71 results on '"van Rooij, Frank J.A."'
Search Results
52. FTO genetic variants, dietary intake and body mass index: insights from 177 330 individuals
- Author
-
Qi, Qibin, Kilpeläinen, Tuomas O., Downer, Mary K., Tanaka, Toshiko, Smith, Caren E., Sluijs, Ivonne, Sonestedt, Emily, Chu, Audrey Y., Renström, Frida, Lin, Xiaochen, Ängquist, Lars H., Huang, Jinyan, Liu, Zhonghua, Li, Yanping, Asif Ali, Muhammad, Xu, Min, Ahluwalia, Tarunveer Singh, Boer, Jolanda M.A., Chen, Peng, Daimon, Makoto, Eriksson, Johan, Perola, Markus, Friedlander, Yechiel, Gao, Yu-Tang, Heppe, Denise H.M., Holloway, John W., Houston, Denise K., Kanoni, Stavroula, Kim, Yu-Mi, Laaksonen, Maarit A., Jääskeläinen, Tiina, Lee, Nanette R., Lehtimäki, Terho, Lemaitre, Rozenn N., Lu, Wei, Luben, Robert N., Manichaikul, Ani, Männistö, Satu, Marques-Vidal, Pedro, Monda, Keri L., Ngwa, Julius S., Perusse, Louis, van Rooij, Frank J.A., Xiang, Yong-Bing, Wen, Wanqing, Wojczynski, Mary K., Zhu, Jingwen, Borecki, Ingrid B., Bouchard, Claude, Cai, Qiuyin, Cooper, Cyrus, Dedoussis, George V., Deloukas, Panos, Ferrucci, Luigi, Forouhi, Nita G., Hansen, Torben, Christiansen, Lene, Hofman, Albert, Johansson, Ingegerd, Jørgensen, Torben, Karasawa, Shigeru, Khaw, Kay-Tee, Kim, Mi-Kyung, Kristiansson, Kati, Li, Huaixing, Lin, Xu, Liu, Yongmei, Lohman, Kurt K., Long, Jirong, Mikkilä, Vera, Mozaffarian, Dariush, North, Kari, Pedersen, Oluf, Raitakari, Olli, Rissanen, Harri, Tuomilehto, Jaakko, van der Schouw, Yvonne T., Uitterlinden, André G., Zillikens, M. Carola, Franco, Oscar H., Shyong Tai, E., Ou Shu, Xiao, Siscovick, David S., Toft, Ulla, Verschuren, W.M. Monique, Vollenweider, Peter, Wareham, Nicholas J., Witteman, Jacqueline C.M., Zheng, Wei, Ridker, Paul M., Kang, Jae H., Liang, Liming, Jensen, Majken K., Curhan, Gary C., Pasquale, Louis R., Hunter, David J., Mohlke, Karen L., Uusitupa, Matti, Cupples, L. Adrienne, Rankinen, Tuomo, Orho-Melander, Marju, Wang, Tao, Chasman, Daniel I., Franks, Paul W., Sørensen, Thorkild I.A., Hu, Frank B., Loos, Ruth J. F., Nettleton, Jennifer A., Qi, Lu, Qi, Qibin, Kilpeläinen, Tuomas O., Downer, Mary K., Tanaka, Toshiko, Smith, Caren E., Sluijs, Ivonne, Sonestedt, Emily, Chu, Audrey Y., Renström, Frida, Lin, Xiaochen, Ängquist, Lars H., Huang, Jinyan, Liu, Zhonghua, Li, Yanping, Asif Ali, Muhammad, Xu, Min, Ahluwalia, Tarunveer Singh, Boer, Jolanda M.A., Chen, Peng, Daimon, Makoto, Eriksson, Johan, Perola, Markus, Friedlander, Yechiel, Gao, Yu-Tang, Heppe, Denise H.M., Holloway, John W., Houston, Denise K., Kanoni, Stavroula, Kim, Yu-Mi, Laaksonen, Maarit A., Jääskeläinen, Tiina, Lee, Nanette R., Lehtimäki, Terho, Lemaitre, Rozenn N., Lu, Wei, Luben, Robert N., Manichaikul, Ani, Männistö, Satu, Marques-Vidal, Pedro, Monda, Keri L., Ngwa, Julius S., Perusse, Louis, van Rooij, Frank J.A., Xiang, Yong-Bing, Wen, Wanqing, Wojczynski, Mary K., Zhu, Jingwen, Borecki, Ingrid B., Bouchard, Claude, Cai, Qiuyin, Cooper, Cyrus, Dedoussis, George V., Deloukas, Panos, Ferrucci, Luigi, Forouhi, Nita G., Hansen, Torben, Christiansen, Lene, Hofman, Albert, Johansson, Ingegerd, Jørgensen, Torben, Karasawa, Shigeru, Khaw, Kay-Tee, Kim, Mi-Kyung, Kristiansson, Kati, Li, Huaixing, Lin, Xu, Liu, Yongmei, Lohman, Kurt K., Long, Jirong, Mikkilä, Vera, Mozaffarian, Dariush, North, Kari, Pedersen, Oluf, Raitakari, Olli, Rissanen, Harri, Tuomilehto, Jaakko, van der Schouw, Yvonne T., Uitterlinden, André G., Zillikens, M. Carola, Franco, Oscar H., Shyong Tai, E., Ou Shu, Xiao, Siscovick, David S., Toft, Ulla, Verschuren, W.M. Monique, Vollenweider, Peter, Wareham, Nicholas J., Witteman, Jacqueline C.M., Zheng, Wei, Ridker, Paul M., Kang, Jae H., Liang, Liming, Jensen, Majken K., Curhan, Gary C., Pasquale, Louis R., Hunter, David J., Mohlke, Karen L., Uusitupa, Matti, Cupples, L. Adrienne, Rankinen, Tuomo, Orho-Melander, Marju, Wang, Tao, Chasman, Daniel I., Franks, Paul W., Sørensen, Thorkild I.A., Hu, Frank B., Loos, Ruth J. F., Nettleton, Jennifer A., and Qi, Lu
- Abstract
FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177 330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m2, P = 1.9 × 10−105), and all participants (0.30 [0.30, 0.35] kg/m2, P = 3.6 × 10−107). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10−16), and relative weak associations with lower total energy intake (−6.4 [−10.1, −2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (−0.07 [−0.11, −0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10−9) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity
- Published
- 2017
53. Natriuretic peptides and integrated risk assessment for cardiovascular disease:an individual-participant-data meta-analysis
- Author
-
Nambi, Vijay, Ballantyne, Christie M., Hoogeveen, Ron C., Agarwal, Sunil K., Panagiotakos, Demosthenes B., Wannamethee, S. Goya, Whincup, Peter H., Kiechl, Stefan, Willeit, Johann, Schett, Georg, Santer, Peter, Willeit, Peter, Casas, Juan Pablo, Lawlor, Debbie A., DeFilippi, Christopher, Kronmal, Richard A., Psaty, Bruce M., Cushman, Mary, Nordestgaard, Børge G., Olsen, Michael Hecht, Jørgensen, Torben, de Lemos, James A., McGuire, Darren K., Das, Sandeep R., Drazner, Mark H., Salomaa, Veikko, Vartiainen, Erkki, Harald, Kennet, Zeller, Tanja, Levy, Daniel, Ninomiya, Toshiharu, Hata, Jun, Kiyohara, Yutaka, Kauhanen, Jussi, Salonen, Jukka T., Laukkanen, Jari A., Tuomainen, Tomi Pekka, Ruskoaho, Heikki, Kistorp, Caroline N., Raymond, Ilan, Mueller, Thomas, Dieplinger, Benjamin, Haltmayer, Meinhard, de Boer, Rudolf A., Kavousi, Maryam, Hofman, Albert, Ligthart, Symen, Dehghan, Abbas, van Rooij, Frank J.A., Ikram, M. Arfan, Nambi, Vijay, Ballantyne, Christie M., Hoogeveen, Ron C., Agarwal, Sunil K., Panagiotakos, Demosthenes B., Wannamethee, S. Goya, Whincup, Peter H., Kiechl, Stefan, Willeit, Johann, Schett, Georg, Santer, Peter, Willeit, Peter, Casas, Juan Pablo, Lawlor, Debbie A., DeFilippi, Christopher, Kronmal, Richard A., Psaty, Bruce M., Cushman, Mary, Nordestgaard, Børge G., Olsen, Michael Hecht, Jørgensen, Torben, de Lemos, James A., McGuire, Darren K., Das, Sandeep R., Drazner, Mark H., Salomaa, Veikko, Vartiainen, Erkki, Harald, Kennet, Zeller, Tanja, Levy, Daniel, Ninomiya, Toshiharu, Hata, Jun, Kiyohara, Yutaka, Kauhanen, Jussi, Salonen, Jukka T., Laukkanen, Jari A., Tuomainen, Tomi Pekka, Ruskoaho, Heikki, Kistorp, Caroline N., Raymond, Ilan, Mueller, Thomas, Dieplinger, Benjamin, Haltmayer, Meinhard, de Boer, Rudolf A., Kavousi, Maryam, Hofman, Albert, Ligthart, Symen, Dehghan, Abbas, van Rooij, Frank J.A., and Ikram, M. Arfan
