Physics - Instrumentation and Detectors ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,detector: performance ,detector: cryogenics ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,cosmic background radiation: polarization ,cosmic background radiation ,01 natural sciences ,7. Clean energy ,Cosmology ,gravitation: lens ,0103 physical sciences ,Cosmic Microwave Background ,synchrotron ,detector: calibration ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Physics ,polarization ,beam: polarization ,010308 nuclear & particles physics ,Detector ,Astronomy ,Polarimeter ,Instrumentation and Detectors (physics.ins-det) ,lensing ,Polarization (waves) ,BICEP ,Inflation ,Galaxy ,optics ,detector: sensitivity ,Gravitational lens ,B-mode ,B-Modes ,readout ,galaxy ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
A detection of curl-type ($B$-mode) polarization of the primary CMB would be direct evidence for the inflationary paradigm of the origin of the Universe. The BICEP/Keck Array (BK) program targets the degree angular scales, where the power from primordial $B$-mode polarization is expected to peak, with ever-increasing sensitivity and has published the most stringent constraints on inflation to date. BICEP Array (BA) is the Stage-3 instrument of the BK program and will comprise four BICEP3-class receivers observing at 30/40, 95, 150 and 220/270 GHz with a combined 32,000+ detectors; such wide frequency coverage is necessary for control of the Galactic foregrounds, which also produce degree-scale $B$-mode signal. The 30/40 GHz receiver is designed to constrain the synchrotron foreground and has begun observing at the South Pole in early 2020. By the end of a 3-year observing campaign, the full BICEP Array instrument is projected to reach $\sigma_r$ between 0.002 and 0.004, depending on foreground complexity and degree of removal of $B$-modes due to gravitational lensing (delensing). This paper presents an overview of the design, measured on-sky performance and calibration of the first BA receiver. We also give a preview of the added complexity in the time-domain multiplexed readout of the 7,776-detector 150 GHz receiver., Comment: Proceedings of SPIE 2020 (AS111). This article supersedes arXiv:1808.00568 and arXiv:2002.05228
- Published
- 2020
1118. Polarization Calibration of the BICEP3 CMB polarimeter at the South Pole
- Author
-
K. G. Megerian, L. Minutolo, Y. Nakato, John M Kovac, Kirit Karkare, H. Boenish, D. C. Goldfinger, Roger O'Brient, A. D. Turner, C. D. Sheehy, Stefan Richter, Kent D. Irwin, E. Karpel, E. Bullock, Lingzhen Zeng, K. L. Thompson, S. Fliescher, M. Crumrine, K. W. Yoon, G. Hall, H. Hui, J. Kang, P. A. R. Ade, C. Yu, C. Umilta, S. Henderson, Zeeshan Ahmed, A. Cukierman, J. Hubmayr, B. L. Schmitt, N. Precup, D. V. Wiebe, S. Kefeli, Kei May Lau, E. Young, R. Basu Thakur, A. Wandui, Denis Barkats, Victor Buza, Neil Goeckner-Wald, Paul K. Grimes, Jeffrey P. Filippini, Marion Dierickx, J. J. Bock, Mark Halpern, E. Yang, R. V. Sudiwala, W. L. K. Wu, C. D. Reintsema, S. A. Kernasovkiy, R. Schwarz, C. Tucker, Lorenzo Moncelsi, G. Halal, J. R. Cheshire, J. A. Grayson, Abigail G. Vieregg, S. R. Hildebrandt, Bryan Steinbach, S. Zhang, J. Willmert, Gene C. Hilton, Chao Zhang, Mandana Amiri, A. C. Weber, Toshiya Namikawa, Chao-Lin Kuo, J. Cornelison, S. Fatigoni, S. Palladino, T. Prouve, C. Pryke, Colin A. Bischoff, B. Racine, H. T. Nguyen, E. M. Leitch, E. V. Denison, A. Schillaci, J. E. Tolan, L. Duband, J. Connors, R. W. Ogburn, M. Eiben, C. L. Wong, Ahmed Soliman, Sarah M. Harrison, G. P. Teply, T. St. Germaine, Institut Laue-Langevin (ILL), ILL, Service des Basses Températures (SBT ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Cosmic microwave background ,FOS: Physical sciences ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Optics ,law ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Birefringence ,business.industry ,Gravitational wave ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarimeter ,021001 nanoscience & nanotechnology ,Polarization (waves) ,Cosmology ,Refracting telescope ,Calibration ,Transition edge sensor ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business - Abstract
The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3s $\sim800$ functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence., Comment: Proceedings submitted to SPIE 2020 (AS111). 12 pages, 5 figures, 2 tables
- Published
- 2020
1119. Upgrading the field-imaging far-infrared line spectrometer for the Stratospheric Observatory for Infrared Astronomy (SOFIA) with KIDs: enabling large sample (extragalactic) surveys
- Author
-
Christian Fischer, Tony Wong, Alfred Krabbe, Henry G. LeDuc, Frank Bigiel, Sebastian Colditz, Rodrigo Herrera-Camus, Jonas Zmuidzinas, S. Hailey-Dunsheath, J. Fischer, Leslie W. Looney, Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Upgrade ,Pixel ,Far infrared ,Spectrometer ,Computer science ,Point source ,Stratospheric Observatory for Infrared Astronomy ,Instrumentation ,Spectral resolution ,Remote sensing - Abstract
We present the initial design, performance improvements and science opportunities for an upgrade to the Field-Imaging Far-Infrared Line Spectrometer (FIFI-LS). FIFI-LS efficiently measures fine structure cooling lines, delivering critical constraints of the interstellar medium and starforming environments. SOFIA provides the only FIR observational capability in the world, making FIFI-LS a workhorse for FIR lines, combining optimal spectral resolution and a wide velocity range. Its continuous coverage from 51-203 microns makes FIFI-LS a versatile tool to investigate a multitude of diagnostic lines within our galaxy and in extragalactic environments. The sensitivity and field-of-view (FOV) of FIFI-LS are limited by its 90s-era photoconductor arrays. These limits can be overcome by upgrading the instrument using the latest developments in Kinetic Inductance Detectors (KIDs). KIDs provide sensitivity gains in excess of 1.4 and allow larger arrays, enabling an increase in pixel count by an order of magnitude. This increase allows a wider FOV and instantaneous velocity coverage. The upgrade provides gains in point source observation speed by a factor
- Published
- 2020
1120. SuperSpec: On-chip spectrometer design, characterization, and performance
- Author
-
Redford, Joseph G., Barry, Peter S., Bradford, Charles M., Chapman, Scott, Glenn, Jason, Hailey-Dunsheath, Steven, Janssen, Reinier M. J., Karkare, Kirit S., LeDuc, Henry G., Mauskopf, Philip, McGeehan, Ryan, Shirokoff, Erik, Wheeler, Jordan, Zmuidzinas, J., Zmuidzinas, Jonas, and Gao, Jian-Rong
- Abstract
SuperSpec is an integrated, on-chip spectrometer for millimeter and sub-millimeter astronomy. SuperSpec is demonstrating a proof-of-principle multi-beam spectrometer on the sky at the Large Millimeter Telescope (LMT) in Mexico covering the 200 - 300 GHz frequency range with moderate resolution (R ~ 270 - 290). The dual-polarization, three-pixel instrument will consist of 6 SuperSpec spectrometer chips. We present the design and characterization of the devices being used in the first SuperSpec demonstration along with lab testing of the instrument performance.
- Published
- 2020
1121. Detection chain and electronic readout of the QUBIC instrument
- Author
-
L. M. Mundo, S. Marnieros, D. Fracchia, A. Mattei, R. Puddu, S. Spinelli, A. Passerini, Federico Nati, V. Gilles, K. Ganga, B. García, Giuseppe D'Alessandro, F. Wicek, P. A. R. Ade, Diego Harari, J. Bonaparte, F. Pezzotta, Massimo Gervasi, F. Incardona, M. E. García Redondo, M. Platino, L. Grandsire, J. D. Murphy, Damien Rambaud, E. Jules, M. Wright, C. Kristukat, L. Dumoulin, E. Olivieri, B. Maffei, Alessandro Paiella, J. Bonis, J.-P. Thermeau, D. Prêle, H. Pastoriza, Michel Piat, M. Gómez Berisso, M. Perciballi, F. Piacentini, D. Burke, Mark McCulloch, A. Zullo, L. H. Arnaldi, Giampaolo Pisano, A. Baù, L.P. Ferreyro, C. Perbost, C. Duca, C. Franceschet, L. Mousset, J. A. Murphy, D. Viganò, Gustavo E. Romero, Martin Giard, Emory F. Bunn, Alessandro Schillaci, Gregory S. Tucker, P. Chanial, L. A. Montier, M.-A. Bigot-Sazy, Alejandro Almela, A. Etchegoyen, Marco Bersanelli, E. Rasztocky, M. Gaspard, Nicola Vittorio, Mario Zannoni, A. Pelosi, S. Azzoni, P. de Bernardis, T. D. Hoang, S. Banfi, W. Marty, A. Mennella, S. Scully, M. M. Gamboa Lerena, Elia S. Battistelli, Andrea Tartari, J.G. Alberro, D. Gayer, Alessandro Coppolecchia, C. Oriol, J.M. Salum, J. Aumont, D. Bennett, S. Loucatos, Silvia Masi, Marcin Gradziel, S. Dheilly, François Pajot, A.C. Cobos Cerutti, C. Chapron, A. Fasciszewski, J.-Ch. Hamilton, M. González, M. Tomasi, Créidhe O'Sullivan, Laurent Bergé, G. Amico, D. Buzi, A.D. Supanitsky, D. Auguste, Gianluca Polenta, Francesco Cavaliere, P. Ringegni, G. Stankowiak, Luca Lamagna, Steve Torchinsky, L. Mele, Andrew May, Peter Timbie, F. Columbro, F. Voisin, C. Tucker, J. Kaplan, B. Bélier, R. Charlassier, M. R. Hampel, G. de Gasperis, C. Scóccola, Lucio Piccirillo, Thibaut Louis, Sophie Henrot-Versille, D. Melo, J.-Ph. Bernard, M. Stolpovskiy, Y. Giraud-Héraud, M. De Leo, M. De Petris, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Zmuidzinas, Jonas, Gao, Jian-Rong, Stankowiak, G, Piat, M, Battistelli, E, D'Alessandro, G, de Bernardis, P, De Petris, M, González, M, Grandsire, L, Hamilton, J, Hoang, T, Masi, S, Marnieros, S, Mennella, A, Mousset, L, O'Sullivan, C, Prêle, D, Tartari, A, Thermeau, J, Torchinsky, S, Voisin, F, Zannoni, M, Ade, P, Alberro, J, Almela, A, Amico, G, Arnaldi, L, Auguste, D, Aumont, J, Azzoni, S, Banfi, S, Bélier, B, Baù, A, Bennett, D, Bergé, L, Bernard, J, Bersanelli, M, Bigot-Sazy, M, Bonaparte, J, Bonis, J, Bunn, E, Burke, D, Buzi, D, Cavaliere, F, Chanial, P, Chapron, C, Charlassier, R, Cobos Cerutti, A, Columbro, F, Coppolecchia, A, de Gasperis, G, De Leo, M, Dheilly, S, Duca, C, Dumoulin, L, Etchegoyen, A, Fasciszewski, A, Ferreyro, L, Fracchia, D, Franceschet, C, Gamboa Lerena, M, Ganga, K, García, B, García Redondo, M, Gaspard, M, Gayer, D, Gervasi, M, Giard, M, Gilles, V, Giraud-Héraud, Y, Gómez Berisso, M, Gradziel, M, Hampel, M, Harari, D, Henrot-Versillé, S, Incardona, F, Jules, E, Kaplan, J, Kristukat, C, Lamagna, L, Loucatos, S, Louis, T, Maffei, B, Marty, W, Mattei, A, May, A, Mcculloch, M, Mele, L, Melo, D, Montier, L, Mundo, L, Murphy, J, Nati, F, Olivieri, E, Oriol, C, Paiella, A, Pajot, F, Passerini, A, Pastoriza, H, Pelosi, A, Perbost, C, Perciballi, M, Pezzotta, F, Piacentini, F, Piccirillo, L, Pisano, G, Platino, M, Polenta, G, Puddu, R, Rambaud, D, Ringegni, P, Romero, G, Rasztocky, E, Salum, J, Schillaci, A, Scóccola, C, Scully, S, Spinelli, S, Stolpovskiy, M, Supanitsky, A, Timbie, P, Tomasi, M, Tucker, G, Tucker, C, Viganò, D, Vittorio, N, Wicek, F, Wright, M, and Zullo, A
- Subjects
QUBIC ,Cosmic microwave background ,02 engineering and technology ,CMB ,SQUID ,7. Clean energy ,Superconducting QUantum Interference Device ,030218 nuclear medicine & medical imaging ,law.invention ,TDM ,FIS/05 - ASTRONOMIA E ASTROFISICA ,03 medical and health sciences ,020210 optoelectronics & photonics ,0302 clinical medicine ,Optics ,Application-specific integrated circuit ,law ,Cosmic Microwave Background ,B-modes ,0202 electrical engineering, electronic engineering, information engineering ,Noise-equivalent power ,[PHYS]Physics [physics] ,Physics ,TES ,business.industry ,Bolometer ,Time constant ,CMB instrumentation ,bolometric interferometry ,Transition Edge Sensor ,Interferometry ,Transition edge sensor ,business - Abstract
International audience; The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10-16W= p √Hz
- Published
- 2020
1122. Terahertz intensity mapper focal plane and array design
- Author
-
Jeffrey P. Filippini, S. Hailey-Dunsheath, Isaac Trumper, Rong Nie, Charles M. Bradford, Lunjun Liu, Reinier M. J. Janssen, J. Fu, Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Resonator ,Cardinal point ,Materials science ,Optics ,Pixel ,Spectrometer ,Terahertz radiation ,business.industry ,Grating ,Absorption (electromagnetic radiation) ,business ,Microstrip - Abstract
TIM, the Terahertz Intensity Mapper, is a NASA balloon mission designed to perform [CII] intensity mapping of the peak of cosmic star formation. To achieve this, TIM has two longslit (1 degree slit length) grating spectrometers covering the 240-317 um and 317-420 um wavelength bands at R~250, respectively. We will present the design of the ~4000 pixel, horn-coupled kinetic inductance detector arrays servicing each of the spectrometer arms. Each pixel is a lumped-element superconducting resonator made from a 20 nm thick aluminum film, designed to achieve photon noise limited performance at 100 fW of loading. The inductor is a meandered narrow wire, designed to mimic a metal mesh grid at THz frequencies; it is optimized for absorption of both polarizations delivered by the circular waveguide. Each array will consist of four quadrants containing ~1000 pixels on a single microstrip readout line and will be mounted such that critical parameters of the absorber design are maintained.
