454 results on '"pile-up"'
Search Results
52. Depth-Sensing Hardness Measurements to Probe Hardening Behaviour and Dynamic Strain Ageing Effects of Iron during Tensile Pre-Deformation
- Author
-
Lyubomira Veleva, Peter Hähner, Andrii Dubinko, Tymofii Khvan, Dmitry Terentyev, and Ana Ruiz-Moreno
- Subjects
nanoindentation ,unalloyed iron ,strain hardening ,atomic force microscopy ,pile-up ,dynamic strain ageing ,Chemistry ,QD1-999 - Abstract
This work reports results from quasi-static nanoindentation measurements of iron, in the un-strained state and subjected to 15% tensile pre-straining at room temperature, 125 °C and 300 °C, in order to extract room temperature hardness and elastic modulus as a function of indentation depth. The material is found to exhibit increased disposition for pile-up formation due to the pre-straining, affecting the evaluation of the mechanical properties of the material. Nanoindentation data obtained with and without pre-straining are compared with bulk tensile properties derived from the tensile pre-straining tests at various temperatures. A significant mismatch between the hardness of the material and the tensile test results is observed and attributed to increased pile-up behaviour of the material after pre-straining, as evidenced by atomic force microscopy. The observations can be quantitatively reconciled by an elastic modulus correction applied to the nanoindentation data, and the remaining discrepancies explained by taking into account that strain hardening behaviour and nano-hardness results are closely affected by dynamic strain ageing caused by carbon interstitial impurities, which is clearly manifested at the intermediate temperature of 125 °C.
- Published
- 2020
- Full Text
- View/download PDF
53. Pulse height estimation and pulse shape discrimination in pile-up neutron and gamma ray signals from an organic scintillation detector using multi-task learning.
- Author
-
Kim, Junhyeok, Jeon, Byoungil, Hwang, Jisung, Song, Gyohyeok, Moon, Myungkook, and Cho, Gyuseong
- Subjects
- *
FORM perception , *SCINTILLATION counters , *GAMMA rays , *NUCLEAR counters , *NEUTRONS , *SCINTILLATORS , *DEEP learning , *NEUTRON capture - Abstract
We developed a multi-tasking deep learning model for simultaneous pulse height estimation and pulse shape discrimination for pile-up n/γ signals. Compared with single-tasking models, our model showed better spectral correction performance with higher recall for neutrons. Further, it achieved more stable neutron counting with less signal loss and a lower error rate in the predicted gamma ray spectra. Our model can be applied to a dual radiation scintillation detector to discriminatively reconstruct each radiation spectrum for radioisotope identification and quantitative analysis. • Multi-tasking deep learning model for piled-up n/γ signals. • Simultaneous pulse height estimation and pulse shape discrimination. • Better spectral correction performance with a higher recall of neutrons. • Stable neutron counting with low signal loss and low error in predicted gamma spectra. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
54. Logarithmic corrections to O(a) and O($$a^2$$) effects in lattice QCD with Wilson or Ginsparg–Wilson quarks
- Author
-
Nikolai Husung
- Subjects
Physics and Astronomy (miscellaneous) ,High Energy Physics::Lattice ,quenching ,FOS: Physical sciences ,0 [higher-order] ,Lattice QCD ,mass: twist ,Scaling ,nonlinear [sigma model] ,anomalous dimension ,quark ,High Energy Physics - Lattice ,twist [mass] ,quantum chromodynamics ,ddc:530 ,Engineering (miscellaneous) ,higher-order: 0 ,High Energy Physics - Lattice (hep-lat) ,lattice field theory ,O(3) ,Ginsparg-Wilson relation ,pile-up ,sigma model: nonlinear ,spectral ,Effective theory - Abstract
The European physical journal / C 83(2), 142 (2023). doi:10.1140/epjc/s10052-023-11258-8, We derive the asymptotic lattice spacing dependence $a^n[2b_0\bar{g}^2(1/a)]^{\hat{\Gamma }_i}$ relevant for spectral quantities of lattice QCD, when using Wilson, $\textrm{O}(a)$ improved Wilson or Ginsparg–Wilson quarks. We give some examples for the spectra encountered for $\hat{\Gamma }_i$ including the partially quenched case, mixed actions and using two different discretisations for dynamical quarks. This also includes maximally twisted mass QCD relying on automatic $\textrm{O}(a)$ improvement. At $\textrm{O}(a^2)$, all cases considered have $\min _i\hat{\Gamma }_i > rsim -0.3$ if $N_{\textrm{f}}\le 4$, which ensures that the leading order lattice artifacts are not severely logarithmically enhanced in contrast to the O(3) non-linear sigma model (Balog et al. in Nucl Phys B 824:563–615, 2010; Balog et al. in Phys Lett B 676:188–192, 2009). However, we find a very dense spectrum of these leading powers, which may result in major pile-ups and cancellations. We present in detail the computational strategy employed to obtain the 1-loop anomalous dimensions already used in Husung et al. (Phys Lett B 829:137069, 2022)., Published by Springer, Heidelberg
- Published
- 2023
55. Search for central exclusive production of top quark pairs with the CMS and TOTEM experiments
- Author
-
Ribeiro Lopes, Beatriz, CMS Collaboration, and TOTEM Collaboration
- Subjects
p p: scattering ,data analysis method ,FOS: Physical sciences ,TOTEM ,pair production [top] ,channel cross section: upper limit ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,exclusive production [top] ,spectrometer [p] ,scattering [p p] ,ddc:530 ,Detectors and Experimental Techniques ,p: spectrometer ,CMS ,background ,upper limit [channel cross section] ,top: exclusive production ,CERN LHC Coll ,pile-up ,colliding beams [p p] ,top: pair production ,p p: colliding beams ,Particle Physics - Experiment ,experimental results - Abstract
41st International Conference on High Energy Physics, ICHEP2022, Bologna, Italy, 6 Jul 2022 - 13 Jul 2022; Proceedings of Science / International School for Advanced Studies (ICHEP2022), 961 (2022). doi:10.22323/1.414.0961, A search for central exclusive production of top quark pairs ($\mathrm{t}\bar{\mathrm{t}}$) is presented using collision data collected by CMS and the CMS-TOTEM Precision Proton Spectrometer in 2017. A data-driven method to estimate the background from coincidences of inclusive events and pileup protons is described, as well as the development of a Boosted Decision Tree classifier to separate the exclusive $\mathrm{t}\bar{\mathrm{t}}$ signal from the inclusive $\mathrm{t}\bar{\mathrm{t}}$ background. The first-ever upper limits on the cross section of exclusive $\mathrm{t}\bar{\mathrm{t}}$ are shown., Published by SISSA, Trieste
- Published
- 2023
- Full Text
- View/download PDF
56. Enhanced light signal as a powerful method to mitigate random coincidence background in double beta decay search with Mo-containing scintillating bolometers
- Author
-
Armatol, A, Bandac, I, Bergé, L, Calvo-Mozota, J.M, Carniti, P, Chapellier, M, Dixon, T, Dumoulin, L, Giuliani, A, Gras, Ph, Ferri, F, Imbert, L, Khalife, H, Loaiza, P, de Marcillac, P, Marnieros, S, Marrache-Kikuchi, C.A, Nones, C, Olivieri, E, de Solórzano, A. Ortiz, Pessina, G, Poda, D.V, Redon, Th, Scarpaci, J.A, Velázquez, M, Zolotarova, A, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
bolometer ,background ,pile-up ,efficiency ,shape analysis ,double-beta decay ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,time resolution ,scintillation counter ,performance ,crystal - Abstract
International audience; Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of $^{100}$Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li$_2$MoO$_4$ crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov-Trofimov-Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: a) an experimental work performed with a Li$_2$MoO$_4$ scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index $\sim$$10^{-4}$ counts/keV/kg/year with 280~g Li$_2$MoO$_4$ ($^{100}$Mo enriched) bolometers at 3034 keV, the Q-value of the double-beta decay, and target the goal of a next generation experiment like CUPID.
- Published
- 2023
57. Solar Wind Protons in the Diamagnetic Cavity at Comet 67P/Churyumov-Gerasimenko
- Author
-
Charlotte Goetz, Lucie Scharré, Cyril Simon Wedlund, Anja Moeslinger, Hans Nilsson, Elias Odelstad, Matthew G. G. T. Taylor, and Martin Volwerk
- Subjects
Fusion, plasma och rymdfysik ,Geophysics ,67p ,region ,Space and Planetary Science ,pile-up ,evolution ,ion flow ,rpc ,probe ,environment ,Fusion, Plasma and Space Physics ,plasma - Abstract
The plasma environment at a comet can be divided into different regions with distinct plasma characteristics. Two such regions are the solar wind ion cavity, which refers to the part of the outer coma that does not contain any solar wind ions anymore; and the diamagnetic cavity, which is the region of unmagnetized plasma in the innermost coma. From theory and previous observations, it was thought that under usual circumstances no solar wind ion should be observable near or inside of the diamagnetic cavity. For the first time, we report on five observations that show that protons near solar wind energies can also be found inside the diamagnetic cavity. We characterize these proton signatures, where and when they occur, and discuss possible mechanisms that could lead to protons penetrating the inner coma and traversing the diamagnetic cavity boundary. By understanding these observations, we hope to better understand the interaction region of the comet with the solar wind under nonstandard conditions. The protons detected inside the diamagnetic cavity have directions and energies consistent with protons of solar wind origin. The five events occur only at intermediate gas production rates and low cometocentric distances. Charge transfer reactions, high solar wind dynamic pressure and a neutral gas outburst can be ruled out as causes. We suggest that the anomalous appearance of protons in the diamagnetic cavity is due to a specific solar wind configuration where the solar wind velocity is parallel to the interplanetary magnetic field, thus inhibiting mass-loading and deflection.
- Published
- 2023
58. The ATLAS Experiment at the CERN Large Hadron Collider: A Description of the Detector Configuration for Run 3
- Author
-
Aad, Georges, Abbott, Braden Keim, Abbott, Dale, Abdallah, Jalal, Abeling, Kira, Abidi, Haider, Aboulhorma, Asmaa, Abovyan, Sergey, Abramowicz, Halina, Abreu, Henso, Abulaiti, Yiming, Abusleme, Angel, Acharya, Bobby Samir, Adam Bourdarios, Claire, Adamczyk, Leszek, Adamek, Lukas, Addepalli, Sagar, Adelman, Jahred, Adersberger, Michael, Adiguzel, Aytul, Adorni Braccesi Chiassi, Sofia, Adye, Tim, Affolder, Tony, Afik, Yoav, Agaras, Merve Nazlim, Agarwala, Jinky, Aggarwal, Anamika, Agheorghiesei, Catalin, Aguilar Saavedra, Juan Antonio, Ahmad, Ammara, Ahmadov, Faig, Ahmed, Waleed Syed, Ahuja, Sudha, Ai, Xiaocong, Aielli, Giulio, Ait Tamlihat, Malak, Aitbenchikh, Brahim, Aizenberg, Iakov, Akbiyik, Melike, Akesson, Torsten, Akhperjanyan, Gevorg, Akimov, Andrei, Al Khoury, Konie, Alberghi, Gian Luigi, Albert, Justin, Albicocco, Pietro, Alderweireldt, Sara, Aleksa, Martin, Alexandrov, Igor, Alexa, Calin, Alexopoulos, Theodoros, Alfonsi, Alice, Alfonsi, Fabrizio, Alhroob, Muhammad, Ali, Babar, Ali, Shahzad, Aliev, Malik, Alimonti, Gianluca, Alkakhi, Wael, Allaire, Corentin, Allard, Jérôme, Allbrooke, Benedict, Allendes Flores, Cristian Andres, Allport, Philip Patrick, Aloisio, Alberto, Alonso, Francisco, Alpigiani, Cristiano, Alvarez Estevez, Manuel, Alvarez Gonzalez, Barbara, Alviggi, Mariagrazia, Aly, Mohamed, Do Amaral Coutinho, Yara, Ambler, Alessandro, Amelung, Christoph, Amerl, Maximilian, Ames, Christoph, Amidei, Dante, Amor dos Santos, Susana Patricia, Amos, Kieran Robert, Ananiev, Viktor, Anastopoulos, Christos, Andari, Nansi, Andeen, Timothy Robert, Anders, John Kenneth, Andrean, Stefio Yosse, Andreazza, Attilio, Anelli, Christopher Ryan, Angelidakis, Stylianos, Angerami, Aaron, Anisenkov, Alexey, Annovi, Alberto, Antel, Claire, Anthony, Matthew Thomas, Antipov, Egor, Antonelli, Mario, Antonescu, Mihai, Antrim, Daniel Joseph, Anulli, Fabio, Aoki, Masato, Aoki, Takumi, Aparisi Pozo, Javier Alberto, Aparo, Marco, Aperio Bella, Ludovica, Appelt, Christian, Aranzabal Barrio, Nordin, Araujo Ferraz, Victor, Arcangeletti, Chiara, Arce, Ayana Tamu, Arena, Eloisa, Arguin, Jean-Francois, Argyris, Anastasios, Argyropoulos, Spyros, Arling, Jan-Hendrik, Armbruster, Aaron James, Armijo, Charles Edward, Arnaez, Olivier, Arnold, Hannah, Arrubarrena Tame, Zulit Paola, Artoni, Giacomo, Asada, Haruka, Asai, Kanae, Asai, Shoji, Asbah, Nedaa Alexandra, Assahsah, Jihad, Assamagan, Ketevi Adikle, Astalos, Robert, Atkin, Ryan Justin, Atkinson, Markus Julian, Atlay, Naim Bora, Atmani, Hicham, Atmasiddha, Prachi, Aubernon, Erwann, Augsten, Kamil, Aune, Aune, Auricchio, Silvia, Auriol, Adrien, Aust, Florian, Austrup, Volker Andreas, Avner, Gal, Avolio, Giuseppe, Avoni, Giulio, Axen, David, Axiotis, Konstantinos, Aydiner, Pelin, Ayoub, Mohamad Kassem, Azaryan, Tatiana, Azuelos, Georges, Babal, Dominik, Bachacou, Henri, Bachas, Konstantinos, Bachiu, Alexander, Backman, Karl Filip, Badea, Anthony, Bagnaia, Paolo, Bahmani, Marzieh, Bailey, Adam, Bailey, Virginia, Baines, John, Bakalis, Christos, Baker, Keith, Bakker, Pepijn