- Abstract
Background:Guidelines for primary prevention of cardiovascular diseases focus on prediction of coronary heart disease and stroke. We assessed whether or not measurement of N-terminal-pro-B-type natriuretic peptide (NT-proBNP) concentration could enable a more integrated approach than at present by predicting heart failure and enhancing coronary heart disease and stroke risk assessment. Methods: In this individual-participant-data meta-analysis, we generated and harmonised individual-participant data from relevant prospective studies via both de-novo NT-proBNP concentration measurement of stored samples and collection of data from studies identified through a systematic search of the literature (PubMed, Scientific Citation Index Expanded, and Embase) for articles published up to Sept 4, 2014, using search terms related to natriuretic peptide family members and the primary outcomes, with no language restrictions. We calculated risk ratios and measures of risk discrimination and reclassification across predicted 10 year risk categories (ie, <5%, 5% to <7·5%, and ≥7·5%), adding assessment of NT-proBNP concentration to that of conventional risk factors (ie, age, sex, smoking status, systolic blood pressure, history of diabetes, and total and HDL cholesterol concentrations). Primary outcomes were the combination of coronary heart disease and stroke, and the combination of coronary heart disease, stroke, and heart failure. Findings: We recorded 5500 coronary heart disease, 4002 stroke, and 2212 heart failure outcomes among 95 617 participants without a history of cardiovascular disease in 40 prospective studies. Risk ratios (for a comparison of the top third vs bottom third of NT-proBNP concentrations, adjusted for conventional risk factors) were 1·76 (95% CI 1·56–1·98) for the combination of coronary heart disease and stroke and 2·00 (1·77–2·26) for the combination of coronary heart disease, stroke, and hear
- Published
- 2016
54. Meta-GWAS Accuracy and Power (MetaGAP) calculator shows that hiding heritability is partially due to imperfect genetic correlations across studies
- Author
-
de Vlaming, Ronald, primary, Okbay, Aysu, additional, Rietveld, Cornelius A., additional, Johannesson, Magnus, additional, Magnusson, Patrik K.E., additional, Uitterlinden, André G., additional, van Rooij, Frank J.A., additional, Hofman, Albert, additional, Groenen, Patrick J.F., additional, Thurik, A. Roy, additional, and Koellinger, Philipp D., additional
- Published
- 2016
- Full Text
- View/download PDF
55. Genetic variation associated with circulating monocyte count in the eMERGE Network
- Author
-
Nalls, Michael A., Li, Rongling, Weston, Noah, Carrell, David S., van Rooij, Frank J.A., Liu, Yongmei, Crawford, Dana C., Kullo, Iftikhar J., Ritchie, Marylyn D., Gallego, Carlos J., McCarty, Catherine A., Crosslin, David R., Garcia, Melissa, Yango, Qiong, Crane, Paul K., Pugh, Elizabeth, Hayes, M. Geoffrey, Hart, Eugene, Couper, David J., Smith, Albert V., McDavid, Andrew, de Andrade, Mariza, Tanaka, Toshiko, Crenshaw, Andrew, Zheng, Xiuwen, Newton, Katherine, Saip, Alexander, Doheny, Kimberly F., Zakai, Neil A., Chen, Ming-Huei, Mirel, Daniel B., and Kho, Abel
- Abstract
With white blood cell count emerging as an important risk factor for chronic inflammatory diseases, genetic associations of differential leukocyte types, specifically monocyte count, are providing novel candidate genes and pathways to further investigate. Circulating monocytes play a critical role in vascular diseases such as in the formation of atherosclerotic plaque. We performed a joint and ancestry-stratified genome-wide association analyses to identify variants specifically associated with monocyte count in 11 014 subjects in the electronic Medical Records and Genomics Network. In the joint and European ancestry samples, we identified novel associations in the chromosome 16 interferon regulatory factor 8 (IRF8) gene (P-value = 2.78×10(−16), β = −0.22). Other monocyte associations include novel missense variants in the chemokine-binding protein 2 (CCBP2) gene (P-value = 1.88×10(−7), β = 0.30) and a region of replication found in ribophorin I (RPN1) (P-value = 2.63×10(−16), β = −0.23) on chromosome 3. The CCBP2 and RPN1 region is located near GATA binding protein2 gene that has been previously shown to be associated with coronary heart disease. On chromosome 9, we found a novel association in the prostaglandin reductase 1 gene (P-value = 2.29×10(−7), β = 0.16), which is downstream from lysophosphatidic acid receptor 1. This region has previously been shown to be associated with monocyte count. We also replicated monocyte associations of genome-wide significance (P-value = 5.68×10(−17), β = −0.23) at the integrin, alpha 4 gene on chromosome 2. The novel IRF8 results and further replications provide supporting evidence of genetic regions associated with monocyte count.
