Jennyfer Lecompte, Antoine Nordez, Giuseppe Rabita, Gaël Guilhem, Enzo Hollville, French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise and Performance (EA7370) (SEP (EA7370)), Institut national du sport, de l'expertise et de la performance (INSEP), Motricité, interactions, performance EA 4334 (MIP), Le Mans Université (UM)-Université de Nantes - UFR des Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS), Université de Nantes (UN)-Université de Nantes (UN), Institut de Biomécanique Humaine Georges Charpak (IBHGC), Université Sorbonne Paris Nord-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Motricité, interactions, performance EA 4334 / Movement - Interactions - Performance (MIP), Le Mans Université (UM)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR des Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS), Auckland University of Technology (AUT), Laboratoire de biomécanique (LBM), Université Paris 13 (UP13)-Université Sorbonne Paris Cité (USPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Arts et Métiers ParisTech, Université de Nantes - UFR des Sciences et Techniques des Activités Physiques et Sportives (UFR STAPS), and Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Le Mans Université (UM)
International audience; Purpose: Muscle–tendon units are forcefully stretched during rapid deceleration events such as landing. Consequently, tendons act as shock absorbers by buffering the negative work produced by muscle fascicles likely to prevent muscle damage. Landing surface properties can also modulate the amount of energy dissipated by the body, potentially effecting injury risk. This study aimed to evaluate the influence of three different surfaces on the muscle–tendon interactions of gastrocnemius medialis (GM), and vastus lateralis (VL) during single- and double-leg landings from 50 cm.Methods: Ultrasound images, muscle activity and joint kinematics were collected for 12 participants. Surface testing was also performed, revealing large differences in mechanical behavior.Results: During single-leg landing, stiffer surfaces increased VL fascicle lengthening and velocity, and muscle activity independent of joint kinematics while GM length changes showed no difference between surfaces. Double-leg landing resulted in similar fascicle and tendon behavior despite greater knee flexion angles on stiffer surfaces.Conclusion: This demonstrates that VL fascicle lengthening is greater when the surface stiffness increases, when performing single-leg landing. This is due to the combination of limited knee joint flexion and lower surface absorption ability which resulted in greater mechanical demand mainly withstood by fascicles. GM muscle–tendon interactions remain similar between landing surfaces and types. Together, this suggests that surface damping properties primarily affect the VL muscle–tendon unit with a potentially higher risk of injury as a result of increased surface stiffness when performing single-leg landing tasks.