Johannes, Bakos, Evelin, Bakshi Gupta, Debottam, Balaji, Shyam, Balasubramanian, Rahul, Balbi, Gabriele, Baldin, Evgenii, Balek, Petr, Ball, Robert, Ballabene, Eric, Ballansat, Jacques, Balli, Fabrice, Baltes, Lisa Marie, Balunas, William Keaton, Balz, Johannes, Ban, Jaroslav, Banas, Elzbieta, Bandieramonte, Marilena, Bandyopadhyay, Anjishnu, Bansal, Shubham, Barak, Liron, Barberio, Elisabetta, Barberis, Dario, Barbero, Marlon Benoit, Barbier, Gerard, Barbour, Gregory, Bardo, Laetitia, Barends, Kevin Nicholas, Barfusser, Anja, Barillari, Teresa, Barisits, Martin, Barklow, Tim, Barnett, Michael, Baron, Petr, Baron, Diego, Baroncelli, Toni, Barone, Gaetano, Barr, Alan, Barranco Navarro, Laura, Barreiro Alonso, Fernando, Barreiro Guimaraes da Costa, Joao, Barron, Uriel, Barros, Maura, Barsov, Sergey, Bartels, Falk, Bartoldus, Rainer, Barton, Adam Edward, Bartos, Pavol, Basalaev, Artem, Basan, Alexander, Baselga Bacardit, Marta, Bashta, Inna, Bassalat, Ahmed, Basso, Matthew Joseph, Basson, Candice Ruth, Bates, Richard, Batlamous, Souad, Batley, Richard, Batool, Binish, Battaglia, Marco, Battulga, Daariimaa, Bauce, Matteo, Bauer, Patrick, Bayirli, Arif, Beacham, James, Beau, Tristan, Belhesan, Fredy, Beltramelli, Beltramelli, Beauchamp, Blake Christopher, Beauchemin, Pierre-Hugues, Beccherle, Roberto, Becherer, Fabian, Bechtle, Philip, Beck, Hans Peter, Becker, Kathrin, Beddall, Andrew, Bednyakov, Vadim, Bee, Chris, Beemster, Lars, Beermann, Thomas, Begalli, Marcia, Begel, Michael, Behera, Arabinda, Behr, Janna Katharina, Beirao da Cruz E Silva, Cristovao, Beirer, Joshua Falco, Beisiegel, Florian, Belanger-Champagne, Camille, Belfkir, Mohamed, Bella, Gideon, Bellachia, Fatih, Bellagamba, Lorenzo, Bellerive, Alain, Bellos, Panagiotis, Beloborodov, Konstantin, Belotskiy, Konstantin, Belyaev, Nikita, Raviv Moshe, Meny, Benchekroun, Driss, Bendebba, Fatima, Bendotti, Jerome, Benhammou, Yan, Benjamin, Doug, Benoit, Mathieu, Benoit, Theophile Arthur, Bensinger, Jim, Bentvelsen, Stan, Beresford, Lydia Audrey, Beretta, Matteo Mario, Bergeaas Kuutmann, Elin, Berger, Nicolas, Bergmann, Benedikt Ludwig, Beringer, Juerg, Berlendis, Simon, Bernardi, Gregorio, Bernius, Catrin, Bernlochner, Florian Urs, Bernon, Florent, Berry, Tracey, Berta, Peter, Berthold, Anne-Sophie, Bertram, Iain, Bervas, Hervé, Besin, Dominique, Bessudo, Ilan, Bethke, Siegfried, Betti, Alessandra, Bevan, Adrian, Bey, Bey, Bhamjee, Muaaz, Bhatta, Somadutta, Bhattacharya, Deb Sankar, Bhattarai, Prajita, Bhopatkar, Vallary Shashikant, Bi, Ran, Bianchi, Riccardo Maria, Bianga, Yves, Biaut, Mathieu, Biebel, Otmar, Bielski, Rafal, Biglietti, Michela, Billoud, Thomas, Bindi, Marcello, Bingul, Ahmet, Bini, Cesare, Biondini, Alessandro, Bira, Calin, Birch-Sykes, Callum Jacob, Bird, Gareth Adam, Birman, Mattias, Birney, Paul, Biros, Marek, Bisanz, Tobias, Bisceglie, Emanuele, Biswas, Diptaparna, Bita, Daniel, Bitadze, Alexander, Bjoerke, Kristian, Blaszczyk, Tomasz Piotr, Bloch, Ingo, Blocker, Craig, Blue, Andrew James, Blumenschein, Ulla, Blumenthal, Julian, Bobbink, Gerjan, Bobrovnikov, Viktor, Boehler, Michael, Bohm, Burkhard, Bogavac, Danijela, Bogdanchikov, Alexander, Bohm, Christian, Boisvert, Veronique, Bokan, Petar, Bold, Tomasz, Boline, Daniel Dooley, Bomben, Marco, Bona, Marcella, Bonini, Filiberto, Boonekamp, Maarten, Booth, Callum Dale, Borbely, Albert Gyorgy, Borecka-Bielska, Hanna Maria, Borgna, Lucas Santiago, Borissov, Guennadi, Bortfeldt, Jona, Bortoletto, Daniela, Bortolin, Claudio, Boscherini, Davide, Fernandez-Bosman, Martine, Bossio, Jonathan, Botte, James, Bouaouda, Khalil, Bouaziz, Saïd, Bouchhar, Naseem, Boudreau, Joseph, Bouedo, Thierry, Bouhova-Thacker, Eva, Boumediene, Djamel Eddine, Bouquet, Romain, Boveia, Antonio, Boyd, Jamie, Boye, Diallo, Boyko, Igor, Braam, Nick, Bracinik, Juraj, Braga Lisboa, Pedro Henrique, Brahimi, Nihal, Brandt, Gerhard Immanuel, Brandt, Oleg, Braren, Frued Erik, Brau, Benjamin Paul, Brau, Jim, Brawn, Ian, Brendlinger, Kurt, Schimmel Brener, Roy, Brenner, Lydia, Brenner, Richard, Bressler, Shikma, Breugnon, Patrick, Britton, David, Britzger, Daniel Andreas, Brock, Ian, Brooijmans, Gustaaf, Brooks, William King, Brost, Elizabeth, Brown, Leesa Marea, Bruce, Laura Elaine, Bruckler, Tim Lukas, Bruckman de Renstrom, Pawel, Bruers, Ben, Bruncko, Dusan, Bruni, Alessia, Bruni, Graziano, Brunner, Kathrin Michaela, Bruschi, Marco, Bruscino, Nello, Buanes, Trygve, Buat, Quentin, Buchholz, Peter, Buckley, Andy, Buda, Stelian, Budagov, Ioulian, Bugge, Magnar Kopangen, Bulekov, Oleg, Bullard, Brendon, Burdin, Sergey, Burgard, Carsten, Burger, Angela Maria, Burghgrave, Blake Oliver, Burr, Jon, Burton, Charles, Burzynski, Jackson Carl, Busch, Elena Laura, Buescher, Volker, Bussey, Peter John, Butler, John Mark, Buttar, Craig Macleod, Butterworth, Jonathan, Buttinger, Will, Buxo Vazquez, Carlos Josue, Buzykaev, Alexey, Cabras, Grazia, Cabrera Urban, Susana, Cadoux, Frank Raphael, Caforio, Davide, Cai, Huacheng, Cai, Yuchen, Cairo, Valentina, Cakir, Orhan, Calabro, Domenico, Calace, Noemi, Calafiura, Paolo, Calderini, Giovanni, Calfayan, Philippe, Callea, Giuseppe, Caloba, Luiz, Calvet, David, Calvet, Samuel, Calvet, Thomas Philippe, Calvetti, Milene, Camacho Toro, Reina Coromoto, Camarda, Stefano, Camarero Munoz, Daniel, Camarri, Paolo, Camerlingo, Maria Teresa, Cameron, David, Camincher, Clement, Campanelli, Mario, Camplani, Alessandra, Canale, Vincenzo, Canesse, Auriane, Bret Cano, Marc, Cantero Garcia, Josu, Cao, Nina Yuan Yuan, Cao, Yumeng, Cap, Sebastien, Capitolo, Emilio, Capocasa, Francesca, Capradossi, Giulio, Capua, Marcella, Cara, Gael Benjamin, Carbone, Antonio, Cardarelli, Roberto, Cardenas, Juan Carlos, Cardillo, Fabio, Cardot, Charles Andre, Carli, Tancredi, Carlino, Giampaolo, Carlotta, Mathilde Doriane, Carlotto, Juan Ignacio, Carlson, Ben, Carlson, Evan Michael, Carlson, Katelyn Joyce, Carminati, Leonardo, Carnesale, Maria, Caron, Sascha, Carquin Lopez, Edson, Carra, Sonia, Carratta, Giuseppe, Carrio Argos, Fernando, Carter, Joseph, Carter, Thomas Michael, Casado Lechuga, Pilar, Caserio, Alessandro, Casha, Albert Francis, Cassese, Ciro, Castiglia, Emma Grace, Castillo, Florencia Luciana, Castillo Garcia, Lucia, Castillo Gimenez, Victoria, Castro, Nuno, Catinaccio, Andrea, Catmore, James, Cavaliere, Viviana, Cavalli, Noemi, Cavasinni, Vincenzo, Celebi, Emre, Celli, Federico, Centonze, Martino Salomone, Ceradini, Filippo, Cerny, Karel, Santiago Cerqueira, Augusto, Cerri, Alex, Cerrito, Lucio, Cerutti, Fabio, Cervelli, Alberto, Cetin, Serkant, Chadi, Zakaria, Chakraborty, Dhiman, Chala, Mikael, Chaleil, Thierry, Chan, Jay, Chan, Stephen Kam-Wah, Chan, Wai Yuen, Chapman, John Derek, Chapman, Jay, Chargeishvili, Bakar, Charlton, Dave, Charman, Thomas Paul, Chatterjee, Meghranjana, Chau, Chav Chhiv, Chekanov, Sergei, Chekulaev, Sergey, Shelkov, G, Chen, Andy, Chen, Boping, Chen, Charlie, Chen, Huirun, Chen, Hucheng, Chen, Jing, Chen, Jiayi, Chen, Kai, Chen, Olay, Chen, Shion, Chen, Shenjian, Chen, Xiang, Chen, Xin, Chen, Ye, Cheng, Alkaid, Cheng, Hok Chuen Tom, Cheong, Sanha, Cheplakov, Alexander, Cheremushkina, Evgeniya, Cherepanova, Elizaveta, Cherkaoui El Moursli, Rajaa, Cheu, Elliott, Cheung, Kingman, Chevalier, Laurent, Chevillot, Nicolas, Chiarella, Vitaliano, Chiarelli, Giorgio, Chiedde, Nemer, Chiodini, Gabriele, Chisholm, Andrew Stephen, Chitan, Adrian, Chitishvili, Mariam, Chiu, Justin, Chizhov, Mihail, Choi, Kyungeon, Chomont, Arthur, Chou, Yuan-Tang, Chow, Edwin, Chowdhury, Tasnuva, Christopher, Lawrence Davou, Chrul, Anna, Chu, Michael Kwok Lam, Chu, Ming Chung, Chu, Xiaotong, Chudoba, Jiri, Chwastowski, Janusz, Ciapetti, Guido, Ciapetti, Marco, Constable, Miles, Corbaz, Florian, Ciecko, Robert Piotr, Cieri, Davide, Ciesla, Krzysztof, Cindro, Vladimir, Ciocio, Alessandra, Cirotto, Francesco, Citron, Zvi, Citterio, Mauro, Ciubotaru, Dan Andrei, Ciungu, Bianca Monica, Clark, Allan, Clark, Brian Lee, Clark, Philip, Clavijo Columbie, Jose Manuel, Clawson, Savannah, Cleland, Bill, Clemens, Jcc, Clement, Christophe, Clercx, Joshua, Clissa, Luca, Coadou, Yann, Cobal, Marina, Coccaro, Andrea, Barrue, Ricardo, Coelho Lopes de Sa, Rafael, Coelli, Simone, Cohen, Gil, Cohen, Hadar, Coimbra, Artur, Cole, Brian, Coliban, Radu Mihai, Collot, Johann, Conde Muino, Patricia, Connell, Matt, Connell, Simon, Connelly, Ian Allan, Conroy, Eimear Isobel, Conventi, Francesco, Cooke, Harry, Sarkar, Amanda, Cormier, Felix, Corpe, Louie Dartmoor, Corradi, Massimo, Corrigan, Eric Edward, Corriveau, Francois, Corsetti, Sabrina, Cortes Gonzalez, Arely, Costa Mezquita, Maria Jose, Costa de Paiva, Thiago, Costanza, Francesco, Costanzo, Davide, Cote, Benjamin, Cowan, Glen, Cowley, James William, Cranmer, Kyle Stuart, Crepe-Renaudin, Sabine, Crescioli, Francesco, Crespo-Lopez, Olivier, Cristinziani, Markus, Cristoforetti, Marco, Croft, Vincent Alexander, Crosetti, Nanni, Cueto Gomez, Ana Rosario, Cuhadar Donszelmann, Tulay, Cui, Han, Cui, Zhaoyuan, Cunningham, Liam, Curcio, Francesco, Czodrowski, Patrick Karl, Czurylo, Marta, Sousa, Mario Jose, da Fonseca Pinto, Joao Victor, da Via, Cinzia, Dabrowski, Wladyslaw, Dado, Tomas, Daguin, Jerome, Dahbi, Salah-Eddine, Dai, Tiesheng, Dallapiccola, Carlo, Dam, Mogens, d'Amen, Gabriele, d'Amico, Valerio, Damp, Johannes Frederic, Dandoy, Jeff, Daneri, Maria Florencia, Danielsson, Hans, Danielyan, Varuzhan, Danilevich, Evgueni, Danninger, Matthias, Dao, Valerio, Darbo, Nanni, Darmora, Smita, Das, Sruthy Jyothi, d'Auria, Saverio, David, Claire, David, Pierre-Yves, Davidek, Tomas, Davis, Douglas Raymond, Davis, Paul Matthew, Davis-Purcell, Benjamin Richard, Davoine, Loic, Dawson, Ian, De, Kaushik, de Asmundis, Riccardo, de Beurs, Marcus, de Biase, Nicola, de Castro, Stefano, de Cecco, Sandro, de Fazio, Benedetto, de Geronimo, Gianluigi, de Groot, Nicolo, de Jong, Paul, de Jong, Samuel Rudy, de la Torre Perez, Hector, de Maria, Antonio, de Salvo, Alessandro, de Sanctis, Umberto, de Santo, Antonella, de Vivie de Regie, Jean-Baptiste, de Olivaira, Rui, Decock, Gilles, Dedovich, Dmitri, Degens, Jordy, Degrange, Jordan, Deiana, Allison Mccarn, del Corso, Francesca, del Peso, Jose, del Rio, Fer, Delebecque, Pierre, Deliot, Frederic, Delitzsch, Chris Malena, Della Pietra, Massimo, Della Volpe, Domenico, Dell'Acqua, Andrea, Dell'Asta, Lidia, Delmastro, Marco, Delsart, Pierre Antoine, Demers Konezny, Sarah Marie, Demichev, Mikhail, Deng, Binwei, Denisov, Serguei, d'Eramo, Louis, Derendarz, Dominik Karol, Derue, Frederic, Dervan, Paul, Desch, Klaus, Deschamps, Herve, Desforge, Daniel, Dette, Karola, Deutsch, Christopher, Di Bello, Francesco Armando, Di Ciaccio, Anna, Di Ciaccio, Lucia, Di Domenico, Antonio, Di Donato, Camilla, Di Girolamo, Alessandro, Di Gregorio, Giulia, Di Luca, Andrea, Di Micco, Biagio, Di Nardo, Roberto, Di Petrillo, Karri Folan, Di Stante, Luigi, Diaconu, Cristinel, de Almeida Dias, Flavia, Vale, Tiago, Diaz Gutierrez, Marco Aurelio, Diaz Capriles, Federico Guillermo, Didenko, Mariia, Diehl, Edward, Diehl, Leena, Dietsche, Wolfgang Albert, Diez Cornell, Sergio, Diez Pardos, Carmen, Dik, Alexey, Dikic, Nikola, Dima, Katerina, Dimitriadi, Christina, Dimitrievska, Aleksandra, Ding, Wenxiang, Dingfelder, Jochen Christian, Dinkespiler, Bernard, Dinu, Ioan-Mihail, Disset, Gaël, Dittmeier, Sebastian, Dittus, Fido, Djama, Fares, Djobava, Tamar, Djuvsland, Julia Isabell, Dobos, Daniel, Doglioni, Caterina, Dolejsi, Jiri, Dolezal, Zdenek, Donadelli, Marisilvia, Dondero, Paolo, Dong, Binbin, Donini, Julien Noce, d'Onofrio, Adelina, d'Onofrio, Monica, Dopke, Jens, Dorholt, Ole, Doria, Alessandra, Doubek, Martin, Dova, Maria Teresa, Doyle, Tony, Draguet, Maxence, Drechsler, Eric, Dreyer, Etienne, Drivas-Koulouris, Ioannis, Drobac, Alec Swenson, Drozdova, Mariia, Du, Dongshuo, Du, Yanyan, Du Pree, Tristan Arnoldus, Duan, Yanyun, Dubinin, Filipp, Dubovsky, Michal, Duchovni, Ehud, Duckeck, Guenter, Ducu, Otilia Anamaria, Duda, Dominik, Dudarev, Alexey, Dudder, Andreas Christian, d'Uffizi, Daniele, d'Uffizi, Matteo, Duflot, Laurent, Duehrssen-Debling, Michael, Duim, Rowan M, Dulsen, Carsten, Dumitriu, Ana Elena, Dumont Dayot, Nicolas, Dunford, Monica, Dunford, Matthew Gordon, Dungs, Sascha, Dunne, Katherine Elaine, Duperrin, Arnaud, Yildiz, Hatice, Dueren, Michael Johannes, Durglishvili, Archil, Dury, Bryan, Dushkin, Andrey, Dwyer, Brianna, Dyckes, Ian, Dyndal, Mateusz, Dysch, Samuel Dezso, Dziedzic, Bartosz Sebastian, Dziurdzia, Piotr, Earnshaw, Zoe Olivia, Eckerova, Barbora, Eggebrecht, Stephen, Eggleston, Michael Glenn, Purcino de Souza, Edmar Egidio, Ehrke, Lukas, Eigen, Gerald, Einsweiler, Kevin Frank, Ekelof, Tord Johan Carl, Ekman, Per Alexander, El Ghazali, Yassine, El Jarrari, Hassnae, El Moussaouy, Ali, Ellajosyula, Venugopal, Ellert, Mattias, Elles, Sabine, Ellinghaus, Frank, Elliot, Alison, Ellis, Nick, Elmsheuser, Johannes, Elsing, Markus, Emeliyanov, Dmitry, Emerman, Alex, Enari, Yuji, Ene, Irina, Epari, Shalini, Erdmann, Johannes, Ereditato, Antonio, Erland, Paula Agnieszka, Errenst, Martin, Escalier, Marc, Escobar Ibanez, Carlos, Etzion, Erez, Gaspar de Andrade Evans, Guiomar, Evans, Hal, Evans, Meirin