- Published
- 2013
- Full Text
- View/download PDF
56. Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network
- Author
-
Lange, Leslie, Ziv, Elad, Zonderman, Alan B., Li, Jin, Loos, Ruth J.F., Nalls, Michael A., Thomson, Cynthia, van Rooij, Frank J.A., Rasmussen-Torvik, Laura, Singleton, Andrew B., Gottesman, Omri, Schick, Ursula M., Ruderfer, Douglas M., Okada, Yukinori, Keller, Margaux F., Yanek, Lisa R., Evans, Michele, Bottinger, Erwin P., Ganesh, Santhi, Hakonarson, Hakon, Handsaker, Robert, Papanicolaou, George, Linderman, Michael D., Meng, Yan, McCarroll, Steven, Tang, Hua, Keating, Brendan, Sleiman, Patrick M.A., Kubo, Michiaki, Lu, Yingchang, Chen, Zhao, and Qayyum, Rehan
- Subjects
hemic and lymphatic diseases ,circulatory and respiratory physiology - Abstract
Laboratory red blood cell (RBC) measurements are clinically important, heritable and differ among ethnic groups. To identify genetic variants that contribute to RBC phenotypes in African Americans (AAs), we conducted a genome-wide association study in up to ∼16 500 AAs. The alpha-globin locus on chromosome 16pter [lead SNP rs13335629 in ITFG3 gene; P < 1E−13 for hemoglobin (Hgb), RBC count, mean corpuscular volume (MCV), MCH and MCHC] and the G6PD locus on Xq28 [lead SNP rs1050828; P < 1E − 13 for Hgb, hematocrit (Hct), MCV, RBC count and red cell distribution width (RDW)] were each associated with multiple RBC traits. At the alpha-globin region, both the common African 3.7 kb deletion and common single nucleotide polymorphisms (SNPs) appear to contribute independently to RBC phenotypes among AAs. In the 2p21 region, we identified a novel variant of PRKCE distinctly associated with Hct in AAs. In a genome-wide admixture mapping scan, local European ancestry at the 6p22 region containing HFE and LRRC16A was associated with higher Hgb. LRRC16A has been previously associated with the platelet count and mean platelet volume in AAs, but not with Hgb. Finally, we extended to AAs the findings of association of erythrocyte traits with several loci previously reported in Europeans and/or Asians, including CD164 and HBS1L-MYB. In summary, this large-scale genome-wide analysis in AAs has extended the importance of several RBC-associated genetic loci to AAs and identified allelic heterogeneity and pleiotropy at several previously known genetic loci associated with blood cell traits in AAs.
- Published
- 2013
- Full Text
- View/download PDF
57. Discovery and Fine Mapping of Serum Protein Loci through Transethnic Meta-analysis
- Author
-
Franceschini, Nora, van Rooij, Frank J.A., Prins, Bram P., Feitosa, Mary F., Karakas, Mahir, Eckfeldt, John H., Folsom, Aaron R., Kopp, Jeffrey, Vaez, Ahmad, Andrews, Jeanette S., Baumert, Jens, Boraska, Vesna, Broer, Linda, Hayward, Caroline, Ngwa, Julius S., Okada, Yukinori, Polasek, Ozren, Westra, Harm-Jan, Wang, Ying A., Del Greco M., Fabiola, Glazer, Nicole L., Kapur, Karen, Kema, Ido P., Lopez, Lorna M., Schillert, Arne, Smith, Albert V., Winkler, Cheryl A., Zgaga, Lina, Bandinelli, Stefania, Bergmann, Sven, Boban, Mladen, Bochud, Murielle, Chen, Y.D., Davies, Gail, Dehghan, Abbas, Ding, Jingzhong, Doering, Angela, Durda, J. Peter, Ferrucci, Luigi, Franco, Oscar H., Franke, Lude, Gunjaca, Grog, Hofman, Albert, Hsu, Fang-Chi, Kolcic, Ivana, Kraja, Aldi, Kubo, Michiaki, Lackner, Karl J., Launer, Lenore, Loehr, Laura R., Li, Guo, Meisinger, Christa, Nakamura, Yusuke, Schwienbacher, Christine, Starr, John M., Takahashi, Atsushi, Torlak, Vesela, Uitterlinden, André G., Vitart, Veronique, Waldenberger, Melanie, Wild, Philipp S., Kirin, Mirna, Zeller, Tanja, Zemunik, Tatijana, Zhang, Qunyuan, Ziegler, Andreas, Blankenberg, Stefan, Boerwinkle, Eric, Borecki, Ingrid B., Campbell, Harry, Deary, Ian J., Frayling, Timothy M., Gieger, Christian, Harris, Tamara B., Hicks, Andrew A., Koenig, Wolfgang, O’Donnell, Christopher J., Fox, Caroline S., Pramstaller, Peter P., Psaty, Bruce M., Reiner, Alex P., Rotter, Jerome I., Rudan, Igor, Snieder, Harold, Tanaka, Toshihiro, van Duijn, Cornelia M., Vollenweider, Peter, Waeber, Gerard, Wilson, James F., Witteman, Jacqueline C.M., Wolffenbuttel, Bruce H.R., Wright, Alan F., Wu, Qingyu, Liu, Yongmei, Jenny, Nancy S., North, Kari E., Felix, Janine F., Alizadeh, Behrooz Z., Cupples, L. Adrienne, Perry, John R.B., and Morris, Andrew P.
- Published
- 2012
- Full Text
- View/download PDF
58. Discovery and Fine Mapping of Serum Protein Loci through Transethnic Meta-analysis
- Author
-
Kapur, Karen, Schillert, Arne, Del Greco M., Fabiola, Polasek, Ozren, Zgaga, Lina, Glazer, Nicole L., Okada, Yukinori, Bandinelli, Stefania, Kema, Ido P., Andrews, Jeanette S., Eckfeldt, John H., Karakas, Mahir, Folsom, Aaron R., Bochud, Murielle, Broer, Linda, Winkler, Cheryl A., van Rooij, Frank J.A., Baumert, Jens, Boraska, Vesna, Ngwa, Julius S., Boban, Mladen, Vaez, Ahmad, Westra, Harm-Jan, Franceschini, Nora, Prins, Bram P., Lopez, Lorna M., Feitosa, Mary F., Smith, Albert V., Hayward, Caroline, Kopp, Jeffrey, Wang, Ying A., and Bergmann, Sven
- Abstract
Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10−8) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease.
- Published
- 2012
- Full Text
- View/download PDF
59. Coronary Calcium Score Improves Classification of Coronary Heart Disease Risk in the Elderly The Rotterdam Study
- Author
-
Elias-Smale, Suzette E., Proença, Rozemarijn Vliegenthart, Koller, Michael T., Kavousi, Maryam, van Rooij, Frank J.A., Hunink, Myriam G., Steyerberg, Ewout W., Hofman, Albert, Oudkerk, Matthijs, and Witteman, Jacqueline C.M.
- Subjects
RECLASSIFICATION ,ARTERY CALCIUM ,PREDICTION ,CARDIOVASCULAR RISK ,nutritional and metabolic diseases ,WOMEN ,QUANTIFICATION ,coronary calcium ,C-REACTIVE PROTEIN ,population-based ,EVENTS ,ATHEROSCLEROSIS ,COMPUTED-TOMOGRAPHY ,cardiovascular diseases ,coronary heart disease ,risk classification - Abstract
Objectives The purpose of this study was to examine the effect of coronary artery calcium (CAC) on the classification of 10-year hard coronary heart disease (CHD) risk and to empirically derive cut-off values of the calcium score for a general population of elderly patients. Background Although CAC scoring has been found to improve CHD risk prediction, there are limited data on its impact in clinical practice. Methods The study comprised 2,028 asymptomatic participants (age 69.6 +/- 6.2 years) from the Rotterdam Study. During a median follow-up of 9.2 years, 135 hard coronary events occurred. Persons were classified into low (20%) 10-year coronary risk categories based on a Framingham refitted risk model. In a second step, the model was extended by CAC, and reclassification percentages were calculated. Cutoff values of CAC for persons in the intermediate-risk category were empirically derived based on 10-year hard CHD risk. Results Reclassification by means of CAC scoring was most substantial in persons initially classified as intermediate risk. In this group, 52% of men and women were reclassified, all into more accurate risk categories. CAC values above 615 or below 50 Agatston units were found appropriate to reclassify persons into high or low risk, respectively. Conclusions In a general population of elderly patients at intermediate CHD risk, CAC scoring is a powerful method to reclassify persons into more appropriate risk categories. Empirically derived CAC cutoff values at which persons at intermediate risk reclassified to either high or low risk were 615 and 50 Agatston units, respectively. (J Am Coll Cardiol 2010;56:1407-14) (C) 2010 by the American College of Cardiology Foundation
- Published
- 2010
60. Matrix metalloproteinase 3 haplotypes and plasma amyloid beta levels: The Rotterdam Study
- Author
-
Reitz, Christiane, van Rooij, Frank J.A., Soares, Holly D., de Maat, Moniek P.M., Hofman, Albert, Witteman, Jacqueline C.M., and Breteler, Monique M.B.