- Published
- 2020
1123. Antenna-coupled thermal kinetic inductance detectors for ground-based millimeter-wave cosmology
- Author
-
A. Wandui, Jonas Zmuidzinas, L. Minutolo, Hien Nguyen, James J. Bock, Clifford Frez, Jon Hunacek, Anthony D. Turner, Roger O'Brient, Bryan Steinbach, Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Physics ,Frequency band ,business.industry ,Cosmic microwave background ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,law.invention ,Cardinal point ,Optics ,law ,Extremely high frequency ,Antenna (radio) ,business ,Noise (radio) - Abstract
We present our design for antenna-coupled thermal kinetic inductance detectors (TKIDs) designed for Cosmic Microwave Background (CMB) observations in the 150 GHz band. The next generation of telescopes studying the CMB will require large arrays of detectors on cryogenic focal planes to achieve high sensitivity at the cost of increased integration and readout complexity. TKIDs have demonstrated photon-limited noise performance comparable to traditional bolometers with a radiofrequency (RF) multiplexing architecture that enables the large detector counts needed. We characterize TKIDs fabricated for observing the CMB in a frequency band centered at 150 GHz and discuss the optical performance. These devices are a critical step towards fielding a Keck Array camera with 512 devices on the focal plane at the South Pole.
- Published
- 2020
1124. Design and pre-flight performance of SPIDER 280 GHz receivers
- Author
-
Jeffrey P. Filippini, Ingunn Kathrine Wehus, P. A. R. Ade, Peter Mason, Zigmund Kermish, Carlo R. Contaldi, X. Song, M. Galloway, Aurelien A. Fraisse, K. Ganga, I. L. Padilla, J. F. van der List, J. R. Bond, A. E. Gambrel, D. V. Wiebe, Michael R. Vissers, L. M. Fissel, Joel N. Ullom, Adriaan J. Duivenvoorden, Dan Becker, A. D. Turner, S. Akers, Steven J. Benton, Matthew Hasselfield, R. Gualtieri, Marzieh Farhang, J. J. Bock, S. Li, A. Trangsrud, M. R. Nolta, E. Y. Young, A. S. Bergman, O. Doré, Shyang Wen, M. C. Runyan, J. E. Ruhl, Warren Holmes, J. A. Beall, Calvin B. Netterfield, C. Tucker, H. C. Chiang, Carl D. Reintsema, A. C. Weber, C. Shiu, R. S. Tucker, Mandana Amiri, R. S. Domagalski, Susan Redmond, Lorenzo Moncelsi, Kent D. Irwin, K. G. Megerian, J. Austermann, Antoine Kahn, Johannes Hubmayr, J. M. Nagy, Sean Bryan, J. Hartley, Arpi Grigorian, W. C. Jones, Jon E. Gudmundsson, Shannon M. Duff, Natalie N. Gandilo, L. J. Romualdez, Viktor Hristov, Mark Halpern, R. Nie, Katherine Freese, A. Lennox, Gene C. Hilton, H. Thommesen, B. Osherson, E. C. Shaw, J. S.-Y. Leung, Jamil A. Shariff, H. K. Eriksen, Zhi-Feng Huang, T. A. Morford, Juan D. Soler, L. M. Mocanu, C. L. Kuo, Alexandra S. Rahlin, J. Van Lanen, Science and Technology Facilities Council (STFC), Science and Technology Facilities Council, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
scientific ballooning ,cosmic microwave background ,cosmological model ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Computer science ,media_common.quotation_subject ,Cosmic microwave background ,scientific instrumentation ,FOS: Physical sciences ,cosmic background radiation: polarization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,B-mode: primordial ,law.invention ,Telescope ,law ,optical ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Remote sensing ,media_common ,Spider ,polarization ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,millimeter wave instrumentation ,Polarization (waves) ,transition-edge sensor ,SPIDER ,experimental equipment ,Wide area ,B-mode ,Sky ,astro-ph.CO ,galaxy ,Astrophysics - Instrumentation and Methods for Astrophysics ,cosmology ,performance ,Dust emission ,Astrophysics - Cosmology and Nongalactic Astrophysics ,experimental results ,astro-ph.IM - Abstract
In this work we describe upgrades to the Spider balloon-borne telescope in preparation for its second flight, currently planned for December 2021. The Spider instrument is optimized to search for a primordial B-mode polarization signature in the cosmic microwave background at degree angular scales. During its first flight in 2015, Spider mapped ~10% of the sky at 95 and 150 GHz. The payload for the second Antarctic flight will incorporate three new 280 GHz receivers alongside three refurbished 95- and 150 GHz receivers from Spider's first flight. In this work we discuss the design and characterization of these new receivers, which employ over 1500 feedhorn-coupled transition-edge sensors. We describe pre-flight laboratory measurements of detector properties, and the optical performance of completed receivers. These receivers will map a wide area of the sky at 280 GHz, providing new information on polarized Galactic dust emission that will help to separate it from the cosmological signal., 13 pages, 8 figures; as published in the conference proceedings for SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X (2020)
- Published
- 2020
1125. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Mario G. Lattanzi, Carlo Baccigalupi, François Levrier, J. M. Duval, J. Austermann, M. Brilenkov, B. Thorne, Eiichiro Komatsu, D. Rambaud, T. Nagasaki, Peter Shirron, H. Imada, Nozomu Kogiso, Jeff Van Lanen, H. Takakura, T. Kawasaki, Lionel Duband, Ingunn Kathrine Wehus, Y. Hoshino, Tadayasu Dotani, Enrique Martinez-Gonzalez, Tucker Elleflot, S. Beckman, T. Kaga, Shogo Nakamura, A. Kato, Giorgio Savini, S. Bounissou, S. Mandelli, Peter Charles Hargrave, Francois Boulanger, Julien Grain, S. Realini, Reijo Keskitalo, Bruno Maffei, Y. Nagano, Davide Maino, D. Herman, Michael R. Vissers, B. Mot, R. Banerji, N. Katayama, James A. Beall, Johannes Hubmayr, Tomotake Matsumura, Shugo Oguri, G. Patanchon, S. Basak, S. Takakura, Créidhe O'Sullivan, Massimo Gervasi, Y. Takase, S. Stever, A. Carones, Raphael Flauger, F. J. Casas, T. de Haan, Yasuhiro Murata, T. Prouvé, Douglas Scott, P. Vielva, Toshiya Namikawa, Mayu Tominaga, Yuki Sakurai, Luca Lamagna, Eric Hivon, S. Nerval, Ken Ebisawa, Noriko Y. Yamasaki, Julian Borrill, Shingo Kashima, Hajime Sugai, M. De Petris, R. Nagata, Ted Kisner, D. W. Curtis, A. Mennella, P. de Bernardis, Alexandre E. Adler, Misao Sasaki, Jiansong Gao, Kam Arnold, K. Ganga, T. Ghigna, Kazunori Kohri, Ben Westbrook, R. Aurlien, T. Toda, Yasuhiro Takeda, U. Fuskeland, Alessandro Gruppuso, Giuseppe Puglisi, A. Ritacco, I. Kreykenbohm, C. Leloup, M. A. Dobbs, Jochen Weller, Joel N. Ullom, Chao-Lin Kuo, M. Migliaccio, Charles A. Hill, E. Allys, Nicola Vittorio, T. Yoshida, R. Takaku, Thomas Essinger-Hileman, Alessandro Paiella, J. Aumont, Berend Winter, Junji Yumoto, Yutaka Terao, Aritoki Suzuki, T. Hasebe, Toshiyuki Nishibori, A. Cukierman, P. Campeti, Y. Hirota, Alan J. Kogut, Josquin Errard, S. Sugiyama, L. P. L. Colombo, Anthony Challinor, Yohei Kobayashi, A. Kushino, Gemma Luzzi, Makoto Nagai, M. Sandri, Christopher Raum, Giuseppe D'Alessandro, Masashi Hazumi, Masaya Hasegawa, Renée Hlozek, Silvia Masi, Joseph Seibert, F. Piacentini, J. A. Murphy, Greg Jaehnig, Jose Alberto Rubino-Martin, Davide Poletti, Michael L. Brown, Blake D. Sherwin, Daniela Paoletti, Joshua Montgomery, F. Columbro, Gianluca Morgante, J. Bermejo, M. Tomasi, Haruki Nishino, P. Diego-Palazuelos, Hirokazu Ishino, T. Iida, Kazuhisa Mitsuda, Haruyuki Sakurai, Keith L. Thompson, Javier Cubas, Neil Trappe, Keisuke Shinozaki, Adrian T. Lee, Hiroyuki Ohsaki, Martina Gerbino, D. Herranz, M. Tsuji, Marco Bersanelli, Nadia Dachlythra, M. Russell, E. Gjerløw, Maresuke Shiraishi, E. de la Hoz, Eric V. Linder, Graeme Smecher, Eric R. Switzer, Erminia Calabrese, G. Roudil, Mario Zannoni, T. Maciaszek, L. Pagano, D. Auguste, Frank Grupp, Kosei Ishimura, Fabrizio Villa, Kuniaki Konishi, I. S. Ohta, G. Signorelli, J. Bonis, A. Tartari, Jun-ichi Suzuki, R. B. Barreiro, J. F. Cliche, M. Maki, Douglas H Beck, Ricardo Genova-Santos, A. J. Banday, M. Galloway, T. L. Svalheim, Fabio Finelli, L. A. Montier, H. K. Eriksen, Nicoletta Krachmalnicoff, Karen C. Cheung, Cristian Franceschet, Matthieu Tristram, V. Chan, G. Polenta, Clive Dickinson, N. W. Halverson, Kiyotomo Ichiki, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, Jon E. Gudmundsson, J. Peloton, M. Reinecke, Shannon M. Duff, Carole Tucker, Y. Minanmi, Gene C. Hilton, Martin Bucher, P. A. R. Ade, G. Vermeulen, K. Komatsu, Norio Okada, Thibaut Louis, Sophie Henrot-Versille, Edward J. Wollack, Paolo Natoli, Hideo Ogawa, Jörn Wilms, E. Taylor, Andrea Zonca, Makoto Hattori, Radek Stompor, Masahiro Tsujimoto, Yutaro Sekimoto, Marcin Gradziel, H. Thommesen, Zmuidzinas, Jonas, Sekimoto, Y, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minanmi, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Osaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Tambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Aperture ,FOS: Physical sciences ,7. Clean energy ,cryogenic telescope ,law.invention ,Cosmic microwave background ,Entrance pupil ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,millimeter-wave polarization ,space program ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Stray light ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Lens (optics) ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2020
1126. Erratum: Calibration of QUBIC: The Q and U bolometric interferometer for cosmology (Proceedings of SPIE : The International Society for Optical Engineering (2020) 11445 (114532G) DOI: 10.1117/12.2560172)
- Author
-
Tucker G., Ade P. A. R., Pisano G., Tucker C., Auguste D., Berge L., Bonis J., Dumoulin L., Henrot-Versille S., Jules E., Marnieros S., Olivieri E., Oriol C., Wicek F., Fasciszewski A., Hampel M. R., Melo D., Arnaldi L. H., Gomez Berisso M., Gonzalez M., Harari D., Pastoriza H., Bonaparte J., Kristukat C., Belier B., Mattei A., Tartari A., Pelosi A., Perciballi M., Maffei B., Gaspard M., Giard M., Aumont J., Bernard J. -P., Marty W., Montier L., Pajot F., Rambaud D., Rasztocky E., Romero G. E., Almela A., Cerutti A. C. C., Duca C., Etchegoyen A., Ferreyro L. P., Fracchia D., Garcia B., Garcia Redondo M. E., Platino M., Salum J. M., Supanitsky A. D., Zullo A., Murphy J. D., Burke D., O Sullivan C., Bennett D., Gayer D., Gradziel M., Murphy J., Scully S., Louis T., Puddu R., Petris M. D., Amico G., Battistelli E. S., Bernardis P. D., Buzi D., Columbro F., Coppolecchia A., D Alessandro G., Leo M. D., Gilles V., Lamange L., Mele L., Masi S., Paiella A., Piacentini F., Polenta G., Schillaci A., May A., McCulloch M., Piccirillo L., Wright M., Mousset L., Torchinsky S. A., Sazy M. -A. B., Chanial P., Chapron C., Charlassier R., Dheilly S., Ganga K. M., Herau Y. G., Grandsire L., Kaplan J., Loucatos S., Perbost C., Piat M., Prele D., Stankowiak G., Stolpovski M., Thermeau J. P., Voisin F., Bersanelli M., Cavaliere F., Franceschet C., Incardona F., Mennella A., Pezzotta F., Tomasi M., Vigano D., Banfi S., Bau A., Gervasi M., Nati F., Passerini A., Spinelli S., Zannoni M., Gasperis G. D., Vittorio N., Gamboa M. M., Alberro J. G., Mundo L. M., Ringegni P., Scoccola C., Azzoni S., Bunn E., Timbie P., Zmuidzinas, Jonas, Tucker, G, Ade, P, Pisano, G, Tucker, C, Auguste, D, Berge, L, Bonis, J, Dumoulin, L, Henrot-Versille, S, Jules, E, Marnieros, S, Olivieri, E, Oriol, C, Wicek, F, Fasciszewski, A, Hampel, M, Melo, D, Arnaldi, L, Gomez Berisso, M, Gonzalez, M, Harari, D, Pastoriza, H, Bonaparte, J, Kristukat, C, Belier, B, Mattei, A, Tartari, A, Pelosi, A, Perciballi, M, Maffei, B, Gaspard, M, Giard, M, Aumont, J, Bernard, J, Marty, W, Montier, L, Pajot, F, Rambaud, D, Rasztocky, E, Romero, G, Almela, A, Cerutti, A, Duca, C, Etchegoyen, A, Ferreyro, L, Fracchia, D, Garcia, B, Garcia Redondo, M, Platino, M, Salum, J, Supanitsky, A, Zullo, A, Murphy, J, Burke, D, O Sullivan, C, Bennett, D, Gayer, D, Gradziel, M, Scully, S, Louis, T, Puddu, R, Petris, M, Amico, G, Battistelli, E, Bernardis, P, Buzi, D, Columbro, F, Coppolecchia, A, D Alessandro, G, Leo, M, Gilles, V, Lamange, L, Mele, L, Masi, S, Paiella, A, Piacentini, F, Polenta, G, Schillaci, A, May, A, Mcculloch, M, Piccirillo, L, Wright, M, Mousset, L, Torchinsky, S, Sazy, M, Chanial, P, Chapron, C, Charlassier, R, Dheilly, S, Ganga, K, Herau, Y, Grandsire, L, Kaplan, J, Loucatos, S, Perbost, C, Piat, M, Prele, D, Stankowiak, G, Stolpovski, M, Thermeau, J, Voisin, F, Bersanelli, M, Cavaliere, F, Franceschet, C, Incardona, F, Mennella, A, Pezzotta, F, Tomasi, M, Vigano, D, Banfi, S, Bau, A, Gervasi, M, Nati, F, Passerini, A, Spinelli, S, Zannoni, M, Gasperis, G, Vittorio, N, Gamboa, M, Alberro, J, Mundo, L, Ringegni, P, Scoccola, C, Azzoni, S, Bunn, E, and Timbie, P
- Subjects
FIS/05 - ASTRONOMIA E ASTROFISICA ,Cosmic Microwave Background - Abstract
Publisher's Note: This paper, originally published on 13 December 2020, was replaced with a corrected/revised version on 8 January 2021. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.