Oan, Eyring, Andreas, Ezhilov, Aleksei, Ezzarqtouni, Sanae, Fabbri, Federica, Fabbri, Laura, Facini, Gabriel, Fadeyev, Vitaliy, Fakhrutdinov, Rinat, Falchieri, Davide, Falciano, Speranza, Falda Coelho, Luis, Falke, Peter Johannes, Falke, Saskia, Falou, Aboud, Falsetti, Gregorio, Faltova, Jana, Fan, Yunyun, Fang, Yaquan, Fanourakis, Georgios, Fanti, Marcello, Faraj, Mohammed, Farazpay, Zahra, Farbin, Amir, Farilla, Ada, Farina, Edoardo Maria, Farooque, Trisha, Farrell, Jason, Farrington, Sinead, Fassi, Farida, Fassouliotis, Dimitris, Faszer, Wayne, Faucci Giannelli, Michele, Fausten, Camille, Favareto, Andrea, Fawcett, William James, Fayard, Louis, Febvre, Damien Romaric, Federicova, Pavla, Fedin, Oleg, Fedotov, Gleb, Feickert, Matthew, Feligioni, Lorenzo, Fell, Alix, Fellers, Deion Elgin, Felt, Nathan, Feng, Cunfeng, Feng, Minyu, Feng, Zhuoran, Fenton, Michael James, Fenyuk, Alexandre, Ferencz, Lars, Ferguson, Ruby Alice Molly, Fernandez Luengo, Sergio Ivan, Ferrando, James, Ferrari, Arnaud, Ferrari, Pamela, Ferrari, Roberto, Dias, Ualison, Ferrer Ribas, Esther, Ferrere, Didier, Ferretti, Claudio, Fiedler, Frank, Fielitz, William, Filippov, Yury, Filipcic, Andrej, Filmer, Emily, Filthaut, Frank, Castro Nunes Fiolhais, Miguel, Fiore, Giuseppe, Fiorini, Luca, Fischer, Alexander Peter, Leitgeb, Florian Christoph, Fisher, Wade Cameron, Fitschen, Tobias, Fleck, Ivor, Fleischmann, Philipp, Flick, Tobias, Flierl, Bernhard Matthias, Flores, Carlos, Flores, Lucas Macrorie, Flores, Marvin, Flores Castillo, Luis Roberto, Follega, Francesco Maria, Fomichev, Ivan, Fomin, Nikolai, Fontaine, Michel, Foo, Joel Hengwei, Forland, Blake Christopher, Formenti, Lia, Formica, Andrea, Forti, Alessandra, Fortin, Etienne Marie, Fortman, Anne Winifred, Foti, Maria Giovanna, Fougeron, Denis, Fountas, Leonidas, Fournier, Daniel, Fox, Harald, Fragnaud, Jasmin Corentin, Francavilla, Paolo, Francescato, Simone, Franchellucci, Stefano, Franchini, Matteo, Franchino, Silvia, Francis, David, Franco, Luca, Franconi, Laura, Frank, Norbert, Franklin, Melissa, Fras, Markus, Frattari, Guglielmo, Freddi, Angelo, Freegard, Arran Charles, Freeman, Patrick Moriishi, Spolidoro Freund, Werner, Fritzsche, Nick, Froch, Alexander, Froidevaux, Daniel, Frost, James, Fu, Yao, Fujimoto, Minori, Fullana Torregrosa, Esteban, Furukawa, Marin, Fuster Verdu, Juan, Gabrielli, Alessandro, Gabrielli, Andrea, Gadow, Philipp, Gagliardi, Guido, Gagnon, Louis-Guillaume, Gallardo, Gabriel, Gallas, Elizabeth, Galleguillos Silva, Renato Bruno, Gallop, Bruce Joseph, Galuszka, Szymon Jan, Gamboa Goni, Rodrigo, Gan, Kock Kiam, Ganguly, Sanmay, Gantel, Laurent Mathieu, Gao, Jun, Gao, Wei, Gao, Yanyan, Garay Walls, Francisca, Garcia, Berenice, Garcia, Carmen, Garcia Navarro, Jose Enrique, Garcia-Sciveres, Maurice, Gardner, Robert William, Gareau, Matthew, Garelli, Nicoletta, Garg, Diksha, Garg, Rocky Bala, Gariano, Giuseppe, Garner, Christopher Andrew, Garonne, Vincent, Gasiorowski, Sean Joseph, Do Nascimento Gaspar, Philipp, Gaudiello, Andrea, Gaudio, Gabriella, Gautam, Viveka, Gauzzi, Paolo, Gavrilenko, Igor, Gavriliuk, Alexander, Gay, Colin Warren, Gaycken, Goetz, Gazis, Evangelos, Geanta, Andrei Alexandru, Gebyehu, Mesfin, Gee, Carolyn, Gee, Norman, Geisen, Jannik, Gemme, Claudia, Genest, Marie-Helene, Gentile, Simonetta, George, Matthias Alexander, George, Simon, George, William Frederick, Georgiev, Vjaceslav, Geralis, Theodoros, Gerlach, Lino Oscar, Gessinger-Befurt, Paul, Ghasemi Bostanabad, Meisam, Ghneimat, Mazuza, Ghorbanian, Keanu, Ghosal, Arpan, Ghosh, Aishik, Ghosh, Anindya, Giacobbe, Benedetto, Giagu, Stefano, Giannetti, Paola, Giannini, Antonio, Gibson, Stephen, Giganon, Giganon, Gigliotti, Kade, Gignac, Matthew, Gil, Damian Tomasz, Gilbert, Alexander Kevin, Gilbert, Benjamin Jacob, Gillberg, Dag, Gilles, Geoffrey, Gillwald, Nils, Ginabat, Louis, Gingrich, Doug, Giokaris, Athanasios, Giordani, Mapo, Giraud, Julien, Giraud, Pierre-Francois, Giromini, Paolo, Giugliarelli, Gilberto, Giugni, Danilo, Giuli, Francesco, Gjersdal, Havard Ervik, Gkialas, Ioannis, Gkougkousis, Vagelis, Gkountoumis, Panagiotis, Gladilin, Leonid, Glasman, Claudia, Gledhill, Galen Rhodes, Glisic, Marija, Glitza, Karl-Walter, Glonti, George, Gnesi, Ivan, Go, Yeonju, Goblin, Cyril, Goblirsch-Kolb, Maximilian Emanuel, Gocke, Benedikt, Godin, Dominique, Godiot, Stephanie, Gokturk, Berare, Goldfarb, Steven, Golling, Tobias, Gololo, Mpho Gift Doctor, Golubkov, Dmitry, Golyzniak, Dominik, Gombas, Jason Peter, da Silva Gomes, Agostinho, Gomes, Gabriel, Gomez Delegido, Antonio Jesus, Goncalves Gama, Rafael, Morais Silva Goncalo, Ricardo Jose, Gonella, Giulia, Gonella, Laura, Gong, Datao, Gongadze, Alexi, Gonnella, Francesco, Gonski, Julia Lynne, Gonzalez, Richards, Gonzalez de la Hoz, Santiago, Gonzalez Fernandez, Sergio, Gonzalez Lopez, Ricardo, Gonzalez Renteria, Cesar, Gonzalez Suarez, Rebeca, Gonzalez Sevilla, Sergio, Gonzalvo Rodriguez, Galo Rafael, Goossens, Luc, Gorasia, Nandish Arjan, Gorbounov, Petr, Gorini, Benedetto, Gorini, Edoardo, Gorisek, Andrej, Goshaw, Al, Goessling, Claus, Gostkin, Mikhail, Goswami, Soumyananda, Gottardo, Carlo Alberto, Gotz, Stefanie Andrea, Gouighri, Mohamed, Goumarre, Vincent, Goussiou, Anna, Govender, Nicolin, Goy, Corinne, Grabas, Aude Marie, Grabowska-Bold, Iwona, Graham, Kevin Robert, Gramstad, Eirik, Grancagnolo, Sergio, Grandi, Mario, Grachev, Vadim, Gravelle, Philippe, Gravila, Paul, Gravili, Francesco Giuseppe, Gray, Heather, Grayzman, Israel, Greco, Matteo, Grefe, Christian, Gregor, Ingrid, Grenier, Philippe, Grieco, Chiara, Grillo, Alex, Grimm, Kathryn, Grinstein, Sebastian, Grivaz, Jean-Francois, Grohs, Johannes Philipp, Gross, Eilam, Grosse-Knetter, Joern, Grud, Christopher Ryan, Grummer, Aidan, Grundy, James Cameron, Guan, Liang, Guan, Wen, Gubbels, Chris, Guelfo Gigli, Samuel, Guerrero Rojas, Jesus, Guerrieri, Giovanni, Guescini, Francesco, Guettouche, Nour El Houda, Gugel, Ralf, Guhit, Jem Aizen Mendiola, Guida, Alessandro, Guido, Elisa, Guillard, Jean-Christophe, Guillemin, Thibault, Guilloton, Eva, Guindon, Stefan, Guo, Di, Guo, Fangyi, Guo, Jun, Guo, Linghua, Guo, Yuxiang, Gupta, Ruchi, Gurbuz, Saime, Gurdasani, Simran Sunil, Gustavino, Giuliano, Guth, Manuel, Gutierrez, Phillip, Gutierrez Zagazeta, Luis Felipe, Gutschow, Christian, Guyot, Claude, Gwenlan, Claire, Gwilliam, Carl, Haaland, Even Simonsen, Haas, Andrew, Haas, Stefan Ludwig, Habedank, Martin, Haber, Carl, Habring, Jorg, Hadavand, Haleh, Hadef, Asma, Hadzic, Sejla, Haines, Emil, Haleem, Mahsana, Haley, Joseph, Hall, Jack Joseph, Hallewell, Gregory, Halser, Lea, Hamano, Kenji, Hamdaoui, Hassane, Hamer, Matthias, Hamity, Guillermo Nicolas, Han, Jingyi, Han, Kunlin, Han, Liangliang, Han, Liang, Han, Shuo, Han, Yi Fei, Hanagaki, Kazunori, Hance, Mike, Hangal, Dhanush Anil, Hanif, Hamza, Hank, Michael Donald, Hankache, Robert, Hansen, Jorgen Beck, Hansen, Dines, Hansen, Peter, Hara, Kazuhiko, Harada, Daigo, Harenberg, Torsten, Harkusha, Siarhei, Harris, Ynyr, Harrison, Natalie, Harrison, Paul Fraser, Hartman, Nicole Michelle, Hartmann, Nikolai, Hartung, Peter, Hasegawa, Yoji, Hashemi, Kevan, Hasib, Ahmed, Hasley, Lloyd Alan, Haubold, Thomas, Haug, Sigve, Hauser, Reiner, Havranek, Miroslav, Hawkes, Chris, Hawkings, Richard, Hayashi, Yuichiro, Hayashida, Shota, Hayden, Daniel, Hayes, Christopher Robyn, Hayes, Robin, Hays, Chris, Hays, Jonathan, Hayward, Helen, He, Fudong, He, Yunjian, He, Yajun, Heath, Matthew Peter, Hedberg, Vincent, Heggelund, Andreas Lokken, Hehir, Natasha, Heidegger, Constantin, Heidegger, Kim Katrin, Heidorn, William Dale, Heilman, Jesse, Heim, Sarah, Heim, Timon, Heinlein, James Geddy, Heinrich, Jochen Jens, Heinrich, Lukas Alexander, Hejbal, Jiri, Helary, Louis, Held, Alexander, Hellesund, Simen, Helling, Cole Michael, Hellman, Sten, Helsens, Clement, Hemperek, Tomasz, Henderson, Robert, Henkelmann, Lars, Henriques Correia, Ana Maria, Hentges, Rainer, Herde, Hannah Elizabeth, Hernandez Jimenez, Yesenia, Herrmann, Lena Maria, Herrmann, Maximilian Georg, Herrmann, Tim, Herten, Gregor, Hertenberger, Ralf, Hervas, Luis, Hessey, Nigel, Hibi, Hiroaki, Higon-Rodriguez, Emilio, Hillier, Stephen, Hils, Maximilian, Hinchliffe, Ian, Hinterkeuser, Florian, Hirose, Minoru, Hirose, Shigeki, Hirschbuehl, Dominic, Hitchings, Thomas Glyn, Hiti, Bojan, Hobbs, John David, Hobincu, Radu, Tal Hod, Noam, Hodgkinson, Mark, Hodkinson, Benjamin Haslum, Hoecker, Andreas, Hoeferkamp, Martin, Hofer, Judith, Hoffmann, August Edward, Hoffmann, Dirk, Hohn, David, Hohov, Dmytro, Holm, Tanja, Holzbock, Michael, Hommels, Bart, Honan, Benjamin Paul, Hong, Jiangliu, Hong, Tae Min, Honig, Jan Cedric, Honle, Andreas, Hooberman, Benjamin Henry, Hopkins, Walter, Horii, Yasuyuki, Horn, Philipp, Hou, Suen, Howard, Alissa Shirley-Ann, Howarth, James William, Hoya, Joaquin, Hrabovsky, Miroslav, Hrynevich, Aliaksei, Hrynova, Tetiana, Hsu, Pai-Hsien, Hsu, Shih-Chieh, Hu, Kun, Hu, Qipeng, Hu, Xueye, Hu, Yifan, Huang, Danping, Huang, Fred, Huang, Shuhui, Huang, Xiaozhong, Huang, Yicong, Huang, Yanping, Huang, Zuchen, Hubacek, Zdenek, Hubner, Michael, Huegging, Fabian, Huffman, Todd Brian, Huhtinen, Mika, Huiberts, Simon Kristian, Hulek, Wojciech Krzysztof, Hulsken, Raphael Alain, Huseynov, Nazim, Huston, Joey, Huth, John, Hyneman, Rachel Jordan, Hyrych, Sofiia, Iacobucci, Giuseppe, Iakovidis, George, Iakovidis, Kostas, Iankovskaia, Vera, Yankovsky, Boris, Ibragimov, Iskander, Iconomidou-Fayard, Lydia, Iengo, Paolo, Iguchi, Ryunosuke, Iizawa, Tomoya, Ikegami, Yoichi, Ikeno, Masahiro, Ilg, Armin, Ilic, Nikolina, Ilyashenko, Igor, Imam, Hajar, Ingebretsen Carlson, Tom, Innocente, Angelo, Introzzi, Gianluca, Iodice, Mauro, Ippolito, Valerio, Ishino, Masaya, Islam, Wasikul, Issever, Cigdem, Issinski, Sergey, Istin, Serhat, Ito, Hiroki, Iturbe, Julia, Iuppa, Roberto, Iurikovskii, Oleg, Ivanovici, Mihail, Ivina, Anna, Izen, Joseph Michael, Izzo, Vincenzo, Jacka, Petr, Jackson, Paul, Jacobs, Ruth Magdalena, Jaeger, Benjamin Paul, Jagfeld, Christoph, Jain, Prasham, Jakel, Gunnar, Jakobs, Karl, Jakoubek, Tomas, Jamieson, Jonathan, Janas, Krzysztof, Janssen, Jens, Jarlskog, Goran, Jaspan, Adam Elliott, Javello, Sandrine, Javurkova, Martina, Jeanneau, Fabien, Jeanty, Laura, Jejelava, Juansher, Jenni, Peter, Mertens, Jennifer, Jessiman, Callan, Jezequel, Stephane, Jia, Chen, Jia, Jiangyong, Jia, Xiaohe, Jia, Xuewei, Jia, Zihang, Jiang, Yi, Jiggins, Stephen, Jimenez Pena, Javier, Jin, Ge, Jin, Shan, Jinaru, Adam, Jinnouchi, Osamu, Johansson, Per Daniel Conny, Johns, Kenneth, Johnson, Jacob Wayne, Jones, Dominic, Jones, Eleanor, Jones, Paul, Jones, Roger, Jones, Tim, Joos, Markus, Joseph, John Matthew, Joshi, Roshan, Jourde, Didier, Jovicevic, Jelena, Ju, Xiangyang, Junggeburth, Johannes, Junkermann, Thomas, Juste Rozas, Aurelio, Kabana, Sonia, Kaczmarska, Anna, Kado, Marumi, Kagan, Harris, Kagan, Michael, Kahn, Alan Mathew, Kahn, Abraham, Kahra, Christian, Kaji, Toshiaki, Kajomovitz Must, Enrique, Kakati, Nilotpal, Kalderon, Will, Kallitsopoulou, Alexandra, Kamenshchikov, Andrey, Kanayama, Shuhei, Kanellos, Nikolaos, Kang, Nathan Jihoon, Kapusciak, Kacper Kamil, Kar, Deepak, Karava, Kla, Kareem, Mohammad, Karentzos, Efstathios, Karkanias, Ioannis, Karpov, Sergey, Karpova, Zoya, Kartvelishvili, Vato, Karyukhin, Andrey, Kasimi, Eirini, Kato, Chikuma, Katunin, Serge, Katzy, Judith, Kaur, Sandeep, Kawade, Kentaro, Kawagoe, Kiyotomo, Kawamoto, Tatsuo, Kawamura, Gen, Kay, Ellis, Kaya, Colette, Kazakos, Stergios, Kazanin, Vassili, Kazarov, Andrei, Ke, Yan, Keaveney, James Michael, Keberri, Mariam, Keeler, Richard, Kehris, Gustavs, Keller, John Stakely, Kelly, Aidan Sean, Kelsey, Daniel Christopher, Kempster, Jacob Julian, Kennedy, Kiley Elizabeth, Kennedy, Philip David, Kepka, Oldrich, Kerridge, Benjamin Philip, Kersten, Susanne, Kersevan, Borut Paul, Keshri, Sumit, Keszeghova, Lucia, Ketabchi, Sana, Khandoga, Mykola, Khanov, Alexander, Kharlamov, Alexey, Kharlamova, Tatyana, Khoda, Elham E, Khoo, Teng Jian, Khoriauli, Gia, Khubua, Djemal, Khwaira, Yahya A.R, Kiehn, Moritz, Kilgallon, Aaron Joseph, Kim, Dongwon, Kim, Eunchong, Kim, Young-Kee, Kimura, Naoki, Kind, Peter, Kinget, Peter, Kirchhoff, Andreas, Kirchmeier, David, Kirfel, Christian, Kirk, Julie, Kiryunin, Andrei, Kishimoto, Tomoe, Kiskiras, Ioannis, Kisliuk, Dylan Perry, Kitsaki, Chara, Kivernyk, Oleh, Klapdor-Kleingrothaus, Thorwald, Klassen, Martin, Klein, Christoph Thomas, Klein, Lucas, Klein, Matthew Henry, Klein, Max, Klein, Samuel Byrne, Klein, Uta, Klemm, Peter Rudolf, Klimek, Pawel Jan, Klimentov, Alexei, Klimpel, Fabian, Klioutchnikova, Tatiana, Klitzner, Felix Fidelio, Kluit, Peter, Kluth, Stefan, Kneringer, Emmerich, Knight, Timothy Michael, Knoops, Edith, Knue, Andrea Helen, Kobayashi, Dai, Kobayashi, Ren, Kocian, Martin, Kodys, Peter, Kock, Daniela, Konig, Philipp, Koffas, Thomas, Kolb, Mathis, Kolbasin, Andrey, Koletsou, Iro, Kolitsi, Foteini, Komarek, Tomas, Kompogiannis, Spyridon, Koeneke, Karsten, Kong, Albert, Kongsore, Marius, Kono, Takanori, Konstantinidis, Nikolaos, Konya, Balazs, Kopeliansky, Revital, Koperny, Stefan Zenon, Korcyl, Krzysztof Marian, Kordas, Kostas, Koren, Guy, Korn, Andreas, Korn, Steffen, Korolkov, Ilya, Korotkova, Natalia, Kortman, Bryan, Kortner, Oliver, Kortner, Sandra, Kostecka, Will, Kostyukhin, Vadim, Kotsokechagia, Anastasia, Kotwal, Ashutosh, Koulouris, Aimilianos, Kourkoumeli-Charalampidi, Athina, Kourkoumelis, Christine, Kourlitis, Vangelis, Koutelieris, Georgios, Koutsosimos, Theodoros, Kouyoumdjian