- Published
- 2010
- Full Text
- View/download PDF
61. Common Genetic Variants Associate with Serum Phosphorus Concentration
- Author
-
Kestenbaum, Bryan, primary, Glazer, Nicole L., additional, Köttgen, Anna, additional, Felix, Janine F., additional, Hwang, Shih-Jen, additional, Liu, Yongmei, additional, Lohman, Kurt, additional, Kritchevsky, Stephen B., additional, Hausman, Dorothy B., additional, Petersen, Ann-Kristin, additional, Gieger, Christian, additional, Ried, Janina S., additional, Meitinger, Thomas, additional, Strom, Tim M., additional, Wichmann, H. Erich, additional, Campbell, Harry, additional, Hayward, Caroline, additional, Rudan, Igor, additional, de Boer, Ian H., additional, Psaty, Bruce M., additional, Rice, Kenneth M., additional, Chen, Yii-Der Ida, additional, Li, Man, additional, Arking, Dan E., additional, Boerwinkle, Eric, additional, Coresh, Josef, additional, Yang, Qiong, additional, Levy, Daniel, additional, van Rooij, Frank J.A., additional, Dehghan, Abbas, additional, Rivadeneira, Fernando, additional, Uitterlinden, André G., additional, Hofman, Albert, additional, van Duijn, Cornelia M., additional, Shlipak, Michael G., additional, Kao, W.H. Linda, additional, Witteman, Jacqueline C.M., additional, Siscovick, David S., additional, and Fox, Caroline S., additional
- Published
- 2010
- Full Text
- View/download PDF
62. Coffee Consumption and Coronary Calcification
- Author
-
van Woudenbergh, Geertruida J., primary, Vliegenthart, Rozemarijn, additional, van Rooij, Frank J.A., additional, Hofman, Albert, additional, Oudkerk, Matthijs, additional, Witteman, Jacqueline C.M., additional, and Geleijnse, Johanna M., additional
- Published
- 2008
- Full Text
- View/download PDF
63. Coronary Calcification Improves Cardiovascular Risk Prediction in the Elderly
- Author
-
Vliegenthart, Rozemarijn, primary, Oudkerk, Matthijs, additional, Hofman, Albert, additional, Oei, Hok-Hay S., additional, van Dijck, Wim, additional, van Rooij, Frank J.A., additional, and Witteman, Jacqueline C.M., additional
- Published
- 2005
- Full Text
- View/download PDF
64. Genome-wide association study identifies 74 loci associated with educational attainment
- Author
-
Okbay, Aysu, Beauchamp, Jonathan P., Fontana, Mark A., Lee, James J., Pers, Tune H., Rietveld, Cornelius A., Turley, Patrick, Chen, Guo-Bo, Emilsson, Valur, Meddens, S. Fleur W., Oskarsson, Sven, Pickrell, Joseph K., Thom, Kevin, Timshel, Pascal, de Vlaming, Ronald, Abdellaoui, Abdel, Ahluwalia, Tarunveer S., Bacelis, Jonas, Baumbach, Clemens, Bjornsdottir, Gyda, Brandsma, Johannes H., Concas, Maria Pina, Derringer, Jaime, Furlotte, Nicholas A., Galesloot, Tessel E., Girotto, Giorgia, Gupta, Richa, Hall, Leanne M., Harris, Sarah E., Hofer, Edith, Horikoshi, Momoko, Huffman, Jennifer E., Kaasik, Kadri, Kalafati, Ioanna P., Karlsson, Robert, Kong, Augustine, Lahti, Jari, van der Lee, Sven J., de Leeuw, Christiaan, Lind, Penelope A., Lindgren, Karl-Oskar, Liu, Tian, Mangino, Massimo, Marten, Jonathan, Mihailov, Evelin, Miller, Michael B., van der Most, Peter J., Oldmeadow, Christopher, Payton, Antony, Pervjakova, Natalia, Peyrot, Wouter J., Qian, Yong, Raitakari, Olli, Rueedi, Rico, Salvi, Erika, Schmidt, Börge, Schraut, Katharina E., Shi, Jianxin, Smith, Albert V., Poot, Raymond A., Pourcain, Beate, Teumer, Alexander, Thorleifsson, Gudmar, Verweij, Niek, Vuckovic, Dragana, Wellmann, Juergen, Westra, Harm-Jan, Yang, Jingyun, Zhao, Wei, Zhu, Zhihong, Alizadeh, Behrooz Z., Amin, Najaf, Bakshi, Andrew, Baumeister, Sebastian E., Biino, Ginevra, Bønnelykke, Klaus, Boyle, Patricia A., Campbell, Harry, Cappuccio, Francesco P., Davies, Gail, De Neve, Jan-Emmanuel, Deloukas, Panos, Demuth, Ilja, Ding, Jun, Eibich, Peter, Eisele, Lewin, Eklund, Niina, Evans68, David M., Faul, Jessica D., Feitosa, Mary F., Forstner, Andreas J., Gandin, Ilaria, Gunnarsson, Bjarni, Halldórsson, Bjarni V., Harris, Tamara B., Heath, Andrew C., Hocking, Lynne J., Holliday, Elizabeth G., Homuth, Georg, Horan, Michael A., Hottenga, Jouke-Jan, de Jager, Philip L., Joshi, Peter K., Jugessur, Astanand, Kaakinen, Marika A., Kähönen, Mika, Kanoni, Stavroula, Keltigangas-Järvinen, Liisa, Kiemeney, Lambertus A.L.M., Kolcic, Ivana, Koskinen, Seppo, Kraja, Aldi T., Kroh, Martin, Kutalik, Zoltan, Latvala, Antti, Launer, Lenore J., Lebreton, Maël P., Levinson, Douglas F., Lichtenstein, Paul, Lichtner, Peter, Liewald, David C.M., Loukola, Anu, Madden, Pamela A., Mägi, Reedik, Mäki-Opas, Tomi, Marioni, Riccardo E., Marques-Vidal, Pedro, Meddens, Gerardus A., McMahon, George, Meisinger, Christa, Meitinger, Thomas, Milaneschi, Yusplitri, Milani, Lili, Montgomery, Grant W., Myhre, Ronny, Nelson, Christopher P., Nyholt, Dale R., Ollier, William E.R., Palotie, Aarno, Paternoster, Lavinia, Pedersen, Nancy L., Petrovic, Katja E., Porteous, David J., Räikkönen, Katri, Ring, Susan M., Robino, Antonietta, Rostapshova, Olga, Rudan, Igor, Rustichini, Aldo, Salomaa, Veikko, Sanders, Alan R., Sarin, Antti-Pekka, Schmidt, Helena, Scott, Rodney J., Smith, Blair H., Smith, Jennifer A., Staessen, Jan A., Steinhagen-Thiessen, Elisabeth, Strauch, Konstantin, Terracciano, Antonio, Tobin, Martin D., Ulivi, Sheila, Vaccargiu, Simona, Quaye, Lydia, van Rooij, Frank J.A., Venturini, Cristina, Vinkhuyzen, Anna A.E., Völker, Uwe, Völzke, Henry, Vonk, Judith