- Published
- 2020
1127. Calibration of QUBIC: The Q and U bolometric interferometer for cosmology
- Author
-
D. Melo, Peter T. Timbie, G. Polenta, L. Mele, S. Loucatos, K. Ganga, Alejandro Almela, Luca Lamagna, W. Marty, Gustavo E. Romero, Giuseppe D'Alessandro, D. Burke, Emory F. Bunn, H. Pastoriza, D. Harari, L. Montier, E. Rasztocky, F. Piacentini, C. Duca, L.P. Ferreyro, L. M. Mundo, D. Prêle, Andrew May, C. Perbost, J.-Ph. Bernard, M. Stolpovskiy, P. de Bernardis, Francesco Cavaliere, J. A. Murphy, P. A. R. Ade, M. Platino, Federico Nati, Créidhe O'Sullivan, M. Wright, Cristian Franceschet, M. Gómez Berisso, M. Giard, M. Gaspard, P. Chanial, E. Olivieri, Alessandro Schillaci, D. Fracchia, C. Kristukat, Y. Giraud-Héraud, A. Baù, L. Mousset, J. Kaplan, C. Oriol, A. Mattei, F. Columbro, J. Bonaparte, M. E. García Redondo, B. Bélier, Nicola Vittorio, L. Grandsire, Silvia Masi, J. Bonis, C. Tucker, G. Amico, Federico Pezzotta, M. Piat, J.-P. Thermeau, F. Incardona, D. Buzi, A. Mennella, Marcin Gradziel, A.D. Supanitsky, J. D. Murphy, Gregory S. Tucker, E. Jules, A. Passerini, V. Gilles, J.M. Salum, S. Dheilly, M. Perciballi, M. M. Gamboa Lerena, F. Voisin, S. A. Torchinsky, Alessandro Paiella, Damien Rambaud, Bruno Maffei, J.G. Alberro, A.C. Cobos Cerutti, C. Chapron, L. Bergé, Mark McCulloch, S. Marnieros, S. Azzoni, D. Auguste, Giampaolo Pisano, F. Pajot, F. Wicek, R. Puddu, Elia S. Battistelli, D. Gayer, S. Banfi, L. H. Arnaldi, J. Aumont, Massimo Gervasi, M. De Leo, D. Bennett, A. Zullo, S. Spinelli, M. Tomasi, Lucio Piccirillo, C. Scóccola, M. De Petris, A. Etchegoyen, Thibaut Louis, Marco Bersanelli, Sophie Henrot-Versille, Mario Zannoni, M.-A. Bigot-Sazy, M. González, A. Pelosi, S. Scully, P. Ringegni, G. Stankowiak, J.-Ch. Hamilton, L. Dumoulin, A. Tartari, D. Viganò, R. Charlassier, M. R. Hampel, G. de Gasperis, Bruce Rafael Mellado Garcia, Alessandro Coppolecchia, A. Fasciszewski, Zmuidzinas, Jonas, Murphy, J, Burke, D, Gamboa Lerena, M, Hamilton, J, Mousset, L, De Petris, M, O'Sullivan, C, Torchinsky, S, Ade, P, Alberro, J, Almela, A, Amico, G, Arnaldi, L, Auguste, D, Aumont, J, Azzoni, S, Banfi, S, Bélier, B, Battistelli, E, Baù, A, Bennett, D, Bergé, L, Bernard, J, Bersanelli, M, Bigot-Sazy, M, Bonaparte, J, Bonis, J, Bunn, E, Buzi, D, Cavaliere, F, Chanial, P, Chapron, C, Charlassier, R, Cobos Cerutti, A, Columbro, F, Coppolecchia, A, D'Alessandro, G, De Gasperis, G, De Leo, M, Dheilly, S, Duca, C, Dumoulin, L, Etchegoyen, A, Fasciszewski, A, Ferreyro, L, Fracchia, D, Franceschet, C, Ganga, K, García, B, García Redondo, M, Gaspard, M, Gayer, D, Gervasi, M, Giard, M, Gilles, V, Giraud-Heraud, Y, Grandsire, L, Gómez Berisso, M, González, M, Gradziel, M, Hampel, M, Harari, D, Henrot-Versillé, S, Incardona, F, Jules, E, Kaplan, J, Kristukat, C, Lamagna, L, Loucatos, S, Louis, T, Maffei, B, Marty, W, Mattei, A, May, A, Mcculloch, M, Mele, L, Melo, D, Mennella, A, Montier, L, Mundo, L, Nati, F, Olivieri, E, Oriol, C, Paiella, A, Pajot, F, Passerini, A, Pastoriza, H, Pelosi, A, Perbost, C, Perciballi, M, Pezzotta, F, Piacentini, F, Piccirillo, L, Pisano, G, Platino, M, Polenta, G, Prêle, D, Puddu, R, Rambaud, D, Rasztocky, E, Ringegni, P, Romero, G, Salum, J, Scóccola, C, Schillaci, A, Scully, S, Spinelli, S, Stankowiak, G, Stolpovskiy, M, Supanitsky, A, Tartari, A, Thermeau, J, Timbie, P, Tomasi, M, Tucker, G, Tucker, C, Viganò, D, Vittorio, N, Voisin, F, Wicek, F, Wright, M, Zannoni, M, Zullo, A, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), and Gao, Jian-Rong
- Subjects
QUBIC ,Instrumentation ,interferometer ,Cosmic microwave background ,measurement methods ,CDM ,cosmic background radiation: polarization ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,CMB ,7. Clean energy ,01 natural sciences ,Cosmology ,law.invention ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,bolometer ,B-mode polarisation ,law ,0103 physical sciences ,Cosmic Microwave Background ,Calibration ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,measure: spectral ,detector: design ,data-analysis ,Physics ,instrumentation ,calibration ,TES ,business.industry ,Instrument Data ,Bolometer ,transition edge sensor ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,sensitivity ,Interferometry ,B-mode ,Transition edge sensor ,0210 nano-technology ,business - Abstract
International audience; QUBIC (a Q and U Bolometric Interferometer for Cosmology) is a next generation cosmology experiment designed to detect the B-mode polarisation of the Cosmic Microwave Background (CMB). A B-mode detection is hard evidence of Inflation in the ΛCDM model. QUBIC aims to accomplish this by combining novel technologies to achieve the sensitivity required to detect the faint B-mode signal. QUBIC uses technologies such as a rotating half-wave plate, cryogenics, interferometric horns with self-calibration switches and transition edge sensor bolometers. A Technical Demonstrator (TD) is currently being calibrated in APC in Paris before observations in Argentina in 2021. As part of the calibration campaign, the spectral response of the TD is measured to test and validate QUBIC's spectro-imaging capability. This poster gives an overview of the methods used to measure the spectral response and a comparison of the instrument data with theoretical predictions and optical simulations.
- Published
- 2020
1128. Progress towards ultra sensitive KIDs for future far-infrared missions: a focus on recombination times
- Author
-
Christopher M. McKenney, Jonas Zmuidzinas, Henry G. LeDuc, Jason Glenn, Peter K. Day, Adalyn Fyhrie, Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Physics ,Photon ,business.industry ,Coplanar waveguide ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Galaxy ,010309 optics ,Optics ,Far infrared ,0103 physical sciences ,Galaxy formation and evolution ,Infrared detector ,0210 nano-technology ,Spectroscopy ,business - Abstract
Future generations of far-infrared (FIR) telescopes will need detectors with noise-equivalent powers on the order of 5 x 10^(-20) W/Hz^(1/2) in order to be photon background limited by astrophysical sources. One such mission concept in development is the Galaxy Evolution Probe (GEP), which will characterize galaxy formation and evolution from z=0 to beyond z=4. Kinetic inductance detectors (KIDs) have been baselined for the GEP for spectroscopy and imaging science between 10 μm and 400 μm due to their intrinsic frequency multiplexability and simple readout schemes. We focus on quasiparticle recombination times as a strategy for increasing detector responsivities to move towards the NEP requirements of the GEP. We present a new model for quantifying time constants from the responses of detectors to pulses of light, and test this model on a 40 nm thick ¼ λ Al coplanar waveguide KID. We intend to use this measurement scheme to quantify the dependence of the quasiparticle recombination time on Al thickness.
- Published
- 2018
1129. Design and performance of wide-band corrugated walls for the BICEP Array detector modules at 30/40 GHz
- Author
-
Jakob Vanzyl, Caterina Umiltà, Anthony D. Turner, Carole Tucker, James E. Tolan, Keith L. Thompson, Grant P. Teply, Rashmi Sudiwala, Bryan Steinbach, Zachary K. Staniszewski, Tyler St Germaine, Chris D. Sheehy, Grantland Hall, Lionel Duband, Marion Dierickx, Michael Crumrine, Brendan Crill, James Cornelison, Jake Connors, Victor Buza, Immanuel Buder, Justus A. Brevik, Rachel Bowens-Rubin, Denis Barkats, Kate D. Alexander, Randol Aikin, Zeeshan Ahmed, P. A. R. Ade, Cheng Zhang, Ki Won Yoon, Hung-I. Yang, Wai Ling K. Wu, Chin Lin Wong, Justin Willmert, Don Wiebe, Alexis C. Weber, Albert Wandui, Abigail G. Vieregg, Robert Schwarz, Alessandro Schillaci, Steffen Richter, Benjamin Racine, Clement Pryke, Stephen Palladino, R. Walt Ogburn IV, Roger O'brient, H. T. Nguyen, C. B. Netterfield, Toshiya Namikawa, Lorenzo Moncelsi, K(oko). G. Megerian, Martin Lueker, Erik M. Leitch, King Lau, Nicole Larson, Chao-Lin Kuo, J. M. Kovac, Sarah A. Kernasovskiy, Sinan Kefeli, Brian G. Keating, Jonathan Kaufman, Ethan Karpel, Kirit S. Karkare, Jae Hwan Kang, Kent D. Irwin, Howard Hui, Gene C. Hilton, Sergi Hildebrandt, Sam A. Harrison, Mark Halpern, James A. Grayson, Stefan Fliescher, Jeff P. Filippini, Cora Dvorkin, Eric Bullock, James J. Bock, Colin A. Bischoff, Steve J. Benton, Ahmed Soliman, Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Physics ,Pixel ,business.industry ,Cosmic microwave background ,Bandwidth (signal processing) ,Detector ,Beam steering ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,Optics ,0103 physical sciences ,010306 general physics ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Beam (structure) ,Leakage (electronics) - Abstract
BICEP Array is a degree-scale Cosmic Microwave Background (CMB) experiment that will search for primordial B-mode polarization while constraining Galactic foregrounds. BICEP Array will be comprised of four receivers to cover a broad frequency range with channels at 30/40, 95, 150 and 220/270 GHz. The first low-frequency receiver will map synchrotron emission at 30 and 40 GHz and will deploy to the South Pole at the end of 2019. In this paper, we give an overview of the BICEP Array science and instrument, with a focus on the detector module. We designed corrugations in the metal frame of the module to suppress unwanted interactions with the antenna-coupled detectors that would otherwise deform the beams of edge pixels. This design reduces the residual beam systematics and temperature-to-polarization leakage due to beam steering and shape mismatch between polarized beam pairs. We report on the simulated performance of single- and wide-band corrugations designed to minimize these effects. Our optimized design alleviates beam differential ellipticity caused by the metal frame to about 7% over 57% bandwidth (25 to 45 GHz), which is close to the level due the bare antenna itself without a metal frame. Initial laboratory measurements are also presented., 12 pages and 14 figures
- Published
- 2018
1130. The design and characterization of a 300 channel, optimized full-band millimeter filterbank for science with SuperSpec
- Author
-
Henry G. LeDuc, R. McGeehan, George Che, Jordan Wheeler, Charles M. Bradford, Peter S. Barry, Philip Daniel Mauskopf, Erik Shirokoff, Jason Glenn, Steve Hailey-Dunsheath, T. Reck, Kirit Karkare, Jonas Zmuidzinas, J. Redford, Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Materials science ,Spectrometer ,Frequency band ,business.industry ,Large Millimeter Telescope ,01 natural sciences ,Microstrip ,law.invention ,Lens (optics) ,Resonator ,Optics ,law ,0103 physical sciences ,Extremely high frequency ,Millimeter ,010306 general physics ,business ,010303 astronomy & astrophysics - Abstract
SuperSpec is an integrated, on-chip spectrometer for millimeter and sub-millimeter astronomy. We report the approach, design optimization, and partial characterization of a 300 channel filterbank covering the 185 to 315 GHz frequency band that targets a resolving power R ~ 310, and fits on a 3.5×5.5 cm chip. SuperSpec uses a lens and broadband antenna to couple radiation into a niobium microstrip that feeds a bank of niobium microstrip half-wave resonators for frequency selectivity. Each half-wave resonator is coupled to the inductor of a titanium nitride lumped-element kinetic inductance detector (LEKID) that detects the incident radiation. The device was designed for use in a demonstration instrument at the Large Millimeter Telescope (LMT).