Argueso, David Felipe, Kovalenko, Serguei, Kovanda, Ondrej, Koveshnikov, Ilya, Kowalewski, Bob, Kozanecki, Witold, Kozhin, Anatoli, Kramarenko, Viktor, Kramberger, Gregor, Kramer, Peter, Krasny, Mieczyslaw Witold, Krasznahorkay, Attila, Kremer, Jakub, Kresse, Tom, Kretzschmar, Jan, Kreul, Ken Matthias, Krieger, Nina, Krieger, Peter, Krishnamurthy, Samyukta, Krivos, Martin, Krizka, Karol, Kroeninger, Kevin Alexander, Kroha, Hubert, Kroll, Jiri, Kroll, Ira Joseph, Krowpman, Kyle Stuart, Kruchonak, Uladzimir, Krueger, Hans, Krumnack, Nils Erik, Kruse, Mark, Krzysiak, Janina Anna, Kubik, Zdenek, Kuchinskaia, Olesia, Kuday, Sinan, Kuchler, Daniela, Kuechler, Jan, Kuehn, Susanne, Kusters, Roman, Kuger, Fabian, Kuhl, Thorsten, Kukhtin, Victor, Koultchitski, Yuri, Kuleshov, Serguei, Kulinska, Anna Malgorzata, Kulka, Peter, Kumar, Mukesh, Kumari, Neelam, Kunkler, Brandon Michael, Kupco, Alexander, Kupfer, Tobias, Kupich, Andrey, Kuppambatti, Jayanth, Kuprash, Oleg, Kurashige, Hisaya, Kurchaninov, Leonid, Kurochkin, Yurii, Kurova, Anastasia, Kuze, Masahiro, Kvam, Audrey Katherine, Kvita, Jiri, Kwan, Tony, Kwok, King Wai, Kyriacou, Nicholas, Kyriakis-Bitzaros, Efstathios, Laatu, Lauri Antti Olavi, Lacasta Llacer, Carlos, Lacava, Francesco, Lacker, Heiko Markus, Lacour, Didier, Lad, Nisha, Ladygin, Evgueni, Laforge, Bertrand, Lafrasse, Sylvain, Lagouri, Theodota, Lai, Stan, Lakomiec, Inga Katarzyna, Lalloue, Nathan, Lam, Hon Piu, Lambert, Joseph Earl, Lammers, Sabine Wedam, Lampardaki, Eleni, Lampl, Walter, Lampoudis, Christos, Lancaster, Alec, Lancon, Eric Christian, Landgraf, Ulrich, Landon, Murrough, Landraud, Cedric, Lang, Valerie, Langenberg, Robert Johannes, Langstaff, Roy, Lankford, Andrew James, Lanni, Francesco, Lantzsch, Kerstin, Lanza, Agostino, Lapertosa, Alessandro, Laporte, Didier, Laporte, Jean-Francois, Lari, Tommaso, Lasagni Manghi, Federico, Lassnig, Mario, Latonova, Vera, Latorre, Stefano, Lau, Tak Shun, Laudrain, Antoine, Laugier, Daniele, Laurier, Alexandre, Lawlor, Sean Dean, Lawrence, Zak, Lax, Ignazio, Lazzaroni, Massimo, Le, Brian, Le Goff, Fabrice, Le, Xiao, Le Bourlout, Pascal, Leban, Blaz, Lebedev, Alexandre, Leblanc, Matt, Leboeuf, Didier, Leboube, Christian Georges, Le Compte, Tom, Ledroit, Fabienne, Lee, Ava Chloe Audrey, Lee, Claire, Lee, Graham Richard, Lee, Lawrence, Lee, Shih-Chang, Lee, Suhyun, Lee, Ting Fung, Leeuw, Lerothodi Leonard, Lefebvre, Benoit, Lefebvre, Helena, Lefebvre, Michel, Lefevre, Marc, Leggett, Charles, Lehmann, Konstantin, Lehmann Miotto, Giovanna, Leigh, Matthew, Leight, William Axel, Leis, Ulrich, Leisos, Antonios, Lisboa Leite, Marco, Leitgeb, Clara Elisabeth, Leitner, Rupert, Lenckowski, Mark, Leney, Katharine, Lenz, Tatjana, Leone, Sandra, Leonidopoulos, Christos, Leopold, Alexander, Lepota, Thabo James, Leroy, Claude, Les, Robert, Lester, Christopher, Leung, Hin Kwong, Levchenko, Mikhail, Leveque, Jessica, Levin, Dan, Levinson, Lorne, Lewicki, Maciej Piotr, Lewis, Daniel, Li, Ang, Li, Bing, Li, Chihao, Li, Changyu, Li, Changqiao, Li, Feng, Li, Heng, Li, Han, Li, Huanguo, Li, Haifeng, Li, Jing, Li, Ke, Li, Liang, Li, Mengran, Li, Quanyin, Li, Shuqi, Li, Shu, Li, Tong, Li, Xingguo, Li, Xiaoting, Li, Zhi, Li, Zhiying, Li, Zhelun, Li, Zhiyuan, Li, Zhan, Liang, Futian, Liang, Zhijun, Liaqat, Shawaiz, Liberatore, Marianna, Liberti, Barbara, Lie, Ki, Lieber Marin, Juan, Lien, Hsuan-Chu, Lim, Chapman, Lin, Kuan-Yu, Lin, Tai-Hua, Linck, Rebecca, Lindley, Rachel Elizabeth, Lindon, Jack, Linss, Arthur, Lipeles, Elliot, Lipniacka, Anna, Lippert, Markus, Lister, Alison, Little, Jared, Liu, Bo, Liu, Bingxuan, Liu, Chonghan, Liu, Danning, Liu, Hongbin, Liu, Jianbei, Liu, Jesse, Liu, Kun, Liu, Minghui, Liu, Mingyi, Liu, Peilian, Liu, Qibin, Liu, Shengquan, Liu, Tiankuan, Liu, Xiaotian, Liu, Yang, Liu, Yanlin, Liu, Yanwen, Liubimtcev, Dmitrii, Livan, Michele, Liz Vargas, Matias Patricio, Llorente Merino, Javier, Lloyd, Steve, Lobodzinska, Ewelina Maria, Loch, Peter, Loffredo, Salvatore, Lohse, Thomas, Lohwasser, Kristin, Loiseau, Carl Arthur, Lokajicek, Milos, Long, Jonathan, Longarini, Iacopo, Longo, Luigi, Longo, Riccardo, Lopez Mateos, David, Lopez Paz, Ivan, Lopez Solis, Alvaro, Lorenz, Jeanette Miriam, Lorenzo Martinez, Narei, Lory, Alexander, Losel, Philipp Jonathan, Lou, Xuanhong, Lou, Xinchou, Lounis, Abdenour, Love, Jeremy, Love, Peter, Lozano Bahilo, Julio, Lu, Gangcheng, Lu, Miaoran, Lu, Sicong, Lu, Yun-Ju, Lubatti, Henry, Luci, Claudio, Lucio Alves, Fabio Lucio, Lucotte, Arnaud, Luehring, Fred, Luise, Ilaria, Lukianchuk, Oleksii, Luminari, Lamberto, Lunadei, Riccardo, Lundberg, Olof, Lund-Jensen, Bengt, Luongo, Nicholas, Lupu, Nachman, Lutz, Margaret Susan, Luz, Ricardo, Lynn, David, Lyons, Harry John, Lysak, Roman, Lytken, Else, Lyu, Feng, Lyubushkin, Vladimir, Lyubushkina, Tatiana, Lyukova, Mars, Ma, Hong, Ma, Lianliang, Ma, Yanhui, Macdonell, Danika Marina, Maccarrone, Giovanni, Macdonald, Jack, Madar, Romain, Mader, Wolfgang, Madhoun, Khaled, Maeda, Junpei, Maeno, Tadashi, Maerker, Max, Maguire, Helen Ruth, Mahon, Devin, Maier, Ronald, Maio, Amelia, Maj, Klaudia, Majersky, Oliver, Majewski, Stephanie, Makovec, Nikola, Maksimovic, Veljko, Malaescu, Bogdan, Malaquin, Joffrey Alex, Malecki, Pawel, Maleev, Victor, Malek, Fairouz, Malito, Davide, Mallik, Usha, Malone, Claire, Maltezos, Stavros, Maly, Pavel, Malyukov, Sergey, Mamuzic, Judita, Manca, Fabio Oscar, Mancini, Giada, Manco, Giulia, Mandalia, Jesal, Mandic, Igor, Mandjavidze, Irakli, Manhaes de Andrade Filho, Luciano, Maniatis, Ioannis Michail, Manisha, Manisha, Manjarres, Joany, Mankad, Dvij, Mann, Alexander, Manousos, Thanos, Manson, Sebastian, Mansoulie, Bruno, Manthos, Ioannis, Manzoni, Stefano, Maragkou Didi, Evaggelia, Marantis, Alexandros, Marchiori, Giovanni, Marcisovsky, Michal, Marcon, Caterina, Marinescu, Mihaela, Marjanovic, Marija, Marshall, Emma, Marshall, Zach, Marti I Garcia, Salvador, Martin, Tim, Martin, Victoria, Martin Dit Latour, Bertrand, Martinelli, Luca, Martinez-Perez, Mario, Martinez Agullo, Pablo, Martinez Outschoorn, Verena Ingrid, Martinez Suarez, Paula, Martin-Haugh, Stewart, Martoiu, Sorin, Martyniuk, Alex Christopher, Marzin, Antoine, Mas, Philippe, Maschek, Stefan Raimund, Mascione, Daniela, Masetti, Lucia, Mashimo, Tetsuro, Masik, Jiri, Maslennikov, Alexei, Massa, Lorenzo, Massarotti, Paolo, Massol, Nicolas, Mastrandrea, Paolo, Mastroberardino, Anna, Masubuchi, Tatsuya, Matakias, Dimitrios, Mathisen, Thomas, Matsuzawa, Nobuo, Mattig, Peter, Maurer, Julien, Macek, Bostjan, Maximov, Dmitriy, Mazini, Rachid, Maznas, Ioannis, Mazza, Maria, Mazza, Simone Michele, Mc Ginn, Christopher, Mc Gowan, John Patrick, Mc Kee, Shawn, Mccracken, Callum, Mcdonald, Millie, Mcdougall, Ashley Ellen, Mcfayden, Josh, Mc Govern, Bobby, Mchedlidze, Gvantsa, Mckenzie, Ryan Peter, Mclachlan, Thomas Christopher, Mclaughlin, Donal Joseph, Mclean, Kayla, Mcmahon, Steve, Mcnamara, Peter Charles, Mcpartland, Conor Michael, Mcpherson, Rob, Megy, Theo, Mehalev, Ifat, Mehlhase, Sascha, Mehta, Andrew, Meirose, Bernhard, Melini, Davide, Mellado Garcia, Bruce, Melo, Andres Hugo, Meloni, Federico, Gouveia, Emanuel, Mendes Jacques da Costa, Antonio Manuel, Meneghini, Stefano, Meng, Huan Yu, Meng, Lingxin, Menke, Sven, Menouni, Mohsine, Mentink, Matthias, Meoni, Evelin, Merlassino, Claudia, Merola, Leonardo, Meroni, Chiara, Merz, Garrett William, Meshkov, Oleg, Mesolongitis, Ioannis, Metcalfe, Jessica, Mete, Alaettin Serhan, Meyer, Chris, Meyer, Jean-Pierre, Miao, Peng, Miccoli, Alessandro, Michal, Sebastien, Michetti, Michele, Middleton, Robin, Miglioranzi, Silvia, Migne, Julien, Mijovic, Liza, Mikenberg, George, Mikestikova, Marcela, Mikuz, Marko, Mildner, Hannes, Milic, Adriana, Milke, Chris, Miller, David, Miller, Laura Stephanie, Milov, Alexander, Milovanovic, Marko, Milstead, David Anthony, Min, Tianjue, Minaenko, Andrei, Minami, Yuto, Minano Moya, Mercedes, Minashvili, Irakli, Mince, Laurynas, Mincer, Allen Irving, Mindur, Bartosz, Mineev, Mikhail, Mino, Yuya, Mir Martinez, Lluisa Maria, Miralles Lopez, Marcos, Mironova, Maria, Missio, Marion, Mitani, Takashi, Mitra, Ankush, Mitsou, Vasiliki, Miu, Ovidiu, Miyagawa, Paul, Miyazaki, Yuta, Mizukami, Atsushi, Mjoernmark, Jan-Ulf, Mkrtchyan, Tigran, Mladenovic, Goran, Mlinarevic, Toni, Mlynarikova, Michaela, Moa, Torbjorn, Mobius, Silke, Mochizuki, Kazuya, Moder, Paul, Mogg, Philipp, Fadol Mohammed, Abdualazem, Mohapatra, Soumya, Mokgatitswane, Gaogalalwe, Mokrenko, Sergei, Moleri, Luca, Molina Gonzalez, Emmanuel Josue, Monay E Silva, Alessa, Mondal, Buddhadeb, Mondal, Santu, Monig, Klaus, Monnier, Emmanuel, Monsonis Romero, Luis, Montejo Berlingen, Javier, Montella, Marco, Monti, Mauro, Monticelli, Fernando, Moraga Jimenez, Juan Pablo Andres, Morange, Nicolas, Carvalho, Luisa, Moreno Llacer, Maria, Moreno Martinez, Carlos, Morettini, Paolo, Morgenstern, Stefanie, Morii, Masahiro, Morinaga, Masahiro, Morley, Anthony, Morodei, Federico, Morvaj, Ljiljana, Moschovakos, Paris, Moser, Brian, Mosidze, Maia, Moskalets, Tetiana, Moskvitina, Polina, Moss, Joshua, Moszkowicz, Piotr, Moyse, Edward, Mtintsilana, Onesimo, Muanza, Steve, Mueller, James Alfred, Muller, Ralph, Muenstermann, Daniel, Mueller, Roman, Mullier, Geoffrey, Mullin, Joseph, Mulski, Alexis Elizabeth, Mungo, Davide Pietro, Munoz Martinez, Jose Luis, Munoz Perez, David, Munoz Sanchez, Francisca, Mur, Michel Jean Yves, Murin, Martin, Murray, Bill, Murrone, Alessia, Muse, Joseph M, Muskinja, Miha, Mwewa, Chilufya, Myagkov, Alexei, Myers, Andrew Joel, Myers, Ava Anne, Myers, Greg, Myska, Miroslav, Nachman, Ben, Nackenhorst, Olaf, Naeem, Muhammad, Nag, Abhishek, Nagai, Koichi, Nagano, Kunihiro, Nagle, James Lawrence, Nagy, Elemer, Nairz, Armin, Nakahama Higuchi, Yu, Nakamura, Koji, Nanjo, Hajime, Narayan, Rohin Thampilali, Narayanan, Easwar Anand, Narevicius, Julia, Narvaez Paredes, Lautaro Leon, Naryshkin, Iurii, Naseri, Mohsen, Nass, Christian, Natsios, Marios Dimitrios, Navarro, Gabriela Alejandra, Navarro Gonzalez, Josep, Nayak, Ranjit, Nayaz, Ab, Nechaeva, Polina, Nechansky, Filip, Nedic, Luka, Neep, Tom, Negri, Andrea, Negrini, Matteo, Nellist, Clara, Nelson, Christina, Nelson, Kevin Michael, Nemecek, Stanislav, Nessi, Marzio, Neubauer, Mark, Neuhaus, Friedemann, Neundorf, Jonas, Newhouse, Robin, Newman, Paul Richard, Ng, Chi Wing, Ng, Sam Yanwing, Ng, Ying Wun Yvonne, Ngair, Badr-Eddine, Nguyen, Hoang Dai Nghia, Nickerson, Richard, Nikolaidou, Rosy, Nielsen, Jason, Niemeyer, Marcel, Nikiforou, Nikiforos, Nikolaenko, Vladimir, Nikolic, Irena, Nikolopoulos, Konstantinos, Nila, Michael Lee, Nilsson, Paul, Ninca, Ilona-Stefana, Nindhito, Herjuno Rah, Nisati, Aleandro, Nishu, Nishu, Nisius, Richard, Nitschke, Jan-Eric, Nkadimeng, Edward Khomotso, Noacco Rosende, Santiago, Nobe, Takuya, Noel, Daniel Louis, Noel, Jerome, Noguchi, Yohei, Nommensen, Thomas, Nomura, Marcelo Ayumu, Norfolk, Mitchell Bradley, Bin Norisam, Raif Rafideen, Norman, Bryce John, Novak, Jakob, Novak, Tadej, Novgorodova, Olga, Novotny, Lukas, Novotny, Radek, Nozka, Libor, Ntekas, Kostas, Nunes de Moura, Natanael, Nurse, Emily Laura, Oakham, Gerald, Ocariz, Jose Humberto, Ochi, Atsuhiko, Ochoa, Ines, Ockenfels, Walter, Oehm, Rolf, Ordek, Serhat, Offermann, Jan Tuzlic, Ogrodnik, Agnieszka Ewa, Oh, Alexander, Ohm, Christian, Oide, Hideyuki, Oikonomou, Konstantinos, Oishi, Reiyo, Ojeda, Martina Laura, Okazaki, Yuta, O'Keefe, Michael William, Okumura, Yasuyuki, Olariu, Albert, Seabra, Luis, Olivares, Sebastian, Oliveira Damazio, Denis, Oliveira Goncalves, Dayane, Oliver, Jason, Olsson, Mats Joakim Robert, Olszewski, Andrzej, Olszowska, Jolanta, Oncel, Ogul, O'Neil, Dugan, O'Neill, Aaron Paul, Onofre, Antonio, Onyisi, Peter, Openshaw, Robert, Oreglia, Mark, Orellana, Gonzalo Enrique, Orestano, Domizia, Orlando, Nicola, Orr, Robert, O'Shea, Val, Ospanov, Rustem, Ostrega, Maciej Stanislaw, Otero y Garzon, Gustavo, Otono, Hidetoshi, Ott, Philipp Sebastian, Ottino, Gregory James, Ouchrif, Mohamed, Ouellette, Jeff, Ould-Saada, Farid, Owen, Mark Andrew, Owen, Rhys, Oyulmaz, Kaan Yuksel, Ozbey, Aydin, Ozcan, Erkcan, Ozturk, Nurcan, Ozturk, Sertac, Pacalt, Josef, Pacey, Holly, Pachal, Katherine, Pacheco Pages, Andreu, Padilla Aranda, Cristobal, Padovano, Giovanni, Pagan Griso, Simone, Palacino, Gabriel, Palazzo, Alessandra, Palestini, Sandro, Palka, Marek, Pan, Jingjing, Pan, Tong, Pancake, Charles, Panchal, Dev, Pandini, Carlo Enrico, Panduro Vazquez, William, Pang, Hao, Pangaud, Patrick, Pani, Priscilla, Panico, Lorenzo, Panizzo, Giancarlo, Paolozzi, Lorenzo, Papadatos, Constantine, Parajuli, Santosh, Paramonov, Alexander, Paraskevopoulos, Christos, Paredes Hernandez, Daniela Katherinne, Park, Tae Hyoun, Parker, Andy, Parodi, Fabrizio, Parrish, Elliot, Parrish, Victoria Alexis, Parsons, John, Paruzza, Gianfranco, Parzefall, Ulrich, Paschalias, Panagiotis, Pascual Dias, Bruna, Pascual Dominguez, Luis, Pascuzzi, Vincent, Pasmantirer, Binyamin, Pasquali, Federica, Pasqualucci, Enrico, Passaggio, Stefano, Pastore, Francesca, Pastori, Enrico, Pasuwan, Patrawan, Patel, Pragati, Pater, Jo, Pauly, Thilo, Pazos, Camila, Pearkes, Jannicke