M., Vozzi, Diego, Waage, Johannes, Ware, Erin B., Willemsen, Gonneke, Attia, John R., Bennett, David A., Berger, Klaus, Bertram, Lars, Bisgaard, Hans, Boomsma, Dorret I., Borecki, Ingrid B., Bultmann, Ute, Chabris, Christopher F., Cucca, Francesco, Cusi, Daniele, Deary, Ian J., Dedoussis, George V., van Duijn, Cornelia M., Eriksson, Johan G., Franke, Barbara, Franke, Lude, Gasparini, Paolo, Gejman, Pablo V., Gieger, Christian, Grabe, Hans-Jörgen, Gratten, Jacob, Groenen, Patrick J.F., Gudnason, Vilmundur, van der Harst, Pim, Hayward, Caroline, Hinds, David A., Hoffmann, Wolfgang, Hyppönen, Elina, Iacono, William G., Jacobsson, Bo, Järvelin, Marjo-Riitta, Jöckel, Karl-Heinz, Kaprio, Jaakko, Kardia, Sharon L.R., Lehtimäki, Terho, Lehrer, Steven F., Magnusson, Patrik K.E., Martin, Nicholas G., McGue, Matt, Metspalu, Andres, Pendleton, Neil, Penninx, Brenda W.J.H., Perola, Markus, Pirastu, Nicola, Pirastu, Mario, Polasek, Ozren, Posthuma, Danielle, Power, Christine, Province, Michael A., Samani, Nilesh J., Schlessinger, David, Schmidt, Reinhold, Sørensen, Thorkild I.A., Spector, Tim D., Stefansson, Kari, Thorsteinsdottir, Unnur, Thurik, A. Roy, Timpson, Nicholas J., Tiemeier, Henning, Tung, Joyce Y., Uitterlinden, André G., Vitart, Veronique, Vollenweider, Peter, Weir, David R., Wilson, James F., Wright, Alan F., Conley, Dalton C., Krueger, Robert F., Smith, George Davey, Hofman, Albert, Laibson, David I., Medland, Sarah E., Meyer, Michelle N., Yang, Jian, Johannesson, Magnus, Visscher, Peter M., Esko, Tõnu, Koellinger, Philipp D., Cesarini, David, and Benjamin, Daniel J.
- Abstract
Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease.
- Published
- 2016
- Full Text
- View/download PDF
65. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians
- Author
-
Meigs, James B., Ordovas, Jose M., Lahti, Jari, Lehtimäki, Terho, Mukamal, Kenneth, McKeown, Nicola M., Follis, Jack L., Garcia, Melissa E., Seppälä, Ilkka, Fretts, Amanda M., Tiainen, Anna Maija, Arnett, Donna K., Djoussé, Luc, Rice, Kenneth, Smith, Caren E., Keller, Margaux F., Pankow, James S., Manichaikul, Ani, Houston, Denise K., Kanoni, Stavroula, Nalls, Mike A., Kiefte-De Jong, Jessica C., Franco, Oscar H., Deloukas, Panos, Van Rooij, Frank J.A., Hu, Frank B., Uitterlinden, André G., Liu, Yongmei, Dedoussis, George V., Johansson, Ingegerd, Ngwa, Julius S., Raitakari, Olli, Feitosa, Mary F., Rotter, Jerome I., Kähönen, Mika, Eriksson, Johan G., Van Den Hooven, Edith H., Nettleton, Jennifer A., Province, Michael A., Psaty, Bruce M., Franks, Paul W., Frazier-Wood, Alexis C., Ericson, Ulrika, Hofman, Albert, Wojczynski, Mary K., Dimitriou, Maria, Renström, Frida, Perälä, Mia Maria, Männistö, Satu, Siscovick, David S., Orho-Melander, Marju, Kalafati, Ioanna Panagiota, Lemaitre, Rozenn N., Mozaffarian, Dariush, Graff, Misa, Borecki, Ingrid B., Lai, Chao Qiang, Mikkilä, Vera, Sonestedt, Emily, North, Kari E., Cupples, L. Adrienne, and Varga, Tibor V.
- Subjects
2. Zero hunger ,food and beverages ,3. Good health - Abstract
Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown.
66. Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits
- Author
-
Highland, Heather M., Yanek, Lisa R., Nikus, Kjell, Tajuddin, Salman M., Hernesniemi, Jussi, Waterworth, Dawn M., Johnson, Andrew D., Smith, Albert Vernon, Evans, Michele K., O'Donnell, Chris J., Bork-Jensen, Jette, Zonderman, Alan B., Mathias, Rasika A., Polfus, Linda, Hill, W. David, Li, Jin, Nalls, Mike A., Lessard, Samuel, Elliott, Paul, Lange, Leslie A., Velez Edwards, Digna R., Nomura, Akihiro, Rotter, Jerome I., Psaty, Bruce M., van Rooij, Frank J.A., Abumrad, Nada A., Linneberg, Allan, Liu, Yongmei, Raitoharju, Emma, Kähönen, Mika, White, Harvey D., Vacchi-Suzzi, Caterina, Lettre, Guillaume, Ganesh, Santhi K., Taylor, Kent D., Schick, Ursula M., Fornage, Myriam, Slater, Andrew J., Lehtimäki, Terho, de Denus, Simon, Pedersen, Oluf, Hansen, Torben, Greinacher, Andreas, Faraday, Nauder, Petersmann, Astrid, O'Donoghue, Michelle L., Manichaikul, Ani, Chen, Ming-Huei, Crosslin, David R., Engström, Gunnar, Loos, Ruth J.F., Raffield, Laura M., Tzoulaki, Ioanna, Schurmann, Claudia, Gao, He, Hirschhorn, Joel N., Orho-Melander, Marju, Thuesen, Betina H., Lyytikäinen, Leo-Pekka, Irvin, Marguerite R., Esko, Tõnu, Gudnason, Vilmundur, Wilson, James G., Mägi, Reedik, Becker, Lewis C., Pazoki, Raha, Floyd, James S., Evangelou, Evangelos, Kathiresan, Sekar, Lu, Yingchang, Lange, Ethan, Mihailov, Evelin, Harris, Tamara B., Hayward, Caroline, Deary, Ian J., Bottinger, Erwin P., Mononen, Nina, Edwards, Todd L., Giri, Ayush, Reiner, Alexander P., Torstenson, Eric S., Hofman, Albert, Dubé, Marie-Pierre, Schmidt, Frank, Launer, Lenore J., Burt, Amber, Vergnaud, Anne-Claire, Metspalu, Andres, Raitakari, Olli T., Liewald, David C.M., Rivadeneira, Fernando, Grarup, Niels, Wallentin, Lars, Love-Gregory, Latisha, Chami, Nathalie, Kacprowski, Tim, Becker, Diane M., Eicher, John D., Rice, Kenneth M., Brody, Jennifer A., Nickerson, Deborah A., Boerwinkle, Eric, Tracy, Russell P., Richard, Melissa, van Duijn, Cornelia M., Pankratz, Nathan, Auer, Paul L., Zakai, Neil A., Teumer, Alexander, Bartz, Traci M., Starr, John M., Melander, Olle, and Cushman, Mary
- Subjects
3. Good health - Abstract
Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analys ...
67. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake
- Author
-
Chasman, Daniel I., Kritchevsky, Stephen B., Raitakari, Olli, Luan, Jia N.An, Forouhi, Nita G., De Oliveira Otto, Marcia C., Schrack, Jennifer A., McKeown, Nicola M., Van Rooij, Frank J.A., Rotter, Jerome I., Witteman, Jacqueline C.M., Siscovick, David S., Uitterlinden, André G., Wojczynski, Mary K., Langenberg, Claudia, Wareham, Nicholas J., Emilsson, Valur, Orho-Melander, Marju, Zhao, Jing Hua, Semba, Richard D., Renstrom, Frida, Qi, Lu, Frazier-Wood, Alexis C., Viikari, Jorma, Lohman, Kurt K., Tanaka, Toshiko, Barroso, Inês, Khaw, Kay Tee, Bandinelli, Stefania, Ordovas, Jose M., Singleton, Andrew, Deloukas, Panos, Chu, Audrey Y., Loos, Terho Lehtimäki Ruth J.F., Stirrups, Kathleen, Franks, Paul W., Houston, Denise K., Kähönen, Mika, Mikkilä, Vera, Kalafati, Ioanna Panagiota, Ferrucci, Luigi, Ye, Zheng, Arnett, Donna K., Hallmans, Goran, Feitosa, Mary F., Zillikens, M. Carola, North, Kari E., Manichaikul, Ani, Borecki, Ingrid B., Liu, Yongmei, Lemaitre, Rozenn N., Franco, Oscar H., Mozaffarian, Dariush, Cupples, L. Adrienne, Lyytikäinen, Leo Pekka, Kanoni, Stavroula, Hu, Frank B., Nettleton, Jennifer A., Hofman, Albert, Johnson, Andrew, Johansson, Ingegerd, Dimitriou, Maria, Sonestedt, Emily, Ngwa, Julius S., Dedoussis, George, and Dhurandhar, Emily J.
- Subjects
2. Zero hunger ,3. Good health - Abstract
BACKGROUND: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. OBJECTIVE: The objective of the study was to identify common genetic variants that are associated with macronutrient intake. DESIGN: We performed 2-stage genome-wide association (GWA) meta-analysis of macronutrient intake in populations of European descent. Macronutrients were assessed by using food-frequency questionnaires and analyzed as percentages of total energy consumption from total fat, protein, and carbohydrate. From the discovery GWA (n = 38,360), 35 independent loci associated with macronutrient intake at P < 5 × 10(-6) were identified and taken forward to replication in 3 additional cohorts (n = 33,533) from the DietGen Consortium. For one locus, fat mass obesity-associated protein (FTO), cohorts with Illumina MetaboChip genotype data (n = 7724) provided additional replication data. RESULTS: A variant in the chromosome 19 locus (rs838145) was associated with higher carbohydrate (β ± SE: 0.25 ± 0.04%; P = 1.68 × 10(-8)) and lower fat (β ± SE: -0.21 ± 0.04%; P = 1.57 × 10(-9)) consumption. A candidate gene in this region, fibroblast growth factor 21 (FGF21), encodes a fibroblast growth factor involved in glucose and lipid metabolism. The variants in this locus were associated with circulating FGF21 protein concentrations (P < 0.05) but not mRNA concentrations in blood or brain. The body mass index (BMI)-increasing allele of the FTO variant (rs1421085) was associated with higher protein intake (β ± SE: 0.10 ± 0.02%; P = 9.96 × 10(-10)), independent of BMI (after adjustment for BMI, β ± SE: 0.08 ± 0.02%; P = 3.15 × 10(-7)). CONCLUSION: Our results indicate that variants in genes involved in nutrient metabolism and obesity are associated with macronutrient consumption in humans. Trials related to this study were registered at clinicaltrials.gov as NCT00005131 (Atherosclerosis Risk in Communities), NCT00005133 (Cardiovascular Health Study), NCT00005136 (Family Heart Study), NCT00005121 (Framingham Heart Study), NCT00083369 (Genetic and Environmental Determinants of Triglycerides), NCT01331512 (InCHIANTI Study), and NCT00005487 (Multi-Ethnic Study of Atherosclerosis).
68. Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis
- Author
-
Launer, Lenore J., Zhou, Yi, Ridker, Paul M., Fornage, Myriam, Jee, Sun Ha, Snively, Beverly M., Morris, Andrew P., Kamatani, Naoyuki, Gudnason, Vilmundur, Felix, Janine F., Dehghan, Abbas, Chen, Yuan-Tsong, Trompouki, Eirini, Schmidt, Reinhold, Mueller, Christian, Becker, Diane M., Ginsburg, David, Hayes, James, O'Donnell, Christopher J., Rotter, Jerome I., Desch, Karl C., Zeller, Tanja, Okada, Yukinori, Coresh, Josef, Ford, Ian, Chu, Audrey Y., Kooperberg, Charles, Levy, Daniel, Kubo, Michiaki, Chang, Li-Ching, Li, Jin, Lange, Leslie, Chen, Zhao, Becker, Lewis C., Hu, Bella, Lambert, Amy J., Mook-Kanamori, Dennis O., Tang, Hua, Eiriksdottir, Gudny, Jukema, J. Wouter, Ferrucci, Luigi, Chasman, Daniel I., Schmidt, Helena, Takahashi, Atsushi, Keating, Brendan, Stott, David J., Yang, Qiong, Guralnik, Jack M., Trompet, Stella, Cupples, L. Adrienne, Schick, Ursula M., van Duijn, Cornelia M., Brody, Jennifer A., van Rooij, Frank J.A., Psaty, Bruce M., Abraham, Brian J., Longo, Dan L., Ghanbari, Mohsen, Saba, Yasaman, Slagboom, P. Eline, Uitterlinden, André G., Harris, Tamara B., Franco, Oscar H., Keller, Margaux F., Li-Gao, Ruifang, Tanaka, Toshiko, Reiner, Alexander P., Kamatani, Yoichiro, Chen, Chien-Hsiun, Floyd, James S., Hofman, Albert, Klein, Robert J., Evans, Michelle K., Tsai, Fuu-Jen, Matsuda, Koichi, Wilson, James G., Yang, Min-Lee, Peters, Luanne L., Li, Jun Z., Wu, Jer-Yuarn, Nalls, Michael A., Patel, Kushang V., Zon, Leonard I., Yanek, Lisa R., Choudhuri, Avik, Ganesh, Santhi K., Wild, Philipp S., Fox, Caroline S., Smith, Albert V., Zonderman, Alan B., Qayyum, Rehan, Chen, Ming-Huei, Grossmann, Vera, Johnson, Andrew D., Ozel, Ayse B., Boerwinkle, Eric, Yang, Song, Hofer, Edith, Yang, Jaden, and Rice, Kenneth M.