- Published
- 2018
1131. MUSCAT: The Mexico-UK Sub-Millimetre Camera for AsTronomy
- Author
-
Peter Charles Hargrave, David H. Hughes, A. Hornsby, Josie Dzifa Akua Parrianen, Salvador Ventura González, Peter S. Barry, Simon Doyle, Thomas Gascard, Carole Tucker, Enzo Pascale, T. L. R. Brien, Daniel Ferrusca, Peter A. R. Ade, A. Pérez, S. Rowe, Victor Gómez, E. Castillo-Domínguez, Zmuidzinas, Jonas, and Gao, Jian_Rong
- Subjects
Computer science ,Large Millimeter Telescope ,Astronomy ,FOS: Physical sciences ,Field of view ,01 natural sciences ,7. Clean energy ,Primary mirror ,Cardinal point ,0103 physical sciences ,Millimeter ,010306 general physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,QC ,QB - Abstract
The Mexico-UK Sub-millimetre Camera for AsTronomy (MUSCAT) is a large-format, millimetre-wave camera consisting of 1,500 background-limited lumped-element kinetic inductance detectors (LEKIDs) scheduled for deployment on the Large Millimeter Telescope (Volc\'an Sierra Negra, Mexico) in 2018. MUSCAT is designed for observing at 1.1 mm and will utilise the full 40' field of view of the LMTs upgraded 50-m primary mirror. In its primary role, MUSCAT is designed for high-resolution follow-up surveys of both galactic and extra-galactic sub-mm sources identified by Herschel. MUSCAT is also designed to be a technology demonstrator that will provide the first on-sky demonstrations of novel design concepts such as horn-coupled LEKID arrays and closed continuous cycle miniature dilution refrigeration. Here we describe some of the key design elements of the MUSCAT instrument such as the novel use of continuous sorption refrigerators and a miniature dilutor for continuous 100-mK cooling of the focal plane, broadband optical coupling to Aluminium LEKID arrays using waveguide chokes and anti-reflection coating materials as well as with the general mechanical and optical design of MUSCAT. We explain how MUSCAT is designed to be simple to upgrade and the possibilities for changing the focal plane unit that allows MUSCAT to act as a demonstrator for other novel technologies such as multi-chroic polarisation sensitive pixels and on-chip spectrometry in the future. Finally, we will report on the current status of MUSCAT's commissioning., Comment: Presented at SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United States
- Published
- 2018
1132. TIME millimeter wave grating spectrometer
- Author
-
Jonathon Hunacek, Tzu-Ching Chang, Charles M. Bradford, Jen-Chieh Cheng, Chao-Te Li, A. T. Crites, James J. Bock, Ta-Shun Wei, Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Physics ,Cryostat ,Spectrometer ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Imaging spectrometer ,02 engineering and technology ,Grating ,021001 nanoscience & nanotechnology ,01 natural sciences ,010309 optics ,Optics ,0103 physical sciences ,Extremely high frequency ,Transition edge sensor ,0210 nano-technology ,business ,Diffraction grating - Abstract
The Tomographic Ionized-carbon Mapping Experiment (TIME) utilizes grating spectrometers to achieve instantaneous wideband coverage with background-limited sensitivity. A unique approach is employed in which curved gratings are used in parallel plate waveguides to focus and diffract broadband light from feed horns toward detector arrays. TIME will measure singly ionized carbon fluctuations from 5 < z < 9 with an imaging spectrometer. 32 independent spectrometers are assembled into two stacks of 16, one per polarization. Each grating has 210 facets and provides a resolving power R of ~ 200 over the 186–324 GHz frequency range. The dispersed light is detected using 2-D arrays of transition edge sensor bolometers. The instrument is housed in a closed-cycle 4K–1K–300mK cryostat. The spectrometers and detectors are cooled using a dual-stage 250/300 mK refrigerator.
- Published
- 2018
1133. Ultra-thin large-aperture vacuum windows for millimeter wavelengths receivers
- Author
-
R. W. Ogburn, E. Bullock, Mark Halpern, B. Racine, Grant Teply, M. Lueker, K. Lau, J. Willmert, S. J. Benton, G. Hall, H. T. Nguyen, I. Buder, Peter A. R. Ade, Lorenzo Moncelsi, Bryan Steinbach, J. Kang, R. Bowens-Rubin, Hong Yang, Abigail G. Vieregg, Randol W. Aikin, M. Crumrine, J. Connors, K. L. Thompson, B. G. Keating, Howard Hui, J. P. Kaufman, K. G. Megerian, C. L. Kuo, S. A. Harrison, S. Palladino, Marion Dierickx, Justus A. Brevik, Carole Tucker, S. Fliescher, Chris Pentacoff, N. A. Larsen, Zeeshan Ahmed, S. A. Kernasovskiy, S. R. Hildebrandt, Victor Buza, A. Wandui, J. E. Tolan, Denis Barkats, C. L. Wong, Kate D. Alexander, Roger O'Brient, E. Karpel, C. Pryke, Jeffrey P. Filippini, J. J. Bock, R. V. Sudiwala, S. Kefeli, W. L. K. Wu, C. D. Sheehy, K. W. Yoon, D. V. Wiebe, Cora Dvorkin, R. Schwarz, E. M. Leitch, J. Cornelison, C. Umiltà, A. C. Weber, John M Kovac, G. C. Hilton, Kirit Karkare, Kent D. Irwin, S. Richter, Colin A. Bischoff, B. P. Crill, Alessandro Schillaci, T. St. Germaine, Ahmed Soliman, J. A. Grayson, C. Zhang, A. D. Turner, L. Duband, T. Namikawa, Z. K. Staniszewski, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Cryostat ,Materials science ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Transmission loss ,polymer ,Cosmic microwave background ,FOS: Physical sciences ,cosmic background radiation: polarization ,fabrication ,7. Clean energy ,01 natural sciences ,microwaves ,010309 optics ,Optics ,Vacuum Windows ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,attenuation ,Primordial Gravitational Waves ,business.industry ,Attenuation ,Astrophysics::Instrumentation and Methods for Astrophysics ,gravitational radiation: primordial ,Polymer Materials ,Polarization (waves) ,sensitivity ,BICEP ,vacuum system ,Wavelength ,Millimeter Wavelengths ,cryogenics ,Keck Array ,Millimeter ,atmosphere: pressure ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Microwave ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Targeting faint polarization patterns arising from Primordial Gravitational Waves in the Cosmic Microwave Background requires excellent observational sensitivity. Optical elements in small aperture experiments such as Bicep3 and Keck Array are designed to optimize throughput and minimize losses from transmission, reflection and scattering at millimeter wavelengths. As aperture size increases, cryostat vacuum windows must withstand larger forces from atmospheric pressure and the solution has often led to a thicker window at the expense of larger transmission loss. We have identified a new candidate material for the fabrication of vacuum windows: with a tensile strength two orders of magnitude larger than previously used materials, woven high-modulus polyethylene could allow for dramatically thinner windows, and therefore significantly reduced losses and higher sensitivity. In these proceedings we investigate the suitability of high-modulus polyethylene windows for ground-based CMB experiments, such as current and future receivers in the Bicep/Keck Array program. This includes characterizing their optical transmission as well as their mechanical behavior under atmospheric pressure. We find that such ultra-thin materials are promising candidates to improve the performance of large-aperture instruments at millimeter wavelengths, and outline a plan for further tests ahead of a possible upcoming field deployment of such a science-grade window., Comment: Published in Proc. SPIE. Presented at SPIE Astronomical Telescopes and Instrumentation Conference 10708: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, June 2018. 14 pages, 7 figures
- Published
- 2018
1134. BICEP Array: a multi-frequency degree-scale CMB polarimeter
- Author
-
Marion Dierickx, E. M. Leitch, John M Kovac, Kirit Karkare, Cora Dvorkin, R. Schwarz, Roger O'Brient, G. P. Teply, Kent D. Irwin, C. L. Kuo, Alessandro Schillaci, S. A. Kernasovskiy, E. Bullock, J. Willmert, Sarah M. Harrison, M. Lueker, Howard Hui, Ki Won Yoon, C. L. Wong, A. Wandui, B. P. Crill, Bryan Steinbach, Peter A. R. Ade, Lorenzo Moncelsi, I. Buder, B. Racine, Victor Buza, Abigail G. Vieregg, R. Bowens-Rubin, S. Palladino, T. St. Germaine, Donald V. Wiebe, James J. Bock, K. G. Megerian, S. Fliescher, Randol W. Aikin, H. T. Nguyen, A. C. Weber, C. Umiltà, Z. K. Staniszewski, Brian Keating, S. J. Benton, W. L. K. Wu, T. Namikawa, Eui-Hyeok Yang, M. Crumrine, S. Richter, A. D. Turner, L. Duband, Mark Halpern, Kam Y. Lau, K. L. Thompson, C. D. Sheehy, Colin A. Bischoff, Kate D. Alexander, C. Pryke, J. A. Grayson, Justus A. Brevik, Carole Tucker, J. Cornelison, Gene C. Hilton, N. A. Larsen, Zeeshan Ahmed, S. R. Hildebrandt, Denis Barkats, J. E. Tolan, Jake Connors, R. W. Ogburn, Rashmikant V. Sudiwala, J. P. Kaufman, Jeffrey P. Filippini, Ahmed Soliman, J. Kang, G. Hall, E. Karpel, S. Kefeli, C. Zhang, Calvin B. Netterfield, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,engineering ,Cosmic microwave background ,FOS: Physical sciences ,cosmic background radiation: polarization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,shielding: design ,Optics ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Astrophysics::Galaxy Astrophysics ,activity report ,detector: design ,Physics ,010308 nuclear & particles physics ,business.industry ,shielding: magnetic ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarimeter ,Polarization (waves) ,BICEP ,optics ,Cardinal point ,South Pole Telescope ,Electromagnetic shielding ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
BICEP Array is the newest multi-frequency instrument in the BICEP/Keck Array program. It is comprised of four 550 mm aperture refractive telescopes observing the polarization of the cosmic microwave background (CMB) at 30/40, 95, 150 and 220/270 GHz with over 30,000 detectors. We present an overview of the receiver, detailing the optics, thermal, mechanical, and magnetic shielding design. BICEP Array follows BICEP3's modular focal plane concept, and upgrades to 6" wafer to reduce fabrication with higher detector count per module. The first receiver at 30/40 GHz is expected to start observing at the South Pole during the 2019-20 season. By the end of the planned BICEP Array program, we project $\sigma(r) \sim 0.003$, assuming current modeling of polarized Galactic foreground and depending on the level of delensing that can be achieved with higher resolution maps from the South Pole Telescope., Comment: 15 pages, 13 figures
- Published
- 2018
1135. Simulations and performance of the QUBIC optical beam combiner
- Author
-