Andree, Pedersen, Maiken, Costa Batalha Pedro, Rute, Peleganchuk, Sergey, Pelosi, Alessandro, Penc, Ondrej, Pender, Emily Alexandra, Peng, Chen, Peng, Haiping, Penski, Katrin Elisabeth, Penzin, Maksim, Pepe, Marco, Sotto-Maior Peralva, Bernardo, Pereira, Mackenzie, Peixoto, Ana, Pereira Sanchez, Laura, Perepelitsa, Dennis, Perez Codina, Estel, Perez Gomez, Francisco, Perganti, Maria, Perini, Laura, Pernegger, Heinz, Perrella, Sabrina, Perrevoort, Ann-Kathrin, Perrin, Oceane, Perrot, Guy, Peters, Krisztian, Peters, Reinhild, Petersen, Brian, Petersen, Troels, Petit, Elisabeth, Petousis, Vlasios, Petridou, Chariclia, Petruccetti, Marco, Petrucci, Fabrizio, Petrukhin, Alexey, Pettee, Mariel, Pettersson, Nora Emilia, Petukhov, Aleksandr, Mihule, Kristina, Peyaud, Alan, Pezoa Rivera, Raquel, Pezzotti, Lorenzo, Pezzullo, Gianantonio, Pfeifer, Bernhard, Pham, Minh Tuan, Pham, Joni, Phillips, Peter, Phipps, Michael William, Piacquadio, Giacinto, Pianori, Elisabetta, Piazza, Federica, Piegaia, Ricardo, Pietreanu, Dorel, Pileggi, Giuseppe, Pilkington, Andrew, Pinamonti, Michele, Pinfold, James, Pereira, Beatriz, Pinnell, Jamie Thomas, Pinto Bustos, Roberto Andres, Pirea, Radu Nicolae, Piret, Yves, Pirola, Michele, Piscitelli, Francesco, Pitman Donaldson, Charlie Bruno, Pizzi, Dylan, Pizzimento, Luca, Pizzini, Alessio, Pleier, Marc-Andre, Plesanovs, Vladislavs, Pleskot, Vojtech, Plotnikova, Elena, Pluzhnikov, Andrey, Poddar, Gitanjali, Podkladkin, Serguei, Pottgen, Ruth, Poffenberger, Paul, Poggioli, Luc, Pogrebnyak, Ivan, Pohl, David-Leon, Pokharel, Ishan, Polacek, Stanislav, Polesello, Giacomo, Poley, Anne-Luise, Polifka, Richard, Polini, Alessandro, Politis, Epaminondas, Pollard, Chris, Pollock, Zachary, Polychronakos, Venetios, Pompa Pacchi, Elena, Ponomarenko, Daniil, Ponsot, Patrick, Pontecorvo, Ludovico, Pontoriere, Giuseppe, Ponzio, Bruno, Popa, Stefan, Popeneciu, Gabriel, Porter, Ryan Douglas, Portillo Quintero, Dilia Maria, Pospisil, Stanislav, Postolache, Petronel, Potamianos, Karolos, Potrap, Igor, Potter, Tina, Potti, Harish, Poulsen, Trine, Poveda Torres, Ximo, Pozo Astigarraga, Eukeni, Prades Ibanez, Alberto, Pranav Bhagawath Prasad, Pranav Bhagawath, Prapa, Maria Myrto, Pretel, Jose, Price, Darren, Primavera, Margherita, Principe Martin, Miguel Angel, Privara, Radek, Proffitt, Mason, Proklova, Nadezhda, Prokofiev, Kirill, Prono, Gilles, Proto, Giorgia, Protopopescu, Serban, Proudfoot, James, Przybycien, Mariusz, Puddefoot, Joshua Eldon, Pudzha, Dennis, Puzo, Patrick Michel, Pyatiizbyantseva, Diana, Qian, Jianming, Qian, Weiming, Dong, Qichen, Qin, Quake, Qiu, Tong, Quadt, Arnulf, Queitsch-Maitland, Michaela, Quercia, Lorenzo, Quetant, Guillaume, Rabanal Bolanos, Gabriel, Rabel, Joseph, Rafanoharana, Dimbiniaina, Ragusa, Francesco, Rainbolt, Lacey, Raine, Johnny, Rajagopalan, Srini, Ramakoti, Ekaterina, Ramirez-Berend, Ian Alejandro, Ran, Kunlin, Rapheeha, Phuti, Rashid, Tasneem, Raskina, Valentina, Rassloff, Damir Fabrice, Rave, Stefan, Ravina, Baptiste, Ravinovich, Ilia, Raymond, Michel, Read, Alexander Lincoln, Readioff, Nathan Peter, Rebuzzi, Daniela, Redlinger, George, Reeves, Kendall, Reidelsturz, Joshua Aaron, Reikher, David, Rej, Amartya, Rembser, Christoph, Renardi, Alessia, Renda, Michele, Rendel, Marian Benedikt, Renklioglu, Ahmet, Renner, Frederic, Rennie, Adam, Resconi, Silvia, Ressegotti, Martina, Resseguie, Elodie Deborah, Rettie, Sebastien, Reyes Rivera, Jose Gabriel, Reynolds, Bryan, Reynolds, Elliot, Rezaei Estabragh, Mohsen, Rezanova, Olga, Reznicek, Pavel, Riallot, Marc, Ribaric, Neza, Ricci, Ester, Richert, William, Richter, Robert, Richter, Stefan, Richter-Was, Elzbieta, Ridel, Melissa, Ridouani, Selaiman, Rieck, Patrick, Riedler, Petra, Riegel, Christian, Rijssenbeek, Michael, Rimoldi, Adele, Rimoldi, Marco, Rinaldi, Lorenzo, Rinn, Timothy Thomas, Rinnagel, Maximilian Paul, Ripellino, Giulia, Riu, Imma, Rivadeneira Bracho, Pablo Andres, Rivera Vergara, Juan Cristobal, Rizatdinova, Flera, Rizvi, Eram Syed, Rizzi, Chiara, Roberts, Bryn Arthur, Roberts, Ryan, Robertson, Steven, Robichaud-Veronneau, Andree, Robin, Matthieu, Robinson, Dave, Robles Gajardo, Carolina Michel, Robles Manzano, Marisol, Robson, Aidan, Rocchi, Alessandro, Roda, Chiara, Rodriguez Bosca, Sergi, Rodriguez Garcia, Yohany, Rodriguez Rodriguez, Arturo, Rodriguez Vera, Ana Maria, Roe, Shaun, Roemer, Jonas Till, Roepe-Gier, Amber, Roggel, Jens, Rohne, Ole, Roich, Alexander, Rojas Caballero, Rimsky Alejandro, Roland, Benoit, Roland, Christophe Pol A, Roloff, Jennifer, Romaniouk, Anatoli, Romano, Emanuele, Romano, Marino, Romero, Anabel, Rompotis, Nikolaos, Roos, Lydia, Rosati, Stefano, Roscilli, Lorenzo, Rose-Dulcina, Louis, Rößl, Stefan, Rosser, Benjamin John, Rossi, Cecilia, Rossi, Eleonora, Rossi, Elvira, Rossi, Fabrizio, Rossi, Leonardo, Rossini, Lorenzo, Rosten, Rachel Christine, Rotaru, Marina, Rottler, Benjamin, Rougier, Charline, Rousseau, David, Rousso, David, Rovani, Alessandro, Rovelli, Giulia, Roy, Avik, Rozanov, Alexandre, Rozen, Yoram, Ruan, Ruanxf, Rubio Jimenez, Adrian, Ruby, Adam James, Ruelas Rivera, Victor Hugo, Ruggeri, Tristan Andrew, Ruggieri, Alessandro, Ruggieri, Daniele, Ruehr, Frederik, Ruiz Martinez, Arantxa, Rummler, Andre, Rurikova, Zuzana, Rusakovich, Nikolai, Ruscino, Ettore, Russell, Heather, Rutherfoord, John P, Růžička, Ondřej, Rybacki, Katherine Amy, Rybar, Martin, Rye, Eli Baverfjord, Ryjov, Vladimir, Ryzhov, Andrey, Sabater Iglesias, Jorge Andres, Sabatini, Fabrizio, Sabatini, Paolo, Sabetta, Luigi, Sadrozinski, Hartmut, Safai Tehrani, Francesco, Safarzadeh Samani, Batool, Safdari, Murtaza, Saha, Shreya, Sahinsoy, Merve, Saimpert, Matthias, Saito, Masahiko, Saito, Tomoyuki, Sajid, Muhammad, Salamani, Dalila, Salamanna, Giuseppe, Salnikov, Andy, Salomon, Franck, Salt, Jose, Salvador Salas, Adrian, Salvatore, Daniela, Salvatore, Fabrizio, Salzburger, Andreas, Samarati, Jerome, Sammel, Dirk, Sampsonidis, Dimos, Sampsonidou, Despoina, Sanchez Martinez, Francisco Javier, Sanchez Pineda, Arturos, Sanchez Sebastian, Victoria, Sandaker, Heidi, Sander, Christian, Sandesara, Jay Ajitbhai, Sandhoff, Marisa, Sandoval Usme, Carlos, Sankey, David, Sanny, Bernd, Sano, Takane, Sansoni, Andrea, Santi, Lorenzo, Santoni, Claudio, Santos, Helena, Santpur, Sai Neha, Santra, Arka, Saoucha, Kamal, Mendes Saraiva, Joao Gentil, Sardain, Jad Mathieu, Sasaki, Osamu, Sato, Koji, Satterthwaite, Toby, Satzkowski, Reinhard, Sauer, Christof, Sauerburger, Frank, Sauvan, Emmanuel, Sauve, Ryan Matthew, Savard, Pierre, Sawada, Ryu, Sawyer, Craig, Sawyer, Lee, Sayago Galvan, Ivan, Sbarra, Carla, Sbrizzi, Antonio, Scagliotti, Claudio, Scanlon, Timothy Paul, Schaarschmidt, Jana, Schacht, Peter, Schaefer, Douglas Michael, Schaefer, Uli, Schaffer, R.D, Schaile, Dorothee, Schaile, Otto, Schamberger, Robert Dean, Schanet, Eric, Scharf, Christian, Schefer, Meinrad Moritz, Chtcheguelski, Valery, Scheirich, Daniel, Schenck, Ferdinand, Scherino, Lorenzo, Schernau, Michael, Scheulen, Chris, Schiavi, Carlo, Schillaci, Zachary Michael, Schioppa, Enrico, Schioppa, Marco, Schlag, Bastian, Schleicher, Katharina, Schlenker, Stefan, Schmeing, Jonas, Schmidt, Mustafa Andre, Schmieden, Kristof, Schmitt, Christian, Schmitt, Stefan, Schnarr, Rodney Micheal, Schoeffel, Laurent Olivier, Schoening, Andre, Scholer, Patrick, Schopf, Elisabeth, Schorlemmer, Andre Lukas, Schott, Matthias, Schovancova, Jaroslava, Schramm, Steven, Schroeder, Frederic, Schultz-Coulon, Hans-Christian, Schumacher, Jorn, Schumacher, Markus, Schumm, Bruce Andrew, Schune, Philippe, Schwartz, Hava Rhian, Schwartzman, Ariel Gustavo, Schwarz, Thomas Andrew, Schwemling, Philippe, Schwienhorst, Reinhard, Sciandra, Andrea, Sciolla, Gabriella, Sciuccati, Augusto, Scott, Garrett Joseph, Scuri, Fabrizio, Scutti, Federico, Sebastiani, Cristiano, Secord, Chris, Sedlaczek, Kevin, Seema, Pienpen, Seidel, Sally, Seiden, Abraham, Seidlitz, Blair Daniel, Seitz, Claudia, Seixas, Jose, Sekhniaidze, Givi, Sekula, Stephen Jacob, Selem, Luka, Seletskiy, Alexandre, Semprini Cesari, Nicola, Sen, Sourav, Sengupta, Debajyoti, Senthilkumar, Varsha, Serin, Laurent, Serkin, Leonid, Serochkin, Mikhail, Sessa, Marco, Severini, Horst, Sexton, Kenneth Alan, Sforza, Federico, Sfyrla, Anna, Shabalina, Elizaveta, Shafto, Gene, Shaheen, Rabia, Shahinian, Jeff, Shaked, Ohad, Shaked Renous, Dan, Shan, Lianyou, Shapiro, Marjorie, Sharma, Abhishek, Sharma, Punit, Sharma, Surabhi, Shatalov, Sppavel, Shaw, Kate, Shaw, Savanna, Shen, Qiuping, Sheppard, Damian Joseph, Sherpa, Pasang Nuri, Sherwood, Peter, Shi, Liaoshan, Shimmin, Chase Owen, Shimogama, Yoshihiro, Shinner, James David, Shipsey, Ian, Shirabe, Shohei, Shiyakova, Mariya, Shlomi, Jonathan, Shoa, Meir, Shochet, Mel, Shojaii, Seyed Ruhollah, Shooltz, Dean Daniel, Shope, David Richard, Shrestha, Suyog, Shrif, Esra Mohammed, Shroff, Maheyer Jamshed, Shutov, Alexander, Sicho, Petr, Sickles, Anne Marie, Sideras Haddad, Elias, Sidiropoulou, Ourania, Sidoti, Antonio, Siegert, Frank, Sijacki, Dorde, Sikora, Rafal, Sili, Francisco, Cardoso Silva, Julia Manuela, Silva Oliveira, Marcos Vinicius, Silverstein, Samuel, Simion, Stefan, Simola, Vesa, Simoniello, Rosa, Simpson, Ethan Lewis, Simpson, Liana, Simpson, Nathan Daniel, Simsek, Sinem, Sindhu, Sreelakshmi, Sinervo, Pekka, Singh, Shuvay, Singh, Sundeep, Singh, Sahibjeet, Sinha, Supriya, Sinha, Sukanya, Sioli, Maximiliano, Sippach, William, Siral, Ismet, Sivoklokov, Serguei, Siyad, Mohamed Jimcale, Sjoelin, Joergen, Skaf, Ali, Skorda, Eleni, Skubic, Patrick, Slawinska, Magdalena, Sliwa, Krzysztof, Smakhtin, Vladimir, Smart, Ben Harry, Smiesko, Juraj, Smirnov, Serge, Smirnov, Yury, Smirnova, Lidia, Smirnova, Oxana, Smith, Andrew Caldon, Smith, Dale Shane, Smith, Emily Ann, Smith, Hayden Alexander, Smith, James, Smith, Rachel Emma Clarke, Smizanska, Maria, Smolek, Karel, Smykiewicz, Andrzej, Snesarev, Andrei, Snoek, Hella, Snyder, Scott, Sobie, Randy, Soffer, Abi, Solans Sanchez, Carlos, Soldatov, Evgeny, Soldevila Serrano, Urmila, Solis, Michelle Ann, Soliveres Riviere, Francoise Simone, Solodkov, Sanya, Solomon, Shalu, Soloshenko, Aleksey, Solovieva, Ksenia, Solovyanov, Oleg, Solovyev, Victor, Soluk, Richard, Sommer, Philip, Sonay, Anil, Song, Wen Yi, Sonneveld, Jory, Sopczak, Andre, Sopio, Alex, Sopkova, Filomena, Sorbe, Jérôme, Sothilingam, Varsiha, Sottocornola, Simone, Soualah, Rachik, Soumaimi, Zainab, South, David, Soyk, Daniel, Spagnolo, Stefania, Spalla, Margherita, Spano, Francesco, Speers, Peter, Sperlich, Dennis, Spigo, Giancarlo, Spina, Mario, Spinali, Sebastiano, Spiteri, Dwayne Patrick, Spiwoks, Ralf, Spousta, Martin, Staats, Ezekiel, Stabile, Alberto, Staley, Richard John, Stamen, Rainer, Stamenkovic, Marko, Stamoulos, Ioannis, Stampekis, Alexios, Standke, Mark, Stanecka, Ewa, Stange, Max Vincent, Stanislaus, Beojan, Stanitzki, Marcel, Stankaityte, Migle, Stapf, Birgit Sylvia, Starchenko, Jenya, Stark, Giordon Holtsberg, Stark, Jan, Starko, Darij Markian, Staroba, Pavel, Starovoitov, Pavel, Staerz, Steffen, Staszewski, Rafal, Stavropoulos, George, Steentoft, Jonas, Steinberg, Peter Alan, Steinhebel, Amanda, Stelzer, Bernd, Stelzer, Joerg, Stelzer-Chilton, Oliver, Stenzel, Hasko, Stevenson, Thomas James, Stewart, Graeme A, Stockton, Mark, Stoicea, Gabriel, Stolarski, Marcin, Stonjek, Stefan, Stouras, Nikos, Straessner, Arno, Strandberg, Jonas, Strandberg, Sara, Strauss, Mike, Strebler, Thomas, Strickland, Vance, Strizenec, Pavol, Strohmer, Raimund, Strom, David, Strom, Lars Rickard, Stroynowski, Ryszard, Strubig, Antonia, Stucci, Stefania Antonia, Stugu, Bjarne, Stupak, John, Sturdy, Jared, Styles, Nicholas, Su, Dong, Su, Shixiang, Su, Wanyun, Su, Xiaowen, Sugizaki, Kaito, Sulin, Vladimir, Sullivan, Matthew James, Sultan, D.M.S, Sultanaliyeva, Laily, Sultanov, Salekh, Sumida, Toshi, Sun, Quan, Sun, Siyuan, Sun, Shaojun, Gudnadottir, Olga, Sutton, Mark, Svatos, Michal, Swiatlowski, Maximilian J, Swirski, Thorben, Sykora, Ivan, Sykora, Martin, Sykora, Tomas, Ta, Duc Bao, Tackmann, Kerstin, Taffard, Anyes, Tafirout, Reda, Tafoya Vargas, Juan Salvador, Taghavirad, Saeed, Taibah, Reem Hani M, Takashima, Ryuichi, Takeda, Kosuke, Takeva, Emily Petrova, Takubo, Yosuke, Talby, Mossadek, Talyshev, Alexei, Tam, Kai Chung, Tamir, Nadav Michael, Tanaka, Aoto, Tanaka, Junichi, Tanaka, Rei, Tanasini, Martino, Tang, Jiannan, Tang, Shaochun, Tao, Zhengcheng, Tapia Araya, Sebastian, Tapprogge, Stefan, Tar, Bora, Tarek, Ahmed, Tarem, Shlomit, Tarem, Zvi, Tariq, Khuram, Tarna, Grigore, Tartarelli, Francesco, Tas, Petr, Tasevsky, Marek, Tasevsky, Mito, Tassi, Enrico, Tate, Aric, Tateno, Gen, Tayalati, Yahya, Taylor, Geoffrey Norman, Taylor, Wendy Jane, Teagle, Hamish Edward, Tee, Amy, Teixeira de Lima, Rafael, Teixeira-Dias, Pedro, Teoh, Jia Jian, Terashi, Koji, Terron Cuadrado, Juan, Terzo, Stefano, Testa, Marianna, Teterin, Peter, Teurnier, Marie-Solene, Teuscher, Richard, Thaler, Alexander, Theiner, Ondrej, Themistokleous, Neofytos, Theveneaux-Pelzer, Timothee, Thielmann, Oliver, Thomas, Chris, Thomas, David William, Thomas, James Oscar, Thomas, Juergen, Thompson, Emily Anne, Thompson, Paul, Thomson, Evelyn Jean, Thorpe, Edward James, Tian, Yusong, Tikhomirov, Vladimir, Tikhonov, Iouri, Timoshenko, Sergei, Ting, Edmund