- Subjects
3. Good health - Abstract
Accession Numbers Summary data have been deposited in the database of Genotypes and Phenotypes (dbGaP) under CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Summary Results from Genomic Studies. The dbGaP study accession number is phs000930. Supplemental Data Supplemental data include Supplemental Acknowledgments, individual study methods and cohort descriptions, pleiotropy analysis, 10 tables, and a figure with 123 panels. Supplemental Data Document S1. Supplemental Acknowledgments, Individual Study Methods and Cohort Descriptions, Pleiotropy Analysis, and Figure S1 Download Data S1. Tables S1–S10 Download Document S2. Article plus Supplemental Data Download Web Resources Center for Genome Dynamics, http://cgd.jax.org dbGaP, http://www.ncbi.nlm.nih.gov/gap Matrix Spectral Decomposition, http://neurogenetics.qimrberghofer.edu.au/matSpD/ METASOFT 3.0c, http://www.buhmhan.com/software MGI Genes and Markers Query, http://www.informatics.jax.org/marker R/qtl v1.07-12, http://www.rqtl.org Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluate loss of function, we observed a strong in vivo erythropoietic effect for RBPMS but not for GTF2E2, supporting the statistical fine-mapping at this locus and demonstrating that RBPMS is a regulator of erythropoiesis. Our findings show the utility of trans-ethnic GWASs for discovery and characterization of genetic loci influencing hematologic traits.
69. Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases
- Author
-
Brody, Jennifer A., Edwards, Todd L., Li, Jin, Starr, John M., Boerwinkle, Eric, Lu, Yingchang, Manichaikul, Ani, Johnson, Andrew D., Dehghan, Abbas, Hill, W. David, Hirschhorn, Joel N., Wilson, James G., Gudnason, Vilmundur, Tajuddin, Salman M., Nickerson, Deborah A., Pazoki, Raha, Denny, Joshua C., Gao, He, Liu, Yongmei, Waterworth, Dawn M., Evangelou, Evangelos, Slater, Andrew J., Wallentin, Lars, Launer, Lenore J., Lettre, Guillaume, Pankratz, Nathan, Quarells, Rakale C., Cushman, Mary, Raffield, Laura M., Harris, Tamara B., Faraday, Nauder, Deary, Ian J., Schick, Ursula M., Bastarache, Lisa, Bottinger, Erwin P., Rich, Stephen S., Schurmann, Claudia, Mathias, Rasika A., Becker, Lewis C., Kacprowski, Tim, Hofman, Albert, Torstenson, Eric S., Kähönen, Mika, Crosslin, David R., Reiner, Alex P., Ganesh, Santhi K., Velez Edwards, Digna R., Mägi, Reedik, Greinacher, Andreas, O'Donoghue, Michelle L., Vergnaud, Anne-Claire, Psaty, Bruce M., Chami, Nathalie, Bartz, Traci M., Yanek, Lisa R., Hayward, Caroline, Esko, Tõnu, Rioux, John D., Taylor, Kent D., van Rooij, Frank J.A., Lange, Ethan, Eicher, John D., Highland, Heather M., de Denus, Simon, O'Donnell, Chris J., Nalls, Mike A., Lehtimäki, Terho, Auer, Paul L., Liewald, David C.M., Polfus, Linda M., Homuth, Georg, Nikus, Kjell, Mihailov, Evelin, Becker, Diane M., Lange, Leslie A., Metspalu, Andres, Giri, Ayush, Chen, Ming-Huei, Rotter, Jerome I., Loos, Ruth J.F., Floyd, James S., Elliott, Paul, Zakai, Neil A., Tzoulaki, Ioanna, Richard, Melissa, Evans, Michele K., Burt, Amber, Smith, Albert Vernon, Dörr, Marcus, Tardif, Jean-Claude, Zonderman, Alan B., Uitterlinden, Andre, Fornage, Myriam, White, Harvey D., Lyytikäinen, Leo-Pekka, Friedrich, Nele, and Vacchi-Suzzi, Caterina
- Subjects
natural sciences ,3. Good health - Abstract
Supplemental Data Supplemental Data include 2 figures, 13 tables, and additional funding information and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2016.05.003. Supplemental Data Document S1. Figures S1 and S2, Tables S3–S5, S7, S8, and S10–S12, and Additional Funding Information Download Table S1. Information on Genotyping Methods, Quality Control of SNPs, and Statistical Analyses for Exomechip Study Download Table S2. Description and Design of Studies Participating in the Blood-Cell Consortium with White Blood Cell Trait Data Download Table S6. List of All White Blood Cell Trait Loci that Reached Exome-wide Significance in the Discovery Meta-analysis Stage Download Table S9. Comparison of Allele Frequencies and Directions of Effect across Ancestries of White Blood Cell Trait Loci Download Table S13. Expression Quantitative Trait Loci Lookups of White Blood Cell Trait Variants Identified in the Present Study Download Document S2. Article plus Supplemental Data Download Web Resources 1000 Genomes, http://www.1000genomes.org BCX ExomeChip association results, http://www.mhi-humangenetics.org/en/resources CheckVCF, https://github.com/zhanxw/checkVCF GRASP, http://grasp.nhlbi.nih.gov/Overview.aspx HPC @ NIH, http://hpc.nih.gov OMIM, http://www.omim.org/ R statistical software, http://www.r-project.org/ RareMETALS, http://genome.sph.umich.edu/wiki/RareMETALS RareMetalWorker, http://genome.sph.umich.edu/wiki/RAREMETALWORKER RvTests, http://genome.sph.umich.edu/wiki/RvTests White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3′ UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases.
70. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits
- Author
-
Lehtimaki, Terho, Grarup, Niels, Hofman, Albert, Launer, Lenore J., Liewald, David C., Smith, Albert Vernon, Yang, Min-Lee, Di Sant, Amanda M. Rosa, Taylor, Kent D., Pedersen, Oluf, O'Donnell, Christopher J., Tracy, Russell P., Hansen, Torben, Franceschini, Nora, Jia, Jia, Bork-Jensen, Jette, Johnson, Andrew D., Zon, Leonard I., Floyd, James S., Bottinger, Erwin P., Harris, Tamara B., Loos, Ruth J. F., Marioni, Riccardo E., Proia, Richard L., Clavo, Vinna, Deary, Ian J., Reiner, Alex P., Jackson, Rebecca D., Brody, Jennifer A., Ahluwalia, Tarunveer Singh, Starr, John M., Pankratz, Nathan, Allende, Maria Laura, Pazoki, Raha, Hunker, Kristina, Garcia, Melissa E., Hagedorn, Elliott J., Lu, Yingchang, Zhou, Yi, Wilson, James G., Ganesh, Santhi K., Raitakari, Olli T., Cushman, Mary, Rotter, Jerome I., Lyytikainen, Leo-Pekka, Schick, Ursula M., Zhang, Xiaoling, Gudnason, Vilmundur, Linneberg, Allan, Numans, Mattijs E., De Bakker, Paul I. W., Huo, Yong, Dong, Liguang, Zhou, Wei, Thuesen, Betina Heinsbek, Asselbergs, Folkert W., Dehghan, Abbas, Van Rooij, Frank J.A., Kahonen, Mika, Liu, Yongmei, Boerwinkle, Eric, Franco, Oscar H., Nalls, Mike A., Chen, Ming-Huei, Manichaikul, Ani, Nguyen, Vy M., Eicher, John D., Hu, Bella, Wang, Jiansong, Rivadeneira, Fernando, Rich, Stephen S., Uitterlinden, Andre G., Wang, Judy, Grove, Megan L., Psaty, Bruce M., Adrienne Cupples, Feitosa, Mary F., Borecki, Ingrid B., Leusink, Maarten, Auer, Paul L., and Zhang, Yan
- Subjects
3. Good health - Abstract
Hematologic measures such as hematocrit and white blood cell (WBC) count are heritable and clinically relevant. Erythrocyte and WBC phenotypes were analyzed with Illumina HumanExome BeadChip genotypes in 52,531 individuals (37,775 of European ancestry; 11,589 African Americans; 3,167 Hispanic Americans) from 16 population-based cohorts. We then performed replication analyses of novel discoveries in 18,018 European American women and 5,261 Han Chinese. We identified and replicated four novel erythrocyte trait-locus associations (CEP89, SHROOM3, FADS2, and APOE) and six novel WBC loci for neutrophil count (S1PR4), monocyte count (BTBD8, NLRP12, and IL17RA), eosinophil count (IRF1), and total WBC (MYB). The novel association of a rare missense variant in S1PR4 supports the role of sphingosine-1-phosphate signaling in leukocyte trafficking and circulating neutrophil counts. Loss-of-function experiments of S1pr4 in mouse and zebrafish demonstrated phenotypes consistent with the association observed in humans and altered kinetics of neutrophil recruitment and resolution in response to tissue injury.