Emory F. Bunn, M.-A. Bigot-Sazy, Y. Giraud-Héraud, A. Zullo, Alessandro Buzzelli, M. Gómez Berisso, M. Giard, F. Voisin, J. Aumont, L. Mele, N. Bleurvacq, L. Dumoulin, L. Grandsire, Nicola Vittorio, Giuseppe D'Alessandro, P. Ringegni, F. Piacentini, Peter T. Timbie, P. Chanial, D. Viganò, M. C. Medina, Alessandro Schillaci, Créidhe O'Sullivan, Laurent Bergé, G. Polenta, Gabriele Coppi, Steve Torchinsky, P. Battaglia, L. Montier, X. Garrido, J.-P. Thermeau, Massimo Gervasi, V. Truongcanh, Rocco D'Agostino, M. Gaspard, R. Puddu, J. Bonaparte, Luca Lamagna, S. Spinelli, C. Chapron, G. de Gasperis, Victor Haynes, A. Etchegoyen, S. Loucatos, Gregory S. Tucker, L. M. Mundo, Marco Bersanelli, A. Lowitz, G. Bordier, E. Guerrard, Mario Zannoni, A. Pelosi, G. Amico, Vladimir V. Luković, D. Buzi, E. Olivieri, R. Luterstein, S. Scully, D. Prêle, H. Pastoriza, A. Mattei, J. Kaplan, F. Columbro, A. Gault, A. Passerini, F. Pajot, D. Harari, Silvia Masi, A. Di Donato, B. Watson, M. Stolpovskiy, Gustavo E. Romero, E. Bréelle, R. Charlassier, J. Bonis, Elia S. Battistelli, D. Gayer, M. De Leo, A. Tartari, Peter A. R. Ade, J. D. Murphy, B. Bélier, S. Banfi, Alessandro Paiella, P. de Bernardis, S. Vanneste, Andrew May, M. De Petris, G. Barbarán, Giampaolo Pisano, Francesco Cavaliere, Cristian Franceschet, D. T. Hoang, Matthieu Tristram, D. Burke, F. Incardona, F. Suarez, J. A. Murphy, C. Kristukat, Marcin Gradziel, F. Couchot, Bruce Rafael Mellado Garcia, A. Mennella, Alessandro Coppolecchia, M. M. Gamboa Lerena, Andrei Korotkov, A. Fasciszewski, D. Bennett, Damien Rambaud, M. González, Bruno Maffei, F. Wicek, Mark McCulloch, S. Marnieros, O. Perdereau, Maria Salatino, D. Auguste, J.-Ch. Hamilton, C. Perbost, C. Scóccola, Carole Tucker, Federico Pezzotta, M. Piat, E. Jules, Lucio Piccirillo, Thibaut Louis, Sophie Henrot-Versille, Simon J. Melhuish, A. Baù, J.-Ph. Bernard, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Zmuidzinas, Jonas, Gao, Jian-Rong, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Zmuidzinas, J, Gao, JR, Zullo, A, Wicek, F, Watson, B, Voisin, F, Vittorio, N, Viganò, D, Vanneste, S, Tucker, G, Tucker, C, Truongcanh, V, Tristram, M, Torchinsky, S, Timbie, P, Thermeau, J, Tartari, A, Suarez, F, Stolpovskiy, M, Spinelli, S, Scóccola, C, Schillaci, A, Salatino, M, Romero, G, Ringegni, P, Rambaud, D, Puddu, R, Prêle, D, Polenta, G, Pisano, G, Piccirillo, L, Piat, M, Piacentini, F, Pezzotta, F, Perdereau, O, Perbost, C, Pelosi, A, Pastoriza, H, Passerini, A, Pajot, F, Paiella, A, Olivieri, E, Murphy, J, Mundo, L, Montier, L, Melhuish, S, Medina, M, Mele, L, Mcculloch, M, May, A, Mattei, A, Masi, S, Marnieros, S, Maffei, B, Luterstein, R, Lukovic, V, Lowitz, A, Louis, T, Loucatos, S, Lamagna, L, Kristukat, C, Korotkov, A, Kaplan, J, Jules, E, Incardona, F, Hoang, D, Henrot-Versillé, S, Haynes, V, Harari, D, Grandsire, L, Gradziel, M, González, M, Gómez Berisso, M, Giraud-Héraud, Y, Giard, M, Gervasi, M, Gault, A, Gaspard, M, Garrido, X, García, B, Gamboa Lerena, M, Franceschet, C, Fasciszewski, A, Etchegoyen, A, Dumoulin, L, Di Donato, A, de Gasperis, G, de Bernardis, P, D’Alessandro, G, D'Agostino, R, Couchot, F, Coppolecchia, A, Coppi, G, Columbro, F, Charlassier, R, Chapron, C, Chanial, P, Cavaliere, F, Buzzelli, A, Buzi, D, Bunn, E, Bréelle, E, Bordier, G, Bonis, J, Bonaparte, J, Bleurvacq, N, Bigot-Sazy, M, Bersanelli, M, Bernard, J, Bergé, L, Bennett, D, Bélier, B, Baù, A, Battistelli, E, Battaglia, P, Barbarán, G, Banfi, S, Aumont, J, Auguste, D, Amico, G, Ade, P, Hamilton, J, Zannoni, M, Mennella, A, De Leo, M, De Petris, M, Scully, S, Guerrard, E, Gayer, D, Burke, D, and O'Sullivan, C
- Subjects
cosmological model ,higher-order ,QUBIC ,Cosmic microwave background ,CMB ,Interference (wave propagation) ,01 natural sciences ,7. Clean energy ,Cosmology ,B-mode: primordial ,law.invention ,law ,B-modes ,Anisotropy ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Applied Mathematics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,bolometric interferometry ,Condensed Matter Physics ,Physical optics ,physical optics ,Interferometry ,Horn antenna ,detector: performance ,polarization: anisotropy ,Astrophysics::High Energy Astrophysical Phenomena ,interferometer ,interference ,Astrophysics::Cosmology and Extragalactic Astrophysics ,model: optical ,programming ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,0103 physical sciences ,Electronic ,Optical and Magnetic Materials ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Electrical and Electronic Engineering ,Astrophysics::Galaxy Astrophysics ,Millimeter, Submillimeter, Far-Infrared, Detectors, Instrumentation, Cosmic Microwave Background, Polarization ,business.industry ,Bolometer ,gravitational radiation: primordial ,optics ,detector: sensitivity ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Electronic, Optical and Magnetic Materials ,cosmic background radiation: anisotropy - Abstract
QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that aims to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of = 30 − 200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the immunity to systematic effects of an interferometer. It will directly observe the sky through an array of back-to-back entry horns whose beams will be superimposed using a cooled quasioptical beam combiner. Images of the resulting interference fringes will be formed on two focal planes, each tiled with transition-edge sensors, cooled down to 320 mK. A dichroic filter placed between the optical combiner and the focal planes will select two frequency bands (centred at 150 GHz and 220 GHz), one frequency per focal plane. Polarization modulation will be achieved using a cold stepped half-wave plate (HWP) and polariser in front of the sky-facing horns. The full QUBIC instrument is described elsewhere1,2,3,4; in this paper we will concentrate in particular on simulations of the optical combiner (an off-axis Gregorian imager) and the feedhorn array. We model the optical performance of both the QUBIC full module and a scaled-down technological demonstrator which will be used to validate the full instrument design. Optical modelling is carried out using full vector physical optics with a combination of commercial and in-house software. In the high-frequency channel we must be careful to consider the higher-order modes that can be transmitted by the horn array. The instrument window function is used as a measure of performance and we investigate the effect of, for example, alignment and manufacturing tolerances, truncation by optical components and off-axis aberrations. We also report on laboratory tests carried on the QUBIC technological demonstrator in advance of deployment to the observing site in Argentina.
- Published
- 2018
1136. Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment
- Author
-
L. M. Mundo, M. Gómez Berisso, M. Giard, A. Tartari, Nicola Vittorio, A. Mattei, F. Columbro, R. Charlassier, L. Grandsire, A. Mennella, A. Pelosi, M. M. Gamboa Lerena, D. Bennett, Andrei Korotkov, M. González, F. Piacentini, D. Burke, C. Perbost, J. A. Murphy, P. Chanial, E. Olivieri, Damien Rambaud, B. Watson, Giampaolo Pisano, N. Bleurvacq, Maria Salatino, D. Auguste, H. Pastoriza, D. Harari, G. Barbarán, Bruno Maffei, F. Wicek, F. Couchot, L. Dumoulin, Peter A. R. Ade, J. Bonaparte, Giuseppe D'Alessandro, S. Loucatos, A. Gault, A. Lowitz, P. Battaglia, Mark McCulloch, S. Marnieros, P. Ringegni, A. Zullo, G. Amico, D. Viganò, S. Banfi, C. Scóccola, Carole Tucker, Créidhe O'Sullivan, Laurent Bergé, Andrew May, D. Buzi, M. C. Medina, L. Mele, J.-Ph. Bernard, M. Stolpovskiy, M. Piat, Emory F. Bunn, M.-A. Bigot-Sazy, F. Voisin, Bruce Rafael Mellado Garcia, C. Kristukat, O. Perdereau, S. Maestre, Y. Giraud-Héraud, J. D. Murphy, F. Incardona, Alessandro Coppolecchia, F. Suarez, Peter T. Timbie, C. Chapron, Alessandro Schillaci, Alessandro Paiella, W. Marty, G. Polenta, E. Bréelle, A. Fasciszewski, J. Aumont, R. Puddu, S. Spinelli, L. Montier, D. T. Hoang, Massimo Gervasi, Federico Pezzotta, F. Pajot, Elia S. Battistelli, D. Gayer, Simon J. Melhuish, V. Truongcanh, A. Baù, M. Gaspard, J.-P. Thermeau, Luca Lamagna, A. Etchegoyen, Marcin Gradziel, A. Buzzelli, Francesco Cavaliere, Lucio Piccirillo, Marco Bersanelli, J. Kaplan, Mario Zannoni, D. Prêle, Thibaut Louis, Sophie Henrot-Versille, A. Passerini, G. De Gasperis, B. Bélier, S. Scully, S. Vanneste, Victor Haynes, Gregory S. Tucker, M. De Leo, R. Luterstein, M. De Petris, Gustavo E. Romero, P. de Bernardis, J.-Ch. Hamilton, Rocco D'Agostino, E. Jules, Gabriele Coppi, Steve Torchinsky, Silvia Masi, A. Di Donato, X. Garrido, E. Guerrard, Vladimir V. Luković, G. Bordier, Cristian Franceschet, Matthieu Tristram, J. Bonis, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Zmuidzinas, J, Gao, JR, Salatino, M, Suarez, F, Bennett, D, Murphy, J, Ade, P, Thermeau, J, Zullo, A, Zannoni, M, Wicek, F, Watson, B, Vittorio, N, Viganò, D, Vanneste, S, Tucker, G, Tucker, C, Truongcanh, V, Tristam, M, Timbie, P, Tartari, A, Stolpovskiy, M, Spinelli, S, Scully, S, Scóccola, C, Schillaci, A, Romero, G, Ringegni, P, Puddu, R, Polenta, G, Pisano, G, Piccirillo, L, Piacentini, F, Pezzotta, F, Perdereau, O, Perbost, C, Pelosi, A, Pastoriza, H, Passerini, A, Pajot, F, Paiella, A, Olivieri, E, O'Sullivan, C, Mundo, L, Mennella, A, Melhuish, S, Mele, L, Medina, M, Mcculloch, M, May, A, Mattei, A, Masi, S, Maffei, B, Luterstein, R, Lukovic, V, Lowitz, A, Louis, T, Loucatos, S, Lamagna, L, Kristukat, C, Korotkov, A, Kaplan, J, Jules, E, Incardona, F, Haynes, V, Harari, D, Hamilton, J, Guerrard, E, Grandsire, L, Gradziel, M, González, M, Gómez Berisso, M, Giraud-Héraud, Y, Giard, M, Gervasi, M, Gayer, D, Gault, A, Gaspard, M, Garrido, X, García, B, Gamboa, M, Franceschet, C, Fasciszewski, A, Etchegoyen, A, Dumoulin, L, Di Donato, A, De Petris, M, De Leo, M, de Gasperis, G, de Bernardis, P, D’Alessandro, G, D'Agostino, R, Couchot, F, Coppolecchia, A, Coppi, G, Columbro, F, Charlassier, R, Chanial, P, Cavaliere, F, Buzzelli, A, Buzi, D, Burke, D, Bunn, E, Bréelle, E, Bordier, G, Bonis, J, Bonaparte, J, Bleurvacq, N, Bigot-Sazy, M, Bersanelli, M, Bernard, J, Bergé, L, Baù, A, Battistelli, E, Battaglia, P, Barbarán, G, Banfi, S, Aumont, J, Auguste, D, Amico, G, Voisin, F, Henrot-Versillé, S, Torchinsky, S, Rambaud, D, Prêle, D, Piat, M, Montier, L, Marty, W, Marnieros, S, Maestre, S, Hoang, D, Chapron, C, Bélier, B, Zmuidzinas, Jonas, Gao, Jian-Rong, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
the QUBIC experiment ,Time-Domain Multiplexing ,Integrated circuit ,SiGe Application-Specific Integrated Circuit ,01 natural sciences ,7. Clean energy ,Multiplexing ,Multiplexer ,law.invention ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,law ,Transition-Edge Sensor ,0103 physical sciences ,Cosmic Microwave Background ,Astronomical interferometer ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,010303 astronomy & astrophysics ,Physics ,business.industry ,Bolometric Interferometry ,Detector ,Bolometer ,Millimeter, Submillimeter, Far-Infrared, Detectors, Instrumentation, Cosmic Microwave Background ,CMB instrumentation ,SiGe ApplicationSpecific Integrated Circuit ,Superconducting QUantum Interference Device ,TimeDomain Multiplexing ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,Interferometry ,Superconducting QUantum Interference Devices ,Transition edge sensor ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; QUBIC (the Q and U Bolometric Interferometer for Cosmology) is a ground-based experiment which seeks to improve the current constraints on the amplitude of primordial gravitational waves. It exploits the unique technique, among Cosmic Microwave Background experiments, of bolometric interferometry, combining together the sensitivity of bolometric detectors with the control of systematic effects typical of interferometers. QUBIC will perform sky observations in polarization, in two frequency bands centered at 150 and 220 GHz, with two kilo-pixel focal plane arrays of NbSi Transition-Edge Sensors (TES) cooled down to 350 mK. A subset of the QUBIC instrument, the so called QUBIC Technological Demonstrator (TD), with a reduced number of detectors with respect to the full instrument, will be deployed and commissioned before the end of 2018. The voltage-biased TES are read out with Time Domain Multiplexing and an unprecedented multiplexing (MUX) factor equal to 128. This MUX factor is reached with two-stage multiplexing: a traditional one exploiting Superconducting QUantum Interference Devices (SQUIDs) at 1K and a novel SiGe Application-Specific Integrated Circuit (ASIC) at 60 K. The former provides a MUX factor of 32, while the latter provides a further 4. Each TES array is composed of 256 detectors and read out with four modules of 32 SQUIDs and two ASICs. A custom software synchronizes and manages the readout and detector operation, while the TES are sampled at 780 Hz (100kHz/128 MUX rate). In this work we present the experimental characterization of the QUBIC TES arrays and their multiplexing readout chain, including time constant, critical temperature, and noise properties.