Xiang Lin, Tipton, Paul Louis, Tisserant, Sylvain, Tlou, Humphry, Tnourji, Abdellah, Tobias, Juergen, Todome, Kazuki, Todorov, Teddy, Todorova, Sarka, Todt, Stefanie, Togawa, Manabu, Tojo, Junji, Tokar, Stano, Tokushuku, Katsuo, Toldaiev, Alex, Tombs, Rupert, Tomoto, Makoto, Tompkins, Daniel, Tompkins, Lauren Alexandra, Topolnicki, Kacper Wojciech, Tornambe, Peter, Torrence, Eric, Torres, Heberth, Torro Pastor, Emma, Toscani, Mariana, Tosciri, Cecilia, Tost, Marc, Tovey, Daniel, Traeet, Are Sivertsen, Tranchand, Laure, Trandafir, Iulia-Stefania, Trantou, Foteini, Trattino, Pietro, Travaglini, Riccardo, Trefzger, Thomas, Tricoli, Alessandro, Trigger, Isabel, Trincaz-Duvoid, Sophie, Trischuk, Dominique Anderson, Trocme, Benjamin, Troeglazov, Ivan, Trofymov, Artur, Troncon, Clara, Troska, Georg, Trotta, Danilo, Trovatelli, Monica, Trovato, Marco, Truong, Thi Ngoc Loan, Trzebinski, Maciej, Trzupek, Adam, Tsai, Fang-Ying, Tsai, Meng-Ju, Tse, Wan Ho, Tsiafis, Yoannis, Tsiamis, Angelos, Tsiareshka, Pavel, Tsigaridas, Stergios, Tsirigotis, Apostolos, Tsiskaridze, Vakhtang, Tskhadadze, Edisher, Tsopoulou, Maria-Evanthia, Tsujikawa, Yoshiaki, Tsukerman, Ilia, Tsulaia, Vakhtang, Tsuno, Soshi, Tsur, Omer, Tsybyshev, Dmitry, Tu, Yanjun, Tudorache, Alexandra, Tudorache, Valentina, Tuna, Alexander Naip, Turchikhin, Semen, Turco, Paola, Turk Cakir, Ilkay, Turra, Ruggero, Turtuvshin, Tulgaa, Tusi, Enrico, Tuts, Mike, Tzamarias, Spyros, Tzanis, Polyneikis, Tzanos, Stamatios, Tzovara, Eftychia, Uchida, Kenta, Ukah, Kelechi Rock, Ukegawa, Fumihiko, Ulloa Poblete, Pablo Augusto, Umaka, Ejiro Naomi, Unal, Guillaume, Unal, Mesut, Undrus, Alexander, Unel, Gokhan, Uno, Kenta, Urban, Josef, Urbasek, Vladimir, Urquijo, Phillip, Usai, Giulio, Ushioda, Risa, Usman, Muhammad, Usseglio, Michel, Uysal, Zekeriya, Vacavant, Laurent, Vacek, Vic, Vacher, Thierry, Vachon, Brigitte, Vadla, Knut Oddvar Hoie, Vafeiadis, Theodoros, Vaitkus, Andrius, Valderanis, Chrysostomos, Valdes Santurio, Eduardo, Valente, Marco, Valentinetti, Sara, Valero Biot, Alberto, Vallier, Alexis, Valls Ferrer, Juan, van Arneman, Dylan Remberto, van Daalen, Tal Roelof, van Gemmeren, Peter, van Overbeek, Martijn, van Rijnbach, Milou, van Stroud, Samuel, van Vulpen, Ivo, Vanadia, Marco, Vandelli, Wainer, Vandenbroucke, Maxence, van de Wall, Evan Richard, Vannicola, Damiano, Vannoli, Leonardo, Varga-Rehling, Attila, Vari, Riccardo, Varnes, Erich Ward, Varni, Carlo, Mete, Tulin, Varouchas, Dimitris, Varriale, Lorenzo, Varvell, Kevin, Vasile, Matei, Vaslin, Louis, Vasquez, Gerardo, Vazeille, Francois, Vazquez Schroeder, Tamara, Vdovin, Aleksander, Veatch, Jason Robert, Vecchio, Valentina, Veen, Michiel Jan, Veliscek, Iza, Veloce, Laurelle Maria, Veloso, Filipe, Veneziano, Stefano, Ventura, Andrea, Venturi, Nicola, Verbytskyi, Andrii, Vercellati, Filippo, Verducci, Monica, Vergain, Maurice, Vergis, Christos, Verissimo de Araujo, Micael, Verkerke, Wouter, Verlaat, Bart, Vermeulen, Jos, Vernieri, Caterina, Verschuuren, Pim Jordi, Vessella, Makayla, Vetterli, Michel Joseph, Vgenopoulos, Andreas, Viaux Maira, Nicolas, Vichoudis, Paschalis, Vickey, Trevor, Vickey Boeriu, Oana, Viehhauser, Georg, Vieira de Souza, Julio, Vigani, Luigi, Vigeolas, Eric, Villa, Mauro, Villaplana, Miguel, Villhauer, Elena Michelle, Vilucchi, Elisabetta, Vincter, Manuella, Vinogradov, Mikhail, Virdee, Govindraj Singh, Vishwakarma, Akanksha, Vittori, Camilla, Vivarelli, Iacopo, Vlachos, Sotiris, Vladimirov, Vangelis, Voevodina, Elena, Vogel, Fabian, Vogt, Sven, Vokac, Petr, von Ahnen, Janik, von Torne, Eckhard, Vormwald, Benedikt, Vorobel, Vit, Vorobev, Konstantin, Vos, Marcel, Voss, Katharina, Vossebeld, Joost, Vozak, Matous, Vozdecky, Lubos, Vranjes, Nenad, Vranjes Milosavljevic, Marija, Vreeswijk, Marcel, Vuillemin, Cyrille, Vuillermet, Raphael, Vujinovic, Olivera, Vukotic, Ilija, Wada, Sayaka, Wagner, Cooper, Wagner, Wolfgang, Wahdan, Shayma, Wahlberg, Hernan Pablo, Wakasa, Rena, Wakida, Moe, Walbrecht, Verena Maria, Walder, James William, Walker, Rodney, Walker, Robert Bond, Walkowiak, Wolfgang, Wang, Ann Miao, Wang, Alex Zeng, Wang, Chen, Wang, Chenliang, Wang, Haichen, Wang, Jiawei, Wang, Jinglu, Wang, Jinhong, Wang, Qiang, Wang, Renjie, Wang, Rongkun, Wang, Rui, Wang, Song-Ming, Wang, Shuanggeng, Wang, Tao, Wang, Weitao, Wang, Xu, Wang, Xin, Wang, Xinxin, Wang, Xiaoning, Wang, Xi, Wang, Yufeng, Wang, Yuhao, Wang, Zirui, Wang, Zhen, Wang, Zhichen, Warburton, Andreas, Ward, Robert James, Warrack, Neil, Watson, Alan, Watson, Harriet, Watson, Miriam, Watts, Gordon, Waugh, Benedict Martin, Weaverdyck, Curtis John, Webb, Aaron, Weber, Christian, Weber, Hannsjorg, Weber, Jens, Weber, Maarten, Weber, Michele, Weber, Stephen, Weber, Sebastian Mario, Wei, Chuanshun, Wei, Yingjie, Weidberg, Anthony, Weingarten, Jens, Weirich, Marcel, Weiser, Christian, Welch, Steven, Wells, Craig John, Wells, Pippa, Wenaus, Torre, Wendland, Bjoern, Wengler, Thorsten, Wenke, Nina Stephanie, Wensing, Marius, Wermes, Norbert, Wessels, Martin, Whalen, Kate, Wharton, Andrew Mark, White, Aaron Stephen, White, Andrew, White, Martin John, Whiteson, Daniel, Wickremasinghe, Lakmin, Wiedenmann, Werner, Wiel, Christian, Wielers, Monika, Wiglesworth, Craig, Wiik-Fuchs, Liv, Wilbern, Daniel John, Wilkens, Henric, Williams, Daniel, Williams, Hugh, Williams, Sarah Louise, Willocq, Stephane, Windischhofer, Philipp, Wingerter, Isabelle, Winklmeier, Frank, Winter, Benedict Tobias, Winter, Joshua Krystian, Wittgen, Matthias, Wittig, Tobias, Wobisch, Markus, Woelker, Ricardo, Wollrath, Julian, Wolniewicz, Kevin, Wolter, Marcin, Wolters, Helmut, Wong, Vincent Wai Sum, Wongel, Alicia, Worm, Steven, Wosiek, Barbara Krystyna, Wotschack, Joerg, Woyshville, Aaron, Wozniak, Krzysztof Wieslaw, Wraight, Kenneth Gibb, Wu, Jinfei, Wu, Minlin, Wu, Mengqing, Wu, Sau Lan, Wu, Weihao, Wu, Wenjing, Wu, Xin, Wu, Yusheng, Wu, Zhibo, Wurzinger, Jonas, Wyatt, Terry, Wynne, Benjamin Michael, Xella, Stefania, Xia, Ligang, Xia, Mingming, Xiang, Jianhuan, Xiao, Xiong, Xie, Mingzhe, Xie, Xiangyu, Xin, Shuiting, Xiong, Junwen, Xiotidis, Ioannis, Xu, Da, Xu, Hanlin, Xu, Hao, Xu, Lailin, Xu, Riley, Xu, Rui, Xu, Tairan, Xu, Wenhao, Xu, Yue, Xu, Zhongyukun, Xu, Zijun, Yabsley, Bruce Donald, Yacoob, Sahal, Yamaguchi, Naoki, Yamaguchi, Yohei, Yamamoto, Shimpei, Yamauchi, Hiroki, Yamazaki, Tomohiro, Yamazaki, Yuji, Yan, Jun, Yan, Siyuan, Yan, Zhen, Yandyan, Armen, Yang, Haijun, Yang, Hongtao, Yang, Siqi, Yang, Tianyi, Yang, Xiao, Yang, Xuan, Yang, Yi-Lin, Yang, Zhe, Yao, Lin, Yao, Wei-Ming, Yap, Yee Chinn, Ye, Hanfei, Ye, Hua, Ye, Jingbo, Ye, Shuwei, Ye, Xinmeng, Yeh, Yoran, Yeletskikh, Ivan, Yeo, Beom Ki, Yexley, Melissa, Yildiz, Cenk, Yin, Pengqi, Yin, Weigang, Yorita, Kohei, Younas, Sulman, Young, Christopher, Young, Charlie, Yu, Yi, Yuan, Man, Yuan, Rui, Yue, Luzhan, Yue, Xiaoguang, Yukhimchuk, Sergey, Zaazoua, Mohamed, Zabinski, Bartlomiej Henryk, Zachariadou, Katerina, Zaghia, Hamid, Zahradnik, Vit, Zaid, Estifa'A, Zakareishvili, Tamar, Zakharchuk, Nataliia, Zambito, Stefano, Zamora Saa, Jilberto Antonio, Zang, Jiaqi, Zanzi, Daniele, Zaplatilek, Ota, Zeissner, Sonja Verena, Zeitnitz, Christian, Zeng, Jiancong, Zenger, Todd, Zenin, Oleg, Zenis, Tibor, Zenz, Seth, Zerradi, Soufiane, Zerwas, Dirk, Zhai, Mingjie, Zhang, Bowen, Zhang, Dengfeng, Zhang, Jie, Zhang, Jinlong, Zhang, Kaili, Zhang, Lei, Zhang, Peng, Zhang, Rui, Zhang, Shuzhou, Zhang, Tingyu, Zhang, Xiangke, Zhang, Xueyao, Zhang, Yulei, Zhang, Zhicai, Zhang, Zhiqing Philippe, Zhao, Haoran, Zhao, Pingchuan, Zhao, Tongbin, Zhao, Xiandong, Zhao, Yuzhan, Zhao, Zhengguo, Zhemchugov, Alexey, Zheng, Xiangxuan, Zheng, Zhi, Zhivun, Elena, Zhong, Dewen, Zhou, Bing, Zhou, Chen, Zhou, Hao, Zhou, Ning, Zhou, Shun, Zhou, You, Zhu, Chengguang, Zhu, Chenzheng, Zhu, Heling, Zhu, Hongbo, Zhu, Junjie, Zhu, Yifan, Zhu, Yingchun, Zhuang, Xuai, Zhukov, Konstantin, Zhulanov, Vladimir, Zibell, Andre, Zich, Jan, Zimine, Nikolai, Zimmermann, Jorg, Zimmermann, Stephanie Ulrike, Zinsser, Joachim, Ziolkowski, Michal, Zivkovic, Lidija, Zoccoli, Antonio, Zoch, Knut, Zolkin, Igor, Zonca, Eric, Zorbas, Theodore, Zormpa, Olga, Zou, Wenkai, Zuk, George, Zullo, Antonio, Zwalinski, Lukasz, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), and ATLAS
- Subjects
Physics - Instrumentation and Detectors ,CERN Lab ,accelerator ,data acquisition ,diffraction ,gap ,FOS: Physical sciences ,scintillation counter, trigger ,electron, energy resolution ,High Energy Physics - Experiment ,p p, cross section ,High Energy Physics - Experiment (hep-ex) ,pixel ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,muon, trigger ,CERN LHC Coll, upgrade ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,forward spectrometer ,track data analysis, vertex ,background ,photon ,trigger, electronics ,calorimeter, liquid argon ,Instrumentation and Detectors (physics.ins-det) ,ATLAS ,crossing ,heavy ion ,pile-up ,trigger, threshold ,luminosity, monitoring ,Particle Physics - Experiment ,signature ,Micromegas ,performance - Abstract
The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of $\mathcal{L}=2\times 10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$ was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of $\mathcal{L}=2\times 10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}$, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and $b$-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector., Comment: 233 pages in total, author list starting page 214, 116 figures, 15 tables, submitted to JINST. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/GENR-2019-02/
- Published
- 2023
- Full Text
- View/download PDF
59. Round Robin into Best Practices for the Determination of Indentation Size Effects
- Author
-
Ana Ruiz-Moreno, Peter Hähner, Lukasz Kurpaska, Jacek Jagielski, Philippe Spätig, Michal Trebala, Simo-Pekka Hannula, Susana Merino, Gonzalo de Diego, Hygreeva Namburi, Ondrej Libera, Dimitry Terentyev, Tymofii Khvan, Cornelia Heintze, and Nigel Jennett
- Subjects
nanoindentation ,nano-mechanical ,small scale testing ,pile-up ,elastic modulus correction ,indentation size effect ,ferritic/martensitic steel ,Chemistry ,QD1-999 - Abstract
The paper presents a statistical study of nanoindentation results obtained in seven European laboratories that have joined a round robin exercise to assess methods for the evaluation of indentation size effects. The study focuses on the characterization of ferritic/martensitic steels T91 and Eurofer97, envisaged as structural materials for nuclear fission and fusion applications, respectively. Depth-controlled single cycle measurements at various final indentation depths, force-controlled single cycle and force-controlled progressive multi-cycle measurements using Berkovich indenters at room temperature have been combined to calculate the indentation hardness and the elastic modulus as a function of depth applying the Oliver and Pharr method. Intra- and inter-laboratory variabilities have been evaluated. Elastic modulus corrections have been applied to the hardness data to compensate for materials related systematic errors, like pile-up behaviour, which is not accounted for by the Oliver and Pharr theory, and other sources of instrumental or methodological bias. The correction modifies the statistical hardness profiles and allows determining more reliable indentation size effects.
- Published
- 2020
- Full Text
- View/download PDF
60. Temperature dependence of strain rate sensitivity, indentation size effects and pile-up in polycrystalline tungsten from 25 to 950 °C.
- Author
-
Beake, Ben D., Harris, Adrian J., Moghal, Jonathan, and Armstrong, David E.J.
- Subjects
- *
STRAIN rate , *TEMPERATURE effect , *NANOINDENTATION tests , *TUNGSTEN , *POLYCRYSTALS , *VACUUM - Abstract
Elevated temperature nanoindentation measurements were performed on polycrystalline tungsten to 950 °C under high vacuum conditions with very low thermal drift. The temperature dependence of the hardness, elastic modulus, strain rate sensitivity, activation volume and the indentation size effect in hardness were studied. More significant time-dependent deformation was observed from 850 °C. Strain rate sensitivity determined by analysis of indentation creep data increased with temperature. Activation volume reached a peak of ~50 b 3 at 750–800 °C. Decreasing activation volume >800 °C was a consequence of the increased strain rate sensitivity. For a bcc metal lattice resistance depends on T / T c (where T c , the critical temperature, at which flow stress becomes insensitive to temperature, is 527 °C for W); size effects would be expected scale with this relative temperature. Stronger indentation size effects in hardness were found at elevated temperatures. The influence of the time-dependent deformation on the unloading data was accounted for by a viscoelastic compliance correction. After correction the elastic moduli were to within ~1% of literature values at 750–800 °C and to within 6% at 950 °C. These small remaining differences are consistent with AFM measurements which show that pile-up is significant in these high temperature indentations. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
61. Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors.