71. FTO genetic variants, dietary intake and body mass index: insights from 177 330 individuals
- Author
-
Qi, Qibin, Kilpeläinen, Tuomas O., Downer, Mary K., Tanaka, Toshiko, Smith, Caren E., Sluijs, Ivonne, Sonestedt, Emily, Chu, Audrey Y., Renström, Frida, Lin, Xiaochen, Ängquist, Lars H., Huang, Jinyan, Liu, Zhonghua, Li, Yanping, Asif Ali, Muhammad, Xu, Min, Ahluwalia, Tarunveer Singh, Boer, Jolanda M.A., Chen, Peng, Daimon, Makoto, Eriksson, Johan, Perola, Markus, Friedlander, Yechiel, Gao, Yu-Tang, Heppe, Denise H.M., Holloway, John W., Houston, Denise K., Kanoni, Stavroula, Kim, Yu-Mi, Laaksonen, Maarit A., Jääskeläinen, Tiina, Lee, Nanette R., Lehtimäki, Terho, Lemaitre, Rozenn N., Lu, Wei, Luben, Robert N., Manichaikul, Ani, Männistö, Satu, Marques-Vidal, Pedro, Monda, Keri L., Ngwa, Julius S., Perusse, Louis, van Rooij, Frank J.A., Xiang, Yong-Bing, Wen, Wanqing, Wojczynski, Mary K., Zhu, Jingwen, Borecki, Ingrid B., Bouchard, Claude, Cai, Qiuyin, Cooper, Cyrus, Dedoussis, George V., Deloukas, Panos, Ferrucci, Luigi, Forouhi, Nita G., Hansen, Torben, Christiansen, Lene, Hofman, Albert, Johansson, Ingegerd, Jørgensen, Torben, Karasawa, Shigeru, Khaw, Kay-Tee, Kim, Mi-Kyung, Kristiansson, Kati, Li, Huaixing, Lin, Xu, Liu, Yongmei, Lohman, Kurt K., Long, Jirong, Mikkilä, Vera, Mozaffarian, Dariush, North, Kari, Pedersen, Oluf, Raitakari, Olli, Rissanen, Harri, Tuomilehto, Jaakko, van der Schouw, Yvonne T., Uitterlinden, André G., Zillikens, M. Carola, Franco, Oscar H., Shyong Tai, E., Ou Shu, Xiao, Siscovick, David S., Toft, Ulla, Verschuren, W.M. Monique, Vollenweider, Peter, Wareham, Nicholas J., Witteman, Jacqueline C.M., Zheng, Wei, Ridker, Paul M., Kang, Jae H., Liang, Liming, Jensen, Majken K., Curhan, Gary C., Pasquale, Louis R., Hunter, David J., Mohlke, Karen L., Uusitupa, Matti, Cupples, L. Adrienne, Rankinen, Tuomo, Orho-Melander, Marju, Wang, Tao, Chasman, Daniel I., Franks, Paul W., Sørensen, Thorkild I.A., Hu, Frank B., Loos, Ruth J. F., Nettleton, Jennifer A., Qi, Lu, Qi, Qibin, Kilpeläinen, Tuomas O., Downer, Mary K., Tanaka, Toshiko, Smith, Caren E., Sluijs, Ivonne, Sonestedt, Emily, Chu, Audrey Y., Renström, Frida, Lin, Xiaochen, Ängquist, Lars H., Huang, Jinyan, Liu, Zhonghua, Li, Yanping, Asif Ali, Muhammad, Xu, Min, Ahluwalia, Tarunveer Singh, Boer, Jolanda M.A., Chen, Peng, Daimon, Makoto, Eriksson, Johan, Perola, Markus, Friedlander, Yechiel, Gao, Yu-Tang, Heppe, Denise H.M., Holloway, John W., Houston, Denise K., Kanoni, Stavroula, Kim, Yu-Mi, Laaksonen, Maarit A., Jääskeläinen, Tiina, Lee, Nanette R., Lehtimäki, Terho, Lemaitre, Rozenn N., Lu, Wei, Luben, Robert N., Manichaikul, Ani, Männistö, Satu, Marques-Vidal, Pedro, Monda, Keri L., Ngwa, Julius S., Perusse, Louis, van Rooij, Frank J.A., Xiang, Yong-Bing, Wen, Wanqing, Wojczynski, Mary K., Zhu, Jingwen, Borecki, Ingrid B., Bouchard, Claude, Cai, Qiuyin, Cooper, Cyrus, Dedoussis, George V., Deloukas, Panos, Ferrucci, Luigi, Forouhi, Nita G., Hansen, Torben, Christiansen, Lene, Hofman, Albert, Johansson, Ingegerd, Jørgensen, Torben, Karasawa, Shigeru, Khaw, Kay-Tee, Kim, Mi-Kyung, Kristiansson, Kati, Li, Huaixing, Lin, Xu, Liu, Yongmei, Lohman, Kurt K., Long, Jirong, Mikkilä, Vera, Mozaffarian, Dariush, North, Kari, Pedersen, Oluf, Raitakari, Olli, Rissanen, Harri, Tuomilehto, Jaakko, van der Schouw, Yvonne T., Uitterlinden, André G., Zillikens, M. Carola, Franco, Oscar H., Shyong Tai, E., Ou Shu, Xiao, Siscovick, David S., Toft, Ulla, Verschuren, W.M. Monique, Vollenweider, Peter, Wareham, Nicholas J., Witteman, Jacqueline C.M., Zheng, Wei, Ridker, Paul M., Kang, Jae H., Liang, Liming, Jensen, Majken K., Curhan, Gary C., Pasquale, Louis R., Hunter, David J., Mohlke, Karen L., Uusitupa, Matti, Cupples, L. Adrienne, Rankinen, Tuomo, Orho-Melander, Marju, Wang, Tao, Chasman, Daniel I., Franks, Paul W., Sørensen, Thorkild I.A., Hu, Frank B., Loos, Ruth J. F., Nettleton, Jennifer A., and Qi, Lu
- Abstract
FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177 330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m2, P = 1.9 × 10−105), and all participants (0.30 [0.30, 0.35] kg/m2, P = 3.6 × 10−107). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10−16), and relative weak associations with lower total energy intake (−6.4 [−10.1, −2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (−0.07 [−0.11, −0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10−9) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.