- Published
- 2018
1137. QUBIC: the Q and U bolometric interferometer for cosmology
- Author
-
Y. Giraud-Héraud, E. Bréelle, P. A. R. Ade, A. Zullo, P. Ringegni, A. Mennella, M. M. Gamboa Lerena, D. Bennett, M. González, Emory F. Bunn, Francesco Cavaliere, R. Puddu, M. De Leo, L. Montier, M. Stolpovskiy, M. Gómez Berisso, M. Giard, C. Perbost, L. Grandsire, Peter T. Timbie, Cristian Franceschet, Matthieu Tristram, Gustavo E. Romero, E. Jules, Simon J. Melhuish, S. Spinelli, A. Baù, G. de Gasperis, J.-Ph. Bernard, G. Bordier, G. Polenta, M. De Petris, P. de Bernardis, A. Lowitz, Nicola Vittorio, E. Guerrard, P. Battaglia, M. Piat, Rocco D'Agostino, O. Perdereau, Lucio Piccirillo, Vladimir V. Luković, Bruce Rafael Mellado Garcia, F. Piacentini, J. Aumont, Massimo Gervasi, D. Prêle, Thibaut Louis, Alessandro Coppolecchia, Sophie Henrot-Versille, S. Loucatos, R. Charlassier, L. M. Mundo, L. Dumoulin, J. Kaplan, P. Chanial, J. D. Murphy, A. Fasciszewski, J. Bonaparte, C. Kristukat, S. Vanneste, Alessandro Paiella, Gabriele Coppi, Silvia Masi, A. Di Donato, Federico Pezzotta, L. Mele, B. Bélier, Steve Torchinsky, D. Viganò, Maria Salatino, D. Auguste, E. Olivieri, A. Mattei, J.-Ch. Hamilton, H. Pastoriza, D. Harari, F. Columbro, G. Amico, M.-A. Bigot-Sazy, A. Passerini, D. Buzi, C. Scóccola, Carole Tucker, G. Barbarán, C. Chapron, N. Bleurvacq, J. Bonis, F. Couchot, Andrei Korotkov, R. Luterstein, A. Tartari, V. Truongcanh, M. Gaspard, F. Voisin, F. Incardona, Damien Rambaud, A. Etchegoyen, B. Watson, Giampaolo Pisano, Marco Bersanelli, Bruno Maffei, Alessandro Schillaci, F. Wicek, Mario Zannoni, A. Pelosi, F. Suarez, A. Gault, Mark McCulloch, S. Marnieros, S. Scully, Créidhe O'Sullivan, Laurent Bergé, S. Banfi, D. Burke, J. A. Murphy, D. T. Hoang, Marcin Gradziel, Alessandro Buzzelli, J.-P. Thermeau, Victor Haynes, X. Garrido, Gregory S. Tucker, Giuseppe D'Alessandro, M. C. Medina, F. Pajot, Elia S. Battistelli, Luca Lamagna, D. Gayer, Andrew May, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Zmuidzinas J.,Gao J.-R., Ade, P, Zullo, A, Zannoni, M, Wicek, F, Watson, B, Voisin, F, Vittorio, N, Viganò, D, Vanneste, S, Tucker, G, Tucker, C, Truongcanh, V, Tristram, M, Torchinsky, S, Timbie, P, Thermeau, J, Tartari, A, Suarez, F, Stolpovskiy, M, Spinelli, S, Scully, S, Scóccola, C, Schillaci, A, Salatino, M, Romero, G, Ringegni, P, Rambaud, D, Puddu, R, Prêle, D, Polenta, G, Pisano, G, Piccirillo, L, Piat, M, Piacentini, F, Pezzotta, F, Perdereau, O, Perbost, C, Pelosi, A, Pastoriza, H, Passerini, A, Pajot, F, Paiella, A, Olivieri, E, Murphy, J, Mundo, L, Montier, L, Mennella, A, Melhuish, S, Mele, L, Medina, M, Mcculloch, M, May, A, Mattei, A, Masi, S, Marnieros, S, Maffei, B, Luterstein, R, Lukovic, V, Lowitz, A, Louis, T, Loucatos, S, Lamagna, L, Bennett, D, Kristukat, C, Korotkov, A, Kaplan, J, Jules, E, Incardona, F, Hoang, D, Harari, D, Hamilton, J, Guerrard, E, Grandsire, L, Gradziel, M, González, M, Gómez Berisso, M, Giraud-Héraud, Y, Giard, M, Gervasi, M, Gayer, D, Gault, A, Gaspard, M, Garrido, X, García, B, Gamboa Lerena, M, Franceschet, C, Fasciszewski, A, Etchegoyen, A, Henrot-Versillé, S, Haynes, V, Dumoulin, L, Di Donato, A, De Petris, M, De Leo, M, de Gasperis, G, de Bernardis, P, D’Alessandro, G, D'Agostino, R, Couchot, F, Coppolecchia, A, Coppi, G, Columbro, F, Charlassier, R, Chapron, C, Chanial, P, Cavaliere, F, Buzzelli, A, Buzi, D, Burke, D, Bunn, E, Bréelle, E, Bordier, G, Bonis, J, Bonaparte, J, Bleurvacq, N, Bigot-Sazy, M, Bersanelli, M, Bernard, J, Bergé, L, Bélier, B, Baù, A, Battistelli, E, Battaglia, P, Barbarán, G, Banfi, S, Aumont, J, Auguste, D, Amico, G, O'Sullivan, C, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Zmuidzinas, Jonas, Gao, Jian-Rong, Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
B-modes ,bolometric interferometry ,CMB ,QUBIC ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,cosmic microwave background ,Cosmic microwave background ,Interference (wave propagation) ,01 natural sciences ,7. Clean energy ,law.invention ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,law ,0103 physical sciences ,Electronic ,Optical and Magnetic Materials ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Millimeter, Submillimeter, Far-Infrared, Detectors, Instrumentation, Cosmic Microwave Background, Polarization ,Physics ,millimetre-wave ,Gravitational wave ,business.industry ,Detector ,Bolometer ,Polarizer ,interferometry ,Interferometry ,Dichroic filter ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that has been designed to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of 𝑙 = 30 − 200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the systematic error control of an interferometer. It will directly observe the sky through an array of 400 back-to-back entry horns whose signals will be superimposed using a quasi-optical beam combiner. The resulting interference fringes will be imaged at 150 and 220 GHz on two focal planes, each tiled with NbSi Transition Edge Sensors, cooled to 320 mK and read out with time-domain multiplexing. A dichroic filter placed between the optical combiner and the focal planes will select the two frequency bands. A very large receiver cryostat will cool the optical and detector stages to 40 K, 4 K, 1 K and 320 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. Polarisation modulation and selection will be achieved using a cold stepped half-wave plate (HWP) and polariser, respectively, in front of the sky-facing horns. A key feature of QUBIC’s ability to control systematic effects is its ‘self-calibration’ mode where fringe patterns from individual equivalent baselines can be compared. When observing, however, all the horns will be open simultaneously and we will recover a synthetic image of the sky in the I, Q and U Stokes’ parameters. The synthesised beam pattern has a central peak of approximately 0.5 degrees in width, with secondary peaks further out that are damped by the 13-degree primary beam of the horns. This is Module 1 of QUBIC which will be installed in Argentina, near the city of San Antonio de los Cobres, at the Alto Chorrillos site (4869 m a.s.l.), Salta Province. Simulations have shown that this first module could constrain the tensor-to-scalar ratio down to σ(r) = 0.01 after a two-year survey. We aim to add further modules in the future to increase the angular sensitivity and resolution of the instrument. The QUBIC project is proceeding through a sequence of steps. After an initial successful characterisation of the detection chain, a technological demonstrator is being assembled to validate the full instrument design and to test it electrically, thermally and optically. The technical demonstrator is a scaled-down version of Module 1 in terms of the number of detectors, input horns and pulse tubes and a reduction in the diameter of the combiner mirrors and filters, but is otherwise similar. The demonstrator will be upgraded to the full module in 2019. In this paper we give an overview of the QUBIC project and instrument.
- Published
- 2018
1138. 2017 upgrade and performance of BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization
- Author
-
Jae Hwan Kang, Cheng Zhang, Ki Won Yoon, Hung-I Yang, Wai Ling K. Wu, Chin Lin Wong, Justin Willmert, Don Wiebe, Alexis C. Weber, Albert Wandui, Abigail G. Vieregg, Caterina Umiltà, Anthony D. Turner, Carole Tucker, James E. Tolan, Keith L. Thompson, Grant P. Teply, Rashmi Sudiwala, Bryan Steinbach, Zachary K. Staniszewski, Tyler St Germaine, Ahmed Soliman, Chris D. Sheehy, Robert Schwarz, Alessandro Schillaci, Steffen Richter, Benjamin Racine, Clement Pryke, Stephen Palladino, R. W. Ogburn IV, Roger O'brient, Hien T. Nguyen, C. B. Netterfield, Toshiya Namikawa, Lorenzo Moncelsi, Koko G. Megerian, Martin Lueker, Erik M. Leitch, King Lau, Nicole Larsen, Chao-Lin Kuo, John M. Kovac, Sarah A. Kernasovskiy, Sinan Kefeli, Brian G. Keating, Jonathan Kaufman, Ethan Karpel, Kirit S. Karkare, Kent D. Irwin, Howard Hui, Gene C. Hilton, Sergi Hildebrandt, Sam A. Harrison, Mark Halpern, Grantland Hall, James A. Grayson, Stefan Fliescher, Jeff P. Filippini, Cora Dvorkin, Lionel Duband, Marion Dierickx, Michael Crumrine, Brendan Crill, James Cornelison, Jake Conners, Victor Buza, Eric Bullock, Immanuel Buder, Justus A. Brevik, Rachel Bowens-Rubin, Hans Boenish, James J. Bock, Colin A. Bischoff, Steve J. Benton, Denis Barkats, Kate D. Alexander, Randol Aikin, Zeeshan Ahmed, Peter A. Ade, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Zmuidzinas, Jonas, and Gao, Jian-Rong
- Subjects
noise ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,detector: performance ,Cosmic microwave background ,FOS: Physical sciences ,cosmic background radiation: polarization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,BICEP3 ,law.invention ,cosmic background radiation: B-mode ,Optics ,bolometer ,law ,Polarization ,0103 physical sciences ,Cosmic Microwave Background ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,Physics ,Gravitational Waves ,Gravitational wave ,business.industry ,beam: width ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,gravitational radiation: primordial ,Polarization (waves) ,detector: upgrade ,Inflation ,optics ,Cardinal point ,Upgrade ,Refracting telescope ,Keck Array ,Transition edge sensor ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
BICEP3 is a 520mm aperture on-axis refracting telescope observing the polarization of the cosmic microwave background (CMB) at 95GHz in search of the B-mode signal originating from inflationary gravitational waves. BICEP3's focal plane is populated with modularized tiles of antenna-coupled transition edge sensor (TES) bolometers. BICEP3 was deployed to the South Pole during 2014-15 austral summer and has been operational since. During the 2016-17 austral summer, we implemented changes to optical elements that lead to better noise performance. We discuss this upgrade and show the performance of BICEP3 at its full mapping speed from the 2017 and 2018 observing seasons. BICEP3 achieves an order-of-magnitude improvement in mapping speed compared to a Keck 95GHz receiver. We demonstrate $6.6\mu K\sqrt{s}$ noise performance of the BICEP3 receiver., Comment: 12 pages, 9 figures, Published in Proc. SPIE. Presented at SPIE Astronomical Telescopes and Instrumentation Conference 10708: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, June 2018
- Published
- 2018
1139. Thermal architecture for the QUBIC cryogenic receiver
- Author
-
R. Charlassier, G. de Gasperis, J. Kaplan, M. Piat, X. Garrido, J. Bonaparte, M.-A. Bigot-Sazy, B. Bélier, P. Battaglia, F. Piacentini, Alessandro Buzzelli, D. Burke, N. Bleurvacq, Andrei Korotkov, R. Puddu, F. Voisin, C. Perbost, E. Guerrard, J. A. Murphy, S. Loucatos, S. Spinelli, S. Vanneste, Damien Rambaud, Peter A. R. Ade, Gustavo E. Romero, P. Chanial, Peter T. Timbie, G. Polenta, A. Lowitz, Vladimir V. Luković, Andrew May, J.-Ch. Hamilton, B. Watson, Bruno Maffei, F. Wicek, Bruce Rafael Mellado Garcia, P. de Bernardis, F. Couchot, A. Gault, E. Olivieri, H. Pastoriza, D. Harari, L. Dumoulin, J.-Ph. Bernard, M. Stolpovskiy, Alessandro Coppolecchia, Mark McCulloch, S. Marnieros, A. Mennella, F. Incardona, G. Barbarán, Francesco Cavaliere, M. M. Gamboa Lerena, D. Viganò, F. Suarez, S. Banfi, E. Bréelle, A. Fasciszewski, G. Bordier, L. M. Mundo, D. Bennett, Y. Giraud-Héraud, Federico Pezzotta, A. Passerini, M. González, J. Bonis, J. Aumont, J.-P. Thermeau, Alessandro Schillaci, A. Tartari, A. Mattei, M. Gómez Berisso, E. Jules, L. Mele, M. Giard, L. Grandsire, Gabriele Coppi, Steve Torchinsky, F. Columbro, O. Perdereau, P. Ringegni, Simon J. Melhuish, Massimo Gervasi, A. Baù, Nicola Vittorio, Rocco D'Agostino, M. De Leo, Lucio Piccirillo, Thibaut Louis, D. Prêle, Sophie Henrot-Versille, Maria Salatino, D. Auguste, M. De Petris, R. Luterstein, C. Scóccola, Carole Tucker, Silvia Masi, A. Di Donato, Giampaolo Pisano, G. Amico, Cristian Franceschet, Matthieu Tristram, D. Buzi, Emory F. Bunn, Créidhe O'Sullivan, Laurent Bergé, V. Truongcanh, M. Gaspard, A. Etchegoyen, Marco Bersanelli, Mario Zannoni, A. Pelosi, S. Scully, J. D. Murphy, Alessandro Paiella, C. Kristukat, A. Zullo, Gregory S. Tucker, F. Pajot, Elia S. Battistelli, D. Gayer, Giuseppe D'Alessandro, M. C. Medina, C. Chapron, D. T. Hoang, Marcin Gradziel, Luca Lamagna, Victor Haynes, L. Montier, Zmuidzinas, Jonas, Gao, Jian-Rong, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Zmuidzinas, J, Gao, JR, Tristram, M, Passerini, A, Franceschet, C, Scully, S, Ade, P, Zullo, A, Zannoni, M, Wicek, F, Watson, B, Voisin, F, Vittorio, N, Viganò, D, Vanneste, S, Tucker, G, Tucker, C, Truongcanh, V, Torchinsky, S, Timbie, P, Tartari, A, Suarez, F, Stolpovskiy, M, Spinelli, S, Scóccola, C, Salatino, M, Romero, G, Ringegni, P, Rambaud, D, Puddu, R, Prêle, D, Polenta, G, Pisano, G, Piacentini, F, Pezzotta, F, Perdereau, O, Perbost, C, Pelosi, A, Pastoriza, H, Pajot, F, Paiella, A, Olivieri, E, O'Sullivan, C, Murphy, J, Mundo, L, Montier, L, Mennella, A, Mele, L, Medina, M, Mcculloch, M, Mattei, A, Marnieros, S, Maffei, B, Luterstein, R, Lukovic, V, Lowitz, A, Louis, T, Loucatos, S, Lamagna, L, Kristukat, C, Korotkov, A, Kaplan, J, Jules, E, Incardona, F, Hoang, D, Henrot-Versillé, S, Haynes, V, Harari, D, Hamilton, J, Guerrard, E, Grandsire, L, Gradziel, M, González, M, Gómez Berisso, M, Giraud-Héraud, Y, Giard, M, Gervasi, M, Gayer, D, Gault, A, Gaspard, M, Garrido, X, García, B, Gamboa Lerena, M, Fasciszewski, A, Etchegoyen, A, Dumoulin, L, Di Donato, A, De Petris, M, De Leo, M, de Gasperis, G, D'Agostino, R, Couchot, F, Coppolecchia, A, Bennett, D, Burke, D, Columbro, F, Charlassier, R, Chanial, P, Cavaliere, F, Buzzelli, A, Buzi, D, Bunn, E, Bréelle, E, Bordier, G, Bonis, J, Bonaparte, J, Bleurvacq, N, Bigot-Sazy, M, Bersanelli, M, Bernard, J, Bergé, L, Bélier, B, Baù, A, Battistelli, E, Battaglia, P, Barbarán, G, Banfi, S, Aumont, J, Auguste, D, Amico, G, Thermeau, J, Schillaci, A, Piccirillo, L, Piat, M, Melhuish, S, Masi, S, de Bernardis, P, D'Alessandro, G, Coppi, G, Chapron, C, May, A, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cryostat ,Physics - Instrumentation and Detectors ,Cryogenics ,Bolometric interferometry ,QUBIC ,interferometer ,Cosmic microwave background ,bolometric interferometry ,cryogenics ,experimental cosmology ,heat switch ,sorption cooler ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,FOS: Physical sciences ,cosmic background radiation: polarization ,7. Clean energy ,01 natural sciences ,law.invention ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,bolometer ,law ,0103 physical sciences ,Thermal ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Sorption cooler ,010306 general physics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Heat switch ,business.industry ,Bolometer ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Polarization (waves) ,Experimental cosmology ,Interferometry ,cryogenics: design ,B-mode ,Millimeter, Submillimeter, Far-Infrared, Detectors, Instrumentation, Cryogenics, Cosmic Microwave Background ,business ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
International audience; QUBIC, the QU Bolometric Interferometer for Cosmology, is a novel forthcoming instrument to measure the B-mode polarization anisotropy of the Cosmic Microwave Background. The detection of the B-mode signal will be extremely challenging; QUBIC has been designed to address this with a novel approach, namely bolometric interferometry. The receiver cryostat is exceptionally large and cools complex optical and detector stages to 40 K, 4 K, 1 K and 350 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. We discuss the thermal and mechanical design of the cryostat, modelling and thermal analysis, and laboratory cryogenic testing.