- Author
-
Luo, X.L., Modamio, V., Nyberg, J., Valiente-Dobón, J.J., Nishada, Q., de Angelis, G., Agramunt, J., Egea, F.J., Erduran, M.N., Ertürk, S., de France, G., Gadea, A., González, V., Goasduff, A., Hüyük, T., Jaworski, G., Moszyński, M., Di Nitto, A., Palacz, M., and Söderström, P.-A.
- Subjects
- *
PILE-up (Spectrometry) , *LIQUID scintillators , *STANDARD model (Nuclear physics) , *NEUTRON counters , *SPECTRUM analysis - Abstract
The issue of pulse pile-up is frequently encountered in nuclear experiments involving high counting rates, which will distort the pulse shapes and the energy spectra. A digital method of off-line processing of pile-up pulses is presented. The pile-up pulses were firstly identified by detecting the downward-going zero-crossings in the first-order derivative of the original signal, and then the constituent pulses were reconstructed based on comparing the pile-up pulse with four models that are generated by combining pairs of neutron and γ standard pulses together with a controllable time interval. The accuracy of this method in resolving the pile-up events was investigated as a function of the time interval between two pulses constituting a pile-up event. The obtained results show that the method is capable of disentangling two pulses with a time interval among them down to 20 ns, as well as classifying them as neutrons or γ rays. Furthermore, the error of reconstructing pile-up pulses could be kept below 6% when successive peaks were separated by more than 50 ns. By applying the method in a high counting rate of pile-up events measurement of the NEutron Detector Array (NEDA), it was empirically found that this method can reconstruct the pile-up pulses and perform neutron- γ discrimination quite accurately. It can also significantly correct the distorted pulse height spectrum due to pile-up events. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
62. A novel approach to extracting hardness of copper/niobium (Cu/Nb) multilayer films by removing the substrate effect.
- Author
-
Qiu, Y.H., Bai, Q., Fu, E.G., Wang, P.P., Du, J.L., Chen, X.F., Xue, J.M., Wang, Y.G., and Wang, X.J.
- Subjects
- *
MICROHARDNESS , *SUBSTRATES (Materials science) , *NANOINDENTATION tests , *FINITE element method , *ATOMIC force microscopy - Abstract
This article presents a novel method to eliminate the substrate effect in soft thin film on hard substrate by correcting the projected contact area in nanoindentation test. The hardness of sputtered Cu/Nb multilayer films on silicon substrate with different individual layer thickness was measured by nanoindentation in continuous stiffness mode (CSM) and was shown to be influenced by both indentation size effect (ISE) and substrate effect. Finite element modeling (FEM) and atomic force microscope (AFM) were used to investigate the influence of substrate to the hardness measurement, and the results showed that the hardness deviation induced by the substrate effect resulted from the pile-up can be reasonably removed. Silicon substrate was found to be crucial for the pile-up formation, as the vertical plastic flow of soft Cu/Nb film was restrained by hard silicon substrate with the increase of indentation depth. After applying our pile-up correction and revised Nix-Gao fitting, the hardness curves show a depth independent relation, which fulfills the requirement for accurate hardness measurement. We showed that the hardness deviation due to pile-up is about 14%. Meanwhile, some vague issues like the plateau region and “one-tenth rule” applied in many studies were discussed and clarified basing on our experimental and modeling results. The correcting methods and simulation results could be instructive and significant for nanoindentation hardness test of similar soft film on hard substrate system. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
63. Point spread function of photon-counting detectors under pile-up conditions: a proposed framework
- Author
-
Leibold, D. (author), van der Sar, S.J. (author), Goorden, M.C. (author), Schaart, D.R. (author), Leibold, D. (author), van der Sar, S.J. (author), Goorden, M.C. (author), and Schaart, D.R. (author)
- Abstract
X-ray detectors with photon-counting capabilities promise to revolutionise medical imaging. For an efficient comparison of detectors of various materials and with different setup choices, reliable detector performance measures are needed. The detector point spread function (PSF) is a commonly used measure, which describes the spatial response of an X-ray detector to the irradiation of a single pixel, given the energy spectrum of the source. In the case of an energy-resolving PCD, the detector PSF is typically derived for each energy bin and characterises its resolution. Moreover, it is commonly determined under low count rate conditions, to avoid dead time and pile-up related distortions. Under these assumptions, the PSF can be determined in a straightforward manner, but does not fully characterise the detector under all conditions encountered in clinical practice. This is especially true since the number of registered counts per energy bin depends on both the incident spectrum and the fluence rate, due to pile-up and dead time. We therefore propose a new metric, the differential point spread function (dPSF), which describes the change in the output count rate due to a small change in the input spectrum, for a given combination of incident spectrum and fluence rate. The dPSF can be used to characterize the spectral and spatial performance of a PCD under high-fluence conditions, i.e. when its response becomes non-linear. We illustrate the use of the dPSF by performing a Monte-Carlo study in which we compare the response of direct-conversion and scintillationbased PCDs at different fluence rates., Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public., RST/Medical Physics & Technology, RST/Biomedical Imaging
- Published
- 2022
- Full Text
- View/download PDF
64. Cosmic rays from star clusters
- Author
-
Gabici, Stefano, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,star, massive ,turbulence ,particle, acceleration ,FOS: Physical sciences ,cluster, massive ,feedback ,cosmic radiation, galaxy ,cavity ,star, cluster ,pile-up ,gas ,supernova ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Massive stars blow powerful winds and eventually explode as supernovae. By doing so, they inject energy and momentum in the circumstellar medium, which is pushed away from the star and piles up to form a dense and expanding shell of gas. The effect is larger when many massive stars are grouped together in bound clusters or associations. Large cavities form around clusters as a result of the stellar feedback on the ambient medium. They are called superbubbles and are characterised by the presence of turbulent and supersonic gas motions. This makes star clusters ideal environments for particle acceleration, and potential contributors to the observed Galactic cosmic ray intensity., 34 pages, 10 figures. To appear in "Foundations of Cosmic Ray Astrophysics", Proceedings of the International School of Physics "Enrico Fermi", Course 208, Varenna, 24-29 June 2022, edited by F. Aharonian, E. Amato, and P. Blasi
- Published
- 2022
65. Deep learning techniques for energy clustering in the CMS electromagnetic calorimeter
- Author
-
Polina Simkina, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and CMS
- Subjects
electron ,Nuclear and High Energy Physics ,noise ,CMS ,neural network ,photon ,Graph neural network ,topological ,crystal ,electromagnetic ,machine learning ,CERN LHC Coll ,pile-up ,calorimeter ,time dependence ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,High energy physics ,Instrumentation ,damage ,performance ,Calorimeter reconstruction - Abstract
International audience; The reconstruction of electrons and photons in CMS depends on the topological clustering of the energy deposited by an incident particle in different crystals of the electromagnetic calorimeter (ECAL). The currently used algorithm cannot account for the energy deposits coming from the pileup (secondary collisions) efficiently. The performance of this algorithm is expected to degrade during the LHC Run 3 because of the larger average pileup level and the increasing level of noise due to the aging of the ECAL detector. In this paper, we explore new techniques for energy reconstruction in ECAL using state-of-the-art machine learning algorithms like graph neural networks and self-attention modules.
- Published
- 2022
66. The proposition of analytical expression HM–(√P/S) in microindentation pile-up deformation mode
- Author
-
Hassen Merzouk, Soufiane Benaissa, Djamel Zddine Semsoum, and Samir Habibi
- Subjects
Martens hardness ,a tool for predicting the variable HM function ,as a function of the P0.5/S criterion used by Joslin and Oliver ,Mechanics of Materials ,Mechanical Engineering ,Cu99 ,taking into consideration the pile-up strain mode ,Microindentation ,Empirical ,Pile-up ,an analytical expression of the Martens hardness - Abstract
In this article, the characteristic curves of microindentation measured on Cu99 were analyzed on the basis of the analytical expression proposed by Habibi et al. (J. Mater. Res, 2021, 36 (15): 3074-3085). It was found that the ratio of the applied load to the square of the displacement, P/(h+h0)2, does not remain constant during the loading segment of the microindentation test. An empirical expression for the determination of Martens hardness as a function of indentation load, contact stiffness and reduced modulus of elasticity by analyzing indentation load curves has been proposed for pile-up mode strain with the corrections imposed by the tip defect, the compliance of the instrument and the axial axisymmetry coefficient of the Vickers indenter. The results from microindentation tests on this examined ductile material show excellent agreement.
- Published
- 2022
67. The influence of the indentation size in relation to the size of the microstructure of three polycrystalline materials indented with a Berkovich indenter.
- Author
-
Iracheta, O., Bennett, C.J., and Sun, W.
- Subjects
- *
POLYCRYSTALS , *MICROSTRUCTURE , *INDENTATION (Materials science) , *MARTENSITIC stainless steel , *TITANIUM alloys , *DEFORMATIONS (Mechanics) , *FINITE element method - Abstract
Three different polycrystalline materials, a fine-grained martensitic steel (CrMoV), a coarse-grained high-purity copper (C110), and a two-phase microstructure titanium alloy (Ti-6Al-4V), have been selected to investigate the heterogeneity of deformation following indentation using a depth-sensing indentation instrument fitted with a Berkovich indenter. The geometry of the pile-up profiles, measured with an atomic force microscope, were observed to be very sensitive to the indentation size with respect to the size of the microstructure and the material properties and crystallographic plane of the indented grain. In contrast, neither the recovery of the area of indentation nor the degree of piling-up were affected by the presence of indentation size effects (ISE). Furthermore, based on the results of a full-3D finite element simulation, it was concluded that the misalignment of the indenter alone does not explain the significantly asymmetric piling-up in highly anisotropic materials, e.g. C110 copper, but that this is due to the crystallographic orientation of the single grain tested. In addition, the experimental results revealed that, although a thicker mechanically hardened layer formed during polishing is more prone to recovery during unloading, leading to a smaller residual indented area, the degree of piling-up is unaffected provided that the ratio of maximum depth ( h max ) to the thickness of the strain-hardened layer is above unity. Moreover, on the same premise, the surface roughness and the thickness of the strain-hardened layer can be discarded as length parameters affecting hardness measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
68. Formation of prismatic loops in AlN and GaN under nanoindentation.
- Author
-
Xiang, Henggao, Li, Haitao, Fu, Tao, Huang, Cheng, and Peng, Xianghe
- Subjects
- *
MATERIAL plasticity , *CERAMICS , *MOLECULAR dynamics , *PRISMATIC astrolabe , *SCREW compressors - Abstract
The formation of prismatic loops in metals has been studied extensively, but the corresponding research related to ceramics can rarely be found in the literature. In this article, the formation of prismatic loops in B4 ceramics under nanoindentation were investigated with molecular dynamics (MD) simulations. The indentation directions are respectively in the normal of the basal plane and the two prismatic planes in AlN and GaN single crystals. Two mechanisms for the formation of prismatic loop in B4 ceramics are found. One is the “lasso”-like mechanism, which is similar to that observed in metals, and the other is “nested-loops” mechanism, which has never been reported in the literature. MD simulations show that the screw segments of the two different shear loops, be adjacent to each other, can intersect with each other and finally produce a prismatic dislocation loop. The pile-up symmetry after unloading, associated with dislocation loops propagation, can be found, which is consistent with experimental results. More detailed analysis of dislocation patterns and directions indicate that plastic deformation is dominated by the shuffle-set dislocations along 1 3 〈 11 2 ¯ 0 〉 , and the glide-set dislocations along 1 3 〈 1 ¯ 010 〉 are asymmetric. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
69. Theoretical approach for detection and lifetime measurement of obscured low cross-sectional processes by the X-ray absorption technique.
- Author
-
Sharma, Gaurav, Puri, Nitin K., and Nandi, T.
- Subjects
- *
X-ray absorption spectra , *ION energy , *IONIZED gases , *NUCLEAR physics , *ATOMS - Abstract
The X-ray absorption spectroscopy technique has been discussed for resolving the low-intensity peaks obscured in the neighborhood of the closely spaced peaks and eliminating the pile-up effect, simultaneously. A theoretical comparison of the absorption technique with the available pile-up rejecters reveals better efficiency for the detection of the higher energy X-ray lines. The technique does not change the fundamental characteristics of the peaks and therefore can be employed to measure the lifetimes of the corresponding states and absolute cross sections. The lifetime of a state calculated with this technique is found to be the same as that without attenuating the intensity using any absorber. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
70. A New Application of Dynamic Indentation: Indentation Machining Technology.
- Author
-
Jeon, E.-c., Lee, J.-R., Choi, D.-H., Choi, H.-J., and Je, T.-J.
- Subjects
- *
INDENTATION (Materials science) , *MASS production , *ANNEALING of metals , *PILE-up (Spectrometry) , *LENSES - Abstract
While the indentation method is an excellent way to evaluate the mechanical properties of various sizes of materials, from the nano-scale to the macro-scale, its applications have been limited to measuring mechanical properties. In this study we propose a new application of the dynamic indentation method, in an indentation machining technology for mass-production. The core idea is that the array of residual indentations generated by dynamic indentation testing can be used to fabricate a lens array suitable for thinner and brighter displays. We developed an advanced system from a dynamic indentation system, whose maximum speed and maximum specimen size were about 10Hz and 250 mm*250 mm, respectively. Using dual actuating heads this system was used to produce arrays of lenses having depths of 1 μm to 6 mm. Pile-up is a critical reason why indentation machining technology had been not widely used in display industries. Since lower pile-up is observed in more ductile copper-based metals, we increased the annealing time of the metal molds to reduce the amount of pile-up. Then, following a quantitative analysis of the annealing heat treatment and resulting amount of pile-up, a lens array was successfully machined on a metal mold fabricated by the developed system. The machined metal mold was used to manufacture optical plates for a lens array. The results verified that the indentation machining technology proposed in this study, based on the dynamic indentation method, can be applied for the manufacturing of optical components for better displays. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
71. Berkovich nanoindentation study of monocrystalline tungsten: a crystal plasticity study of surface pile-up deformation.
- Author
-
Yao, W. Z. and You, J. H.
- Subjects
- *
NANOINDENTATION , *SINGLE crystals , *TUNGSTEN , *MATERIAL plasticity , *CRYSTALLOGRAPHY - Abstract
In this paper, it was investigated whether Berkovich indentation test with a triangular-based pyramidal imprint would exhibit the same surface pile-up deformation behaviour as in Vickers or spherical indentation tests. The characteristic correlation between the pile-up patterns of monocrystalline tungsten and the geometry of slip systems was examined both experimentally and computationally. Surface pile-up patterns for three different crystallographic orientations of specimens with corresponding rotational crystal symmetry were characterised. In addition, the effect of the varying azimuthal orientation of the indenter on the pile-up patterns was also discussed. Predictions from finite element simulation based on the crystal plasticity theory are also presented and compared with the measured results. It was found that the surface pile-up patterns of Berkovich indentation did not necessarily reflect the rotational crystal symmetry of tungsten single crystal specimens. The pile-up patterns were affected by the variation of the indenter’s azimuthal orientation. The height of the pile-up hillocks was often highly non-uniform even on the same surface plane indicating strong influence of slip geometry leading to the plastic anisotropy. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
72. Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy.
- Author
-
Muthupandi, Gokul, Lim, Ka Ram, Na, Young-Sang, Park, Jieun, Lee, Dongyun, Kim, Hanjong, Park, Seonghun, and Choi, Yoon Suk
- Subjects
- *
NANOINDENTATION , *ALUMINUM alloys , *ENTROPY , *MICROSTRUCTURE , *ANNEALING of crystals - Abstract
Microstructures and nanoindentation behaviors were studied on annealed AlCoCrFeNi high entropy alloy. Both pile-up and sink-in characteristics were found in the grain boundary and grain regions, respectively. The multiple phases present in the AlCoCrFeNi high entropy alloy are the reasons behind the different nanoindentation behaviors, which were identified using electron microscopy. The identified phases showed the grain boundary segregation to have A1 lattice, viz. , FCC structure while the grain was distributed with A2 and B2 lattices, viz. , BCC and ordered BCC structures, forming the matrix with nano-precipitates of the other. The reason for the pile-up and sink-in is attributed to the dislocation activity in the individual crystal structure: large dislocation activities were found under the pile-up and little dislocation activities under the sink-in, only limited to the indenter tip. Results from a finite element analysis under an isotropic elasto-plastic condition by varying the hardness-to-modulus ratio show that high hardness-to-modulus ratio results in pile-up and the lower ratio results in sink-in. This was associated with the susceptibility to plasticity and the elastic recovery for individual phases of the AlCoCrFeNi high entropy alloy. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
73. Maximum pile-up heights for grounded ice rubble.
- Author
-
Barker, A. and Timco, G.W.
- Subjects
- *
SEA ice , *THICKNESS measurement , *MATHEMATICAL bounds , *NUMERICAL calculations , *DATA analysis - Abstract
Large grounded ice features can be found in all regions of the world where there is moving ice. This paper compiles over 230 reported ice pile-ups from several international locations including the Baltic Sea, Gulf of Bothnia, Caspian Sea, Lake Simcoe, Stonehaven Harbour (New Brunswick), west Newfoundland, Alaskan and Canadian Beaufort Sea, Norton Sound, Bering Sea, Somerset Island and offshore Sakhalin. The NRC Particle-in-Cell numerical model is used to augment the data. A plot of the rubble sail height as a function of the ice block thickness shows considerable scatter but a general increase in sail height with increasing ice thickness. The scatter in the data is real and is attributed to the fact that the conditions for producing the maximum sail height are not met in most situations. An upper bound of the data can be represented by H s ,max = 19 h B 0.33 where H s ,max is the maximum pile-up height (in m), and h B is the block ice thickness (in m). This equation covers the data range up to 2 m in ice thickness. The data also clearly show that high pile-ups (on the order of 10 to 12 m high) can be generated from thin ice less than 0.5 m thick. Further, sail heights up to 30 m are possible for thicker sea ice. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
74. Correcting for contact area changes in nanoindentation using surface acoustic waves.
- Author
-
Beck, Christian E., Hofmann, Felix, Eliason, Jeffrey K., Maznev, Alexei. A., Nelson, Keith A, and Armstrong, David E.J.