- Published
- 2018
1140. POLARBEAR-2: an instrument for CMB polarization measurements
- Author
-
Y. Inoue, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. A. Dobbs, A. Ducout, R. Dünner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, G. Fuller, A. J. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. L. Holzapfel, Y. Hori, L. Howe, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. P. Kaufman, K. Kazemzadeh, B. G. Keating, Z. Kermish, R. Keskitalo, T. S. Kisner, A. Kusaka, M. Le Jeune, A. T. Lee, D. Leon, E. V. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. R. Raum, G. M. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, K. M. Rotermund, Y. Segawa, B. D. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. P. Teply, A. Tikhomirov, T. Tomaru, N. Whitehorn, A. Zahn, O. Zahn, Holland, Wayne S, Zmuidzinas, Jonas, Institut Lagrange de Paris, Sorbonne Université (SU), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), POLARBEAR, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Sorbonne Universités, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Inoue, Y, Ade, P, Akiba, Y, Aleman, C, Arnold, K, Baccigalupi, C, Barch, B, Barron, D, Bender, A, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, De Haan, T, Dobbs, M, Ducout, A, Dunner, R, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fuller, G, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hattori, K, Hazumi, M, Hill, C, Holzapfel, W, Hori, Y, Howe, L, Irie, F, Jaehnig, G, Jaffe, A, Jeong, O, Katayama, N, Kaufman, J, Kazemzadeh, K, Keating, B, Kermish, Z, Keskitalo, R, Kisner, T, Kusaka, A, Le Jeune, M, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Miller, N, Mizukami, K, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Poletti, D, Puglisi, G, Raum, C, Rebeiz, G, Reichardt, C, Richards, P, Ross, C, Rotermund, K, Segawa, Y, Sherwin, B, Shirley, I, Siritanasak, P, Stebor, N, Stompor, R, Suzuki, A, Tajima, O, Takada, S, Takatori, S, Teply, G, Tikhomirov, A, Tomaru, T, Whitehorn, N, Zahn, A, Zahn, O, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie ( APC - UMR 7164 ), and Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA )
- Subjects
[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Cosmic microwave background ,cosmic background radiation: polarization ,Gravitational Wave ,Astrophysics ,01 natural sciences ,law.invention ,law ,Polarization ,Cosmic Microwave Background ,neutrino: mass ,mirror ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Weak gravitational lensing ,Physics ,Equipment and services ,Settore FIS/05 ,superconductivity ,Astrophysics::Instrumentation and Methods for Astrophysics ,Bolometers ,Polarization (waves) ,vacuum system ,astro-ph.CO ,readout ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,IR filter ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,lens ,Bolometer ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,010309 optics ,POLARBEAR-2 ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Sensors ,Gravitational wave ,gravitational radiation: primordial ,temperature ,millimeter wave ,optics ,Gravitational lens ,Extremely high frequency ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,astro-ph.IM - Abstract
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision {\sigma}(r) < 0.01, and the sum of neutrino masses, {\Sigma}m{\nu}, with {\sigma}({\Sigma}m{\nu}) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017., Comment: 9pages,8figures
- Published
- 2016
1141. SuperSpec: development towards a full-scale filter bank
- Author
-
Erik Shirokoff, Philip Daniel Mauskopf, Roger O'Brient, Henry G. LeDuc, R. Williamson, Christopher M. McKenney, T. Reck, Jonas Zmuidzinas, Colin Ross, Steve Hailey-Dunsheath, Peter S. Barry, Jordan Wheeler, Ryan McGeehan, Matthew I. Hollister, Scott Chapman, Stephen Padin, Jason Glenn, Charles M. Bradford, George Che, Carole Tucker, C. Shiu, Attila Kovács, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Physics ,Spectrometer ,business.industry ,Noise (signal processing) ,Detector ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Filter bank ,01 natural sciences ,Responsivity ,Optics ,0103 physical sciences ,Extremely high frequency ,010306 general physics ,0210 nano-technology ,business ,Noise-equivalent power ,Microwave - Abstract
SuperSpec is a new spectrometer-on-a-chip technology for submm/mm-wave spectroscopy. SuperSpec stands out from other direct-detection submm spectrometer technologies in that the detectors are coupled to a series of resonant filters along a single microwave feedline instead of using dispersive optics. SuperSpec makes use of kinetic inductance detectors (KIDs) to detect radiation in this filter bank. The small profile of this design makes SuperSpec a natural choice to produce a multi-object spectrometer for tomographic mapping or galaxy redshift surveys. We have recently fabricated a device that is a 50 channel subset of a full 280 channel filter bank, which would cover the 190 - 310 GHz range at R = 275. Analysis of the data from this device informs us of the potential design modifications to enable a high-yield background-limited SuperSpec spectrometer. The results indicate that this subset filter bank can scale up to a full filter bank with only a few collisions in readout space and less than 20% variation in responsivity for the detectors. Additionally, the characterization of this and other prototype devices suggests that the noise performance is limited by generation-recombination noise. Finally, we find that the detectors are sufficiently sensitive for ground-based spectroscopy at R = 100, appropriate for tomographic mapping experiments. Further modifications are required to reach the background limit for R = 400, ideal for spectroscopy of individual galaxies.
- Published
- 2016
1142. Responsivity boosting in FIR TiN LEKIDs using phonon recycling: simulations and array design
- Author
-
Adalyn Fyhrie, Peter K. Day, Christopher M. McKenney, Jason Glenn, Henry G. LeDuc, Jonas Zmuidzinas, Jiansong Gao, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Physics ,Silicon ,business.industry ,Phonon ,Physics::Instrumentation and Detectors ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,chemistry.chemical_element ,Silicon on insulator ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Responsivity ,Optics ,chemistry ,0103 physical sciences ,Optoelectronics ,Wafer ,Cooper pair ,010306 general physics ,0210 nano-technology ,business ,Tin - Abstract
To characterize further the cosmic star formation history at high redshifts, a large-area survey by a cryogenic 4-6 meter class telescope with a focal plane populated by tens of thousands of far-infrared (FIR, 30-300 μm) detectors with broadband detector noise equivalent powers (NEPs) on the order of 3×10^(-9) W/√ Hz is needed. Ideal detectors for such a surveyor do not yet exist. As a demonstration of one technique for approaching the ultra-low NEPs required by this surveyor, we present the design of an array of 96 350 µm KIDs that utilize phonon recycling to boost responsivity. Our KID array is fabricated with TiN deposited on a silicon-on-insulator (SOI) wafer, which is a 2 μm thick layer of silicon bonded to a thicker slab of silicon by a thin oxide layer. The backside thick slab is etched away underneath the absorbers so that the inductors are suspended on just the 2 μm membrane. The intent is that quasiparticle recombination phonons are trapped in the thin membrane, thereby increasing their likelihood of being re-absorbed by the KID to break additional Cooper pairs and boost responsivity. We also present a Monte-Carlo simulation that predicts the amount of signal boost expected from phonon recycling given different detector geometries and illumination strategies. For our current array geometry, the simulation predicts a measurable 50% boost in responsivity.
- Published
- 2016
1143. Development of dual-polarization LEKIDs for CMB observations
- Author
-
Henry G. LeDuc, Philip Daniel Mauskopf, Simon Doyle, Peter S. Barry, Heather McCarrick, Jonas Zmuidzinas, Amber Miller, Maximilian H. Abitbol, Glenn Jones, Daniel Flanigan, Bradley R. Johnson, Peter K. Day, Sean Bryan, Peter A. R. Ade, George Che, Michele Limon, Carole Tucker, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Materials science ,business.industry ,Physics::Instrumentation and Detectors ,Cosmic microwave background ,Detector ,Silicon on insulator ,FOS: Physical sciences ,Spectral bands ,01 natural sciences ,Noise (electronics) ,Responsivity ,Optics ,Dual-polarization interferometry ,0103 physical sciences ,Extremely high frequency ,Astrophysics - Instrumentation and Methods for Astrophysics ,010306 general physics ,business ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented., Comment: 7 pages, 5 figures, Proc. SPIE Astronomical Telescopes + Instrumentation 2016, Paper 9914-24
- Published
- 2016
1144. Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
- Author
-
James A. Beall, B. Racine, Jeffrey P. Filippini, J. Richard Bond, Aurelien A. Fraisse, K. Ganga, M. Galloway, Lorenzo Moncelsi, Juan D. Soler, R. Gualtieri, Joel N. Ullom, X. Song, A. Stevie Bergman, Gene C. Hilton, Jason E. Austermann, Ingunn Kathrine Wehus, Johannes Hubmayr, Mark Halpern, H. K. Eriksen, Shannon M. Duff, Steven J. Benton, Daniel T. Becker, Sean Bryan, J. Hartley, Johanna Nagy, D. V. Wiebe, Ivan L. Padilla, T. M. Rudd, Adri Duivenvoorden, B. Osherson, Calvin B. Netterfield, E. Y. Young, Jamil A. Shariff, Jon E. Gudmundsson, Arpi Grigorian, W. C. Jones, J. E. Ruhl, A. E. Gambrel, Michael R. Vissers, Shyang Wen, Jeff McMahon, Alexandra S. Rahlin, Jeff Van Lanen, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Physics ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarimetry ,FOS: Physical sciences ,Polarimeter ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,law.invention ,Optics ,law ,0103 physical sciences ,Astrophysics - Instrumentation and Methods for Astrophysics ,010306 general physics ,business ,Phonon noise ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Waveguide ,Astrophysics::Galaxy Astrophysics ,Microwave - Abstract
We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16$\times$16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7$^{\circ}$ FHWM Gaussian-shaped beams with $, Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 2016
- Published
- 2016
1145. Sideband-separating MMIC receivers for observation in the 3-mm band
- Author
-
Rohit Gawande, Kieran Cleary, Rodrigo Reeves, Richard Plambeck, Jacob Kooi, James W. Lamb, Pekka Kangaslahti, Mikko Varonen, Michael P. Laxen, Holland, Wayne S., Zmuidzinas, Jonas, Holland, WS, Zmuidzinas, J, Department of Micro and Nanosciences, Aalto-yliopisto, and Aalto University
- Subjects
010302 applied physics ,Materials science ,ta213 ,Sideband ,business.industry ,interferometer ,Amplifier ,millimeterwaves ,Feed horn ,Receivers ,01 natural sciences ,microwaves ,Orthomode transducer ,quadrature hybrid ,0103 physical sciences ,Extremely high frequency ,sideband separation ,Optoelectronics ,Wideband ,010306 general physics ,Telecommunications ,business ,Monolithic microwave integrated circuit ,Noise (radio) - Abstract
Wideband receivers for the 3-mm band were developed for CARMA, the Combined Array for Research in Millimeter wave Astronomy. Three cryogenic MMIC (monolithic microwave integrated circuit) amplifiers manufactured in InP 35-nm technology are combined in a block with waveguide probes and gain equalizers to cover the 80-116 GHz band. These are followed by a sideband-separating mixer that has two 17 GHZ wide outputs, for upper and lower sidebands. Each receiver has a feed horn followed by a circular-to-linear polarizer and orthomode transducer. The two polarizations are amplified by the cryogenic MMICs, and the outputs downconverted in sideband separating mixers, resulting in four 1-18 GHz channels that can be simultaneously correlated. The first receiver was tested in the lab, and on-sky tests conducted at CARMA. Measured noise temperatures were in the range 40-70 K, with a sideband rejection of about 15 dB.
- Published
- 2016
1146. Optical Characterisation of a Camera module Developed for Ultra-low NEP TES Detector Arrays at FIR Wavelengths
- Author
-
Morozov, D., Sudiwala, R., Ade, P.A.R., Goldie, D.J., Glowacka, D.M., Withington, S., Trappe, N.A., Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
QC - Abstract
Here we report on the optical design and on the spectral-spatial characterisation of a small 16 pixel camera. The prototype uses TES detectors with NEPs ~10-16 W/Hz0.5 which have been fabricated with near identical optical coupling structures to mimic their much lower NEP counterparts (~10-19 W/Hz0.5). This modification, which is achieved through changing only the pixel thermal conductance, G, has allowed us to perform spectral/spatial cryogenic testing using a 100mK ADR to view room temperature thermal sources. The measurements show a flat spectral response across the waveband and minimal side lobe structure in the antenna patterns down to 30dB.
- Published
- 2016
1147. BICEP3 performance overview and planned Keck Array upgrade
- Author
-
Z. Ahmed, S. A. Kernasovskiy, Mark Halpern, J. E. Tolan, Roger O'Brient, A. D. Turner, Howard Hui, R. Bowens-Rubin, K. W. Yoon, E. Karpel, K. L. Thompson, Victor Buza, Jake Connors, C. L. Kuo, J. Kang, Sarah M. Harrison, A. C. Weber, Kate D. Alexander, V. Monticue, I. Buder, C. Pryke, R. Schwarz, R. W. Ogburn, Bryan Steinbach, M. Amiri, D. V. Wiebe, Calvin B. Netterfield, C. D. Reintsema, James J. Bock, Stefan Richter, M. Lueker, John M Kovac, Kirit Karkare, J. Willmert, Gene C. Hilton, E. Bullock, V. V. Hristov, H. T. Nguyen, Kent D. Irwin, H. Boenish, E. M. Leitch, Denis Barkats, J. A. Grayson, Grant Teply, K. G. Megerian, S. J. Benton, Jeffrey P. Filippini, S. Kefeli, S. Fliescher, Carole Tucker, Z. Staniszewski, W. L. K. Wu, T. Namikawa, C. Sorensen, A. Wandui, Colin A. Bischoff, C. D. Sheehy, Peter A. R. Ade, Abigail G. Vieregg, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Computer science ,business.industry ,Detector ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,7. Clean energy ,01 natural sciences ,Cardinal point ,Upgrade ,Optics ,Frequency coverage ,Refracting telescope ,0103 physical sciences ,010306 general physics ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Transition edge ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
BICEP3 is a 520 mm aperture, compact two-lens refractor designed to observe the polarization of the cosmic microwave background (CMB) at 95 GHz. Its focal plane consists of modularized tiles of antenna-coupled transition edge sensors (TESs), similar to those used in BICEP2 and the Keck Array. The increased per-receiver optical throughput compared to BICEP2/Keck Array, due to both its faster f/1.7 optics and the larger aperture, more than doubles the combined mapping speed of the BICEP/Keck program. The BICEP3 receiver was recently upgraded to a full complement of 20 tiles of detectors (2560 TESs) and is now beginning its second year of observation (and first science season) at the South Pole. We report on its current performance and observing plans. Given its high per-receiver throughput while maintaining the advantages of a compact design, BICEP3-class receivers are ideally suited as building blocks for a 3rd-generation CMB experiment, consisting of multiple receivers spanning 35 GHz to 270 GHz with total detector count in the tens of thousands. We present plans for such an array, the new "BICEP Array" that will replace the Keck Array at the South Pole, including design optimization, frequency coverage, and deployment/observing strategies., 17 pages, 6 figures. To be published in Proc. SPIE. Presented at SPIE Astronomical Telescopes and Instrumentation Conference 9914: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, June 2016
- Published
- 2016
1148. The Simons Array CMB polarization experiment
- Author
-
N. Stebor, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, S. Beckman, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, T. de Haan, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. J. Gilbert, N. Goeckner-Wald, J. Groh, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. L. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. P. Kaufman, K. Kazemzadeh, B. G. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M. Le Jeune, A. T. Lee, D. Leon, E. V. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, J. Montgomery, M. Navaroli, H. Nishino, H. Paar, J. Peloton, D. Poletti, G. Puglisi, C. R. Raum, G. M. Rebeiz, C. L. Reichardt, P. L. Richards, C. Ross, K. M. Rotermund, Y. Segawa, B. D. Sherwin, I. Shirley, P. Siritanasak, L. Steinmetz, R. Stompor, A. Suzuki, O. Tajima, S. Takada, S. Takatori, G. P. Teply, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, A. Zahn, O. Zahn, Institut Lagrange de Paris, Sorbonne Universités, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Sorbonne Université (SU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Stebor, N, Ade, P, Akiba, Y, Aleman, C, Arnold, K, Baccigalupi, C, Barch, B, Barron, D, Beckman, S, Bender, A, Boettger, D, Borrill, J, Chapman, S, Chinone, Y, Cukierman, A, De Haan, T, Dobbs, M, Ducout, A, Dunner, R, Elleflot, T, Errard, J, Fabbian, G, Feeney, S, Feng, C, Fujino, T, Fuller, G, Gilbert, A, Goeckner-Wald, N, Groh, J, Hall, G, Halverson, N, Hamada, T, Hasegawa, M, Hattori, K, Hazumi, M, Hill, C, Holzapfel, W, Hori, Y, Howe, L, Inoue, Y, Irie, F, Jaehnig, G, Jaffe, A, Jeong, O, Katayama, N, Kaufman, J, Kazemzadeh, K, Keating, B, Kermish, Z, Keskitalo, R, Kisner, T, Kusaka, A, Le Jeune, M, Lee, A, Leon, D, Linder, E, Lowry, L, Matsuda, F, Matsumura, T, Miller, N, Montgomery, J, Navaroli, M, Nishino, H, Paar, H, Peloton, J, Poletti, D, Puglisi, G, Raum, C, Rebeiz, G, Reichardt, C, Richards, P, Ross, C, Rotermund, K, Segawa, Y, Sherwin, B, Shirley, I, Siritanasak, P, Steinmetz, L, Stompor, R, Suzuki, A, Tajima, O, Takada, S, Takatori, S, Teply, G, Tikhomirov, A, Tomaru, T, Westbrook, B, Whitehorn, N, Zahn, A, Zahn, O, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Holland, Wayne S, Zmuidzinas, Jonas, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Gark energy ,Cosmic microwave background ,Observatories ,cosmic background radiation: polarization ,01 natural sciences ,Receivers ,Multiplexing ,law.invention ,Cosmic microwave background radiation ,law ,Observatory ,Polarization ,Superconductors ,dark energy ,Physics ,Settore FIS/05 ,precision measurement ,superconductivity ,polarimeters ,Astrophysics::Instrumentation and Methods for Astrophysics ,neutrinos ,Polarization (waves) ,Bolometers ,cryogenics ,amplifier ,interference: quantum ,Dark matter ,gravitational lensing ,Gravitational lensing ,Astrophysics::Cosmology and Extragalactic Astrophysics ,dark matter ,cosmic background radiation: B-mode ,Settore FIS/05 - Astronomia e Astrofisica ,bolometer ,0103 physical sciences ,Neutrino ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,inflation ,010306 general physics ,detector: design ,activity report ,cosmic microwave background radiation ,polarization ,010308 nuclear & particles physics ,Gravitational wave ,Sensors ,Bolometer ,Astronomy ,Polarimeter ,Inflation ,Amplifiers ,Gravitational lens ,Antennas ,Transition edge sensor ,Telescopes - Abstract
International audience; The Simons Array is a next generation cosmic microwave background (CMB) polarization experiment whose science target is a precision measurement of the B-mode polarization pattern produced both by inflation and by gravitational lensing. As a continuation and extension of the successful POLARBEAR experimental program, the Simons Array will consist of three cryogenic receivers each featuring multichroic bolometer arrays mounted onto separate 3.5m telescopes. The first of these, also called POLARBEAR-2A, will be the first to deploy in late 2016 and has a large diameter focal plane consisting of dual-polarization dichroic pixels sensitive at 95 GHz and 150 GHz. The POLARBEAR-2A focal plane will utilize 7,588 antenna-coupled superconducting transition edge sensor (TES) bolometers read out with SQUID amplifiers using frequency domain multiplexing techniques. The next two receivers that will make up the Simons Array will be nearly identical in overall design but will feature extended frequency capability. The combination of high sensitivity, multichroic frequency coverage and large sky area available from our mid-latitude Chilean observatory will allow Simons Array to produce high quality polarization sky maps over a wide range of angular scales and to separate out the CMB B-modes from other astrophysical sources with high fidelity. After accounting for galactic foreground separation, the Simons Array will detect the primordial gravitational wave B-mode signal to r > 0.01 with a significance of > 5σ and will constrain the sum of neutrino masses to 40 meV (1σ) when cross-correlated with galaxy surveys. We present the current status of this funded experiment, its future, and discuss its projected science return.© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
- Published
- 2016
1149. Optical Characterization of the BICEP3 CMB Polarimeter at the South Pole
- Author
-
M. Lueker, John M Kovac, Kirit Karkare, Kent D. Irwin, Roger O'Brient, H. Boenish, J. Kang, S. Fliescher, K. G. Megerian, J. A. Grayson, Toshiya Namikawa, S. Kefeli, Ki Won Yoon, S. A. Harrison, Colin A. Bischoff, Chao-Lin Kuo, Carole Tucker, I. Buder, James J. Bock, C. L. Wong, Bryan Steinbach, J. Willmert, Gene C. Hilton, Viktor Hristov, Denis Barkats, V. Monticue, Howard Hui, W. L. K. Wu, Zeeshan Ahmed, A. D. Turner, E. Karpel, Jeffrey P. Filippini, Carl D. Reintsema, K. L. Thompson, Mandana Amiri, Peter A. R. Ade, Abigail G. Vieregg, Z. K. Staniszewski, M. T. St. Germaine, C. D. Sheehy, A. C. Weber, Calvin B. Netterfield, Victor Buza, S. A. Kernasovskiy, R. Bowens-Rubin, Kate D. Alexander, C. Pryke, A. Wandui, H. T. Nguyen, E. M. Leitch, S. J. Benton, S. Richter, Mark Halpern, R. Schwarz, E. Bullock, J. E. Tolan, Jake Connors, R. W. Ogburn, Grant Teply, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Gravitational wave ,business.industry ,Cosmic microwave background ,Cosmic background radiation ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Near and far field ,Polarimeter ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,law.invention ,Telescope ,Beamwidth ,Optics ,law ,0103 physical sciences ,010306 general physics ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
BICEP3 is a small-aperture refracting cosmic microwave background (CMB) telescope designed to make sensitive polarization maps in pursuit of a potential B-mode signal from inflationary gravitational waves. It is the latest in the BICEP/Keck Array series of CMB experiments at the South Pole, which has provided the most stringent constraints on inflation to date. For the 2016 observing season, BICEP3 was outfitted with a full suite of 2400 optically coupled detectors operating at 95 GHz. In these proceedings we report on the far field beam performance using calibration data taken during the 2015-2016 summer deployment season in situ with a thermal chopped source. We generate high-fidelity per-detector beam maps, show the array-averaged beam profile, and characterize the differential beam response between co-located, orthogonally polarized detectors which contributes to the leading instrumental systematic in pair differencing experiments. We find that the levels of differential pointing, beamwidth, and ellipticity are similar to or lower than those measured for BICEP2 and Keck Array. The magnitude and distribution of BICEP3's differential beam mismatch - and the level to which temperature-to-polarization leakage may be marginalized over or subtracted in analysis - will inform the design of next-generation CMB experiments with many thousands of detectors., Comment: 17 pages, 9 figures. Presented at SPIE Astronomical Telescopes and Instrumentation Conference 9914: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, June 2016
- Published
- 2016
- Full Text
- View/download PDF
1150. BICEP3 focal plane design and detector performance
- Author
-
Peter A. R. Ade, Ki Won Yoon, Abigail G. Vieregg, Bryan Steinbach, J. Kang, S. Fliescher, M. Lueker, Gene C. Hilton, John M Kovac, Kirit Karkare, Viktor Hristov, W. L. K. Wu, Zeeshan Ahmed, I. Buder, Kent D. Irwin, Victor Buza, Roger O'Brient, V. Monticue, C. D. Sheehy, E. Bullock, S. A. Kernasovskiy, Sarah M. Harrison, Keith L. Thompson, E. Karpel, Carl D. Reintsema, Z. K. Staniszewski, Calvin B. Netterfield, R. Schwarz, J. A. Grayson, H. Boenish, K. G. Megerian, Carole Tucker, Jeffrey P. Filippini, E. M. Leitch, Denis Barkats, S. Kefeli, C. Sorensen, A. C. Weber, Colin A. Bischoff, S. Richter, G. P. Teply, J. Willmert, J. E. Tolan, Donald V. Wiebe, Jake Connors, Steven J. Benton, R. W. Ogburn, Anthony D. Turner, R. Bowens-Rubin, Toshiya Namikawa, Chao-Lin Kuo, James J. Bock, Howard Hui, Mandana Amiri, A. Wandui, H. T. Nguyen, Mark Halpern, Kate D. Alexander, C. Pryke, Holland, Wayne S., and Zmuidzinas, Jonas
- Subjects
Cosmic microwave background ,Spectral response ,FOS: Physical sciences ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,law.invention ,Telescope ,Optics ,law ,0103 physical sciences ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Optical efficiency ,Physics ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,Polarization (waves) ,Cardinal point ,Refracting telescope ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,business - Abstract
BICEP3, the latest telescope in the BICEP/Keck program, started science observations in March 2016. It is a 550mm aperture refractive telescope observing the polarization of the cosmic microwave background at 95 GHz. We show the focal plane design and detector performance, including spectral response, optical efficiency and preliminary sensitivity of the upgraded BICEP3. We demonstrate 9.72$\mu$K$\sqrt{\textrm{s}}$ noise performance of the BICEP3 receiver., Comment: 11 pages, 10 figures. To be published in Proc. SPIE. Presented at SPIE Astronomical Telescopes and Instrumentation Conference 9914: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, June 2016
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.