- Subjects
- *
SOUND waves , *NANOINDENTATION , *ION implantation , *TUNGSTEN , *ELASTICITY - Abstract
Nanoindentation is extensively used to quantify nano-scale mechanical behaviour. A widely-used assumption is that a well-defined, material-independent relationship exists between the indentation depth and indenter contact area. Here we demonstrate that this assumption is violated by ion-implanted tungsten, where pileup around the indenter tip leads to substantial changes in contact area. Using high accuracy surface acoustic wave measurements of elastic modulus, we are able to correct for this effect. Importantly we demonstrate that a priori knowledge of elastic properties can be readily used to compensate for pileup effects in nanoindentation without the need for any further measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
75. Influence of grain wear on material removal behavior during grinding nickel-based superalloy with a single diamond grain.
- Author
-
Dai, Chenwei, Ding, Wenfeng, Xu, Jiuhua, Fu, Yucan, and Yu, Tianyu
- Subjects
- *
NICKEL alloys , *MECHANICAL wear , *MECHANICAL behavior of materials , *DIAMONDS , *HEAT resistant alloys , *THICKNESS measurement - Abstract
In order to explore the effect of grain wear on material removal behavior during grinding nickel-based superalloy Inconel 718, the grinding experiment with a single diamond grain was carried out. The variations of grain wear, grinding force and force ratio, and pile-up ratio were investigated under the conditions of undeformed chip thickness (UCT) ranging from 0.2 to 1 µm. The results show that a critical UCT value, such as 0.3 µm, could be determined according to the pile-up ratio and could also be used to quantify the material removal process. The wear behavior of a diamond grain shows four types, such as crescent depression on the rake face, abrasion on the flank face, grain micro-fracture, and grain macro-fracture. Furthermore, these classifications are determined by the dwell time of rubbing, ploughing and cutting at different UCT values applied. The grinding force ratio increases with increasing of the negative rake angle of a diamond grain. In the rubbing and ploughing stages, the material removal efficiency is proportional to the wear width on the rake face. However, in the cutting stage, the material removal efficiency is diminished in the absence process of crescent depression. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
76. Scratching of nanocrystalline metals: A molecular dynamics study of Fe.
- Author
-
Gao, Yu and Urbassek, Herbert M.
- Subjects
- *
IRON crystals , *NANOCRYSTALS , *MOLECULAR dynamics , *CRYSTAL grain boundaries , *INDENTATION (Materials science) , *SINGLE crystals - Abstract
Using molecular dynamics simulation we study the influence of grain boundaries on the indentation and scratching of Fe crystals by a hard repulsive tip. By comparing the results for nanocrystalline Fe with those for single crystals, the effect of grain boundaries on the normal and tangential forces, the hardness and the friction coefficient can be determined. We use nanocrystals of various grain sizes, and also vary the tip diameter. This allows us to determine the influence of these parameters on the scratching process. We find that with increasing size of the grains relative to the indenter the normal force needed for indentation or in scratch increases, and the friction coefficient is reduced. However, grain orientation has a dominant effect on the pile-up shape, and also influences the friction coefficient strongly. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
77. The Effect of High Background and Dead Time of an InGaAs/InP Single-Photon Avalanche Photodiode on the Registration of Microsecond Range Near-Infrared Luminescence
- Author
-
Kevin Berwick, K. A. Gonchar, Peter S. Parfenov, Alexander V. Baranov, A. P. Litvin, Anatoly V. Fedorov, D. A. Onishchuk, and Russian Science Foundation
- Subjects
Photon ,Materials science ,Electrical and Electronics ,Near-infrared detector ,01 natural sciences ,counting loss ,law.invention ,010309 optics ,law ,0103 physical sciences ,photon counting ,010302 applied physics ,business.industry ,Dead time ,Avalanche photodiode ,Laser ,Atomic and Molecular Physics, and Optics ,Photon counting ,Electronic, Optical and Magnetic Materials ,Microsecond ,pile-up ,Optoelectronics ,single-photon avalanche diode (SPAD) ,Photonics ,business ,Luminescence - Abstract
The effects of a high background count and a microsecond dead time interval on a gated InGaAs/InP single-photon avalanche photodiode (SPAD) during microsecond luminescence decay registration are discussed. It is shown that the background count rate of the SPAD limits its use for time-resolved and steady-spectral measurements, and that a “pile-up” effect appears in the microsecond range.
- Published
- 2020
78. Effects and correctability of pile‑up distortion using established figures of merit in time‑domain diffuse optics at extreme photon rates
- Author
-
Elisabetta Avanzi, Anurag Behera, Davide Contini, Lorenzo Spinelli, Alberto Dalla Mora, and Laura Di Sieno
- Subjects
Single photon statistics, time domain diffuse optics, pile-up ,Multidisciplinary ,time domain diffuse optics ,pile-up ,Single photon statistics - Abstract
Time-domain diffuse optics (TD-DO) allows one to probe diffusive media with recognized advantages over other working domains but suffers from a poor signal-to-noise ratio (SNR) resulting from the need to build-up the histogram of single-photon arrival times with maximum count rates (CR) of few percent of the laser pulse rate to avoid the so-called “pile-up” distortion. Here we explore the feasibility of TD-DO under severe pile-up conditions with a systematic in-silico/experimental study evaluating the effects and correctability of the distortion by means of shared figures of merit. In-silico, we demonstrate that pile-up correction allows one the retrieval of homogeneous optical properties with average error 99%, while the optimal CR needed to detect localized perturbation was found to be 83%. Experiments reported here confirm these findings despite exhibiting higher accuracy errors in the retrieval of homogeneous optical properties and higher noise in the detection of localized absorption perturbations, but in line with the state-of-the-art systems. This work validates a new working regime for TD-DO, demonstrating an increase of the SNR at constant acquisition time, but also potentially leading in the future to previously unrealizable measurements of dynamic phenomena or in spatial scanning applications.
- Published
- 2022
79. Point spread function of photon-counting detectors under pile-up conditions
- Author
-
Leibold, D., van der Sar, S.J., Goorden, M.C., and Schaart, D.R.
- Subjects
pile-up ,medical imaging ,photon-counting detectors ,X-ray detectors ,energy response ,point spread function - Abstract
X-ray detectors with photon-counting capabilities promise to revolutionise medical imaging. For an efficient comparison of detectors of various materials and with different setup choices, reliable detector performance measures are needed. The detector point spread function (PSF) is a commonly used measure, which describes the spatial response of an X-ray detector to the irradiation of a single pixel, given the energy spectrum of the source. In the case of an energy-resolving PCD, the detector PSF is typically derived for each energy bin and characterises its resolution. Moreover, it is commonly determined under low count rate conditions, to avoid dead time and pile-up related distortions. Under these assumptions, the PSF can be determined in a straightforward manner, but does not fully characterise the detector under all conditions encountered in clinical practice. This is especially true since the number of registered counts per energy bin depends on both the incident spectrum and the fluence rate, due to pile-up and dead time. We therefore propose a new metric, the differential point spread function (dPSF), which describes the change in the output count rate due to a small change in the input spectrum, for a given combination of incident spectrum and fluence rate. The dPSF can be used to characterize the spectral and spatial performance of a PCD under high-fluence conditions, i.e. when its response becomes non-linear. We illustrate the use of the dPSF by performing a Monte-Carlo study in which we compare the response of direct-conversion and scintillationbased PCDs at different fluence rates.
- Published
- 2022
80. Measurement of Total and Differential Charm Cross Sections at 7 TeV with the CMS Detector
- Author
-
Jomhari, Nur Zulaiha, Geiser, Achim, and Gallo-Voss, Elisabetta
- Subjects
electron ,kinematics, phase space ,lepton ,CMS ,p p, scattering ,cross section, measured ,trigger ,GeV ,LHC-B ,CERN LHC Coll ,pile-up ,muon ,PYTHIA ,TeV ,High Energy Physics::Experiment ,data management ,Detectors and Experimental Techniques ,charm ,statistical - Abstract
Dissertation, Universität of Hamburg, 2022; Verlag Deutsches Elektronen-Synchrotron DESY, DESY-THESIS 128 pp. (2022). doi:10.3204/PUBDB-2022-01666 = Dissertation, Universität of Hamburg, 2022, This thesis presents the total charm cross section measurement in the full kinematic phase space of pp collisions at the LHC. It was performed using open data (2010) from the CMSexperiment at a center-of-mass energy of 7 TeV due to its special low p$_{\mathrm{T}}$ tracking. The integrated luminosity is determined in a data-driven way using unprescaled triggers as a basis and information from the luminosity database of the CMS collaboration to be 3.00 nb$^{−1}$. This is the first and so far only measurement of charm at 7 TeV in CMS. The charm reconstruction was done through the D$^{* \pm} \rightarrow$ K$^{\mp}$ π$^{\pm}$ π$^{\pm}$ final state. Since this analysis is statistically limited, one of the main strategies of this analysis is to use pileup vertices from muon and electron datasets as a physics resource. The D$^{* \pm}$ measured cross section is 1096 $\pm$ 133 (stat.) µb in the phase space of 0 < |y| < 2 and p$_{\mathrm{T}}$ > 1 GeV, and also 2 < |y| < 2.5 and p$_{\mathrm{T}}$ > 8 GeV, in which the double-differentially measured cross sections were integrated. This analysis has covered the largest possible kinematic phase space at the LHC from a single experiment with p$_{\mathrm{T}}$ down to 1 GeV. This includes three new phase space regions where no D* cross section measurement has been done before at the LHC for p$_{\mathrm{T}}$ below 3.5 GeV. The total charm cross section is then extracted from this analysis. By combining with the LHCb measurements, which covered most of the region outside the CMS detector coverage, and some extrapolation from PYTHIA and FONLL, the total charm cross section for the full kinematic phase space is measured to be 9.40 $\pm$ 0.45 (statistical) $^{+ 2.50}_ {− 0.95}$ (FONLL/PYTHIA) mb with an extrapolation factor of 1.4 throughout all phase space. This is the smallest extrapolation achieved for the total charm cross section at the LHC so far. Apart from the main result of this thesis, the validation of CMS Open Data with the Higgs to four leptons example at 7 (2011) and 8 (2012) TeV is also shown. This validation reproduces approximately part of the CMS Higgs discovery publication at 7 and 8 TeV with partial datasets in CMS Open Data. The purpose of the validation is to give an example of using CMS Open Data for educational purposes and show its potential for research applications. The Higgs peak is extracted at a significance of two standard deviations, compared to the original publication, which is 3.2 standard deviations in this channel alone. The corresponding example code was publicly released together with the CMS primary dataset for 2012. It has been used as reference by many ever since., Published by Verlag Deutsches Elektronen-Synchrotron DESY
- Published
- 2022
81. Particle Flow Calorimetry
- Author
-
Ruchti, Randal and Krüger, Katja
- Subjects
Physics - Instrumentation and Detectors ,background ,Physics::Instrumentation and Detectors ,measurement methods ,energy resolution ,FOS: Physical sciences ,energy [jet] ,Instrumentation and Detectors (physics.ins-det) ,particle flow ,pile-up ,calorimeter ,energy [hadron] ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Nuclear Experiment - Abstract
The motivation for PF calorimetry is to experimentally measure the energy of hadron jets with excellent resolution. In particle flow designs, sigma(E)/E < 5% should be possible for a range of jet energies from 50 GeV to 250 GeV, important particularly for experiments at electron-positron colliders (ILC, CLIC, FCCee, CEPC). The high granularity, which is essential for PF calorimetry, can also be very beneficial for removal of background from pile-up on an event-by-event basis making such calorimeters an attractive approach for hadron collider experiments, for example the HGCAL under construction for CMS at the CERN HL-LHC., Submitted to the Proceedings of Snowmass2021, Instrumentation Frontier, Calorimetry
- Published
- 2022
- Full Text
- View/download PDF
82. Machine Learning Techniques for Pile-Up Rejection in Cryogenic Calorimeters
- Author
-
G. Fantini, A. Armatol, E. Armengaud, W. Armstrong, C. Augier, F. T. Avignone, O. Azzolini, A. Barabash, G. Bari, A. Barresi, D. Baudin, F. Bellini, G. Benato, M. Beretta, L. Bergé, M. Biassoni, J. Billard, V. Boldrini, A. Branca, C. Brofferio, C. Bucci, J. Camilleri, S. Capelli, L. Cappelli, L. Cardani, P. Carniti, N. Casali, A. Cazes, E. Celi, C. Chang, M. Chapellier, A. Charrier, D. Chiesa, M. Clemenza, I. Colantoni, F. Collamati, S. Copello, F. Cova, O. Cremonesi, R. J. Creswick, A. Cruciani, A. D’Addabbo, G. D’Imperio, I. Dafinei, F. A. Danevich, M. de Combarieu, M. De Jesus, P. de Marcillac, S. Dell’Oro, S. Di Domizio, V. Dompè, A. Drobizhev, L. Dumoulin, M. Fasoli, M. Faverzani, E. Ferri, F. Ferri, F. Ferroni, E. Figueroa-Feliciano, J. Formaggio, A. Franceschi, C. Fu, S. Fu, B. K. Fujikawa, J. Gascon, A. Giachero, L. Gironi, A. Giuliani, P. Gorla, C. Gotti, P. Gras, M. Gros, T. D. Gutierrez, K. Han, E. V. Hansen, K. M. Heeger, D. L. Helis, H. Z. Huang, R. G. Huang, L. Imbert, J. Johnston, A. Juillard, G. Karapetrov, G. Keppel, H. Khalife, V. V. Kobychev, Yu. G. Kolomensky, S. Konovalov, Y. Liu, P. Loaiza, L. Ma, M. Madhukuttan, F. Mancarella, R. Mariam, L. Marini, S. Marnieros, M. Martinez, R. H. Maruyama, B. Mauri, D. Mayer, Y. Mei, S. Milana, D. Misiak, T. Napolitano, M. Nastasi, X. F. Navick, J. Nikkel, R. Nipoti, S. Nisi, C. Nones, E. B. Norman, V. Novosad, I. Nutini, T. O’Donnell, E. Olivieri, C. Oriol, J. L. Ouellet, S. Pagan, C. Pagliarone, L. Pagnanini, P. Pari, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, V. Pettinacci, C. Pira, S. Pirro, D. V. Poda, T. Polakovic, O. G. Polischuk, S. Pozzi, E. Previtali, A. Puiu, A. Ressa, R. Rizzoli, C. Rosenfeld, C. Rusconi, V. Sanglard, J. Scarpaci, B. Schmidt, V. Sharma, V. Shlegel, V. Singh, M. Sisti, D. Speller, P. T. Surukuchi, L. Taffarello, O. Tellier, C. Tomei, V. I. Tretyak, A. Tsymbaliuk, A. Vedda, M. Velazquez, K. J. Vetter, S. L. Wagaarachchi, G. Wang, L. Wang, B. Welliver, J. Wilson, K. Wilson, L. A. Winslow, M. Xue, L. Yan, J. Yang, V. Yefremenko, V. Yumatov, M. M. Zarytskyy, J. Zhang, A. Zolotarova, S. Zucchelli, Fantini, G, Armatol, A, Armengaud, E, Armstrong, W, Augier, C, Avignone, FT, Azzolini, O, Barabash, A, Bari, G, Barresi, A, Baudin, D, Bellini, F, Benato, G, Beretta, M, Berge, L, Biassoni, M, Billard, J, Boldrini, V, Branca, A, Brofferio, C, Bucci, C, Camilleri, J, Capelli, S, Cappelli, L, Cardani, L, Carniti, P, Casali, N, Cazes, A, Celi, E, Chang, C, Chapellier, M, Charrier, A, Chiesa, D, Clemenza, M, Colantoni, I, Collamati, F, Copello, S, Cova, F, Cremonesi, O, Creswick, RJ, Cruciani, A, D'Addabbo, A, D'Imperio, G, Dafinei, I, Danevich, FA, de Combarieu, M, De Jesus, M, de Marcillac, P, Dell'Oro, S, Di Domizio, S, Dompe, V, Drobizhev, A, Dumoulin, L, Fasoli, M, Faverzani, M, Ferri, E, Ferri, F, Ferroni, F, Formaggio, J, Franceschi, A, Fu, C, Fu, S, Fujikawa, BK, Gascon, J, Giachero, A, Gironi, L, Giuliani, A, Gorla, P, Gotti, C, Gras, P, Gros, M, Gutierrez, TD, Han, K, Hansen, EV, Heeger, KM, Helis, DL, Huang, HZ, Huang, RG, Imbert, L, Johnston, J, Juillard, A, Karapetrov, G, Keppel, G, Khalife, H, Kobychev, VV, Kolomensky, YG, Konovalov, S, Liu, Y, Loaiza, P, Ma, L, Madhukuttan, M, Mancarella, F, Mariam, R, Marini, L, Marnieros, S, Martinez, M, Maruyama, RH, Mauri, B, Mayer, D, Mei, Y, Milana, S, Misiak, D, Napolitano, T, Nastasi, M, Navick, XF, Nikkel, J, Nipoti, R, Nisi, S, Nones, C, Norman, EB, Novosad, V, Nutini, I, O'Donnell, T, Olivieri, E, Oriol, C, Ouellet, JL, Pagan, S, Pagliarone, C, Pagnanini, L, Pari, P, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pettinacci, V, Pira, C, Pirro, S, Poda, DV, Polakovic, T, Polischuk, OG, Pozzi, S, Previtali, E, Puiu, A, Ressa, A, Rizzoli, R, Rosenfeld, C, Rusconi, C, Sanglard, V, Scarpaci, J, Schmidt, B, Sharma, V, Shlegel, V, Singh, V, Sisti, M, Speller, D, Surukuchi, PT, Taffarello, L, Tellier, O, Tomei, C, Tretyak, VI, Tsymbaliuk, A, Vedda, A, Velazquez, M, Vetter, KJ, Wagaarachchi, SL, Wang, G, Wang, L, Welliver, B, Wilson, J, Wilson, K, Winslow, LA, Xue, M, Yan, L, Yang, J, Yefremenko, V, Yumatov, V, Zarytskyy, MM, Zhang, J, Zolotarova, A, Zucchelli, S, Laboratoire de Cryogénie (LC), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Avignone, F, Bergé, L, Creswick, R, D’Addabbo, A, D’Imperio, G, Danevich, F, Dell’Oro, S, Domizio, S, Dompè, V, Figueroa-Feliciano, E, Fujikawa, B, Gutierrez, T, Hansen, E, Heeger, K, Helis, D, Huang, H, Huang, R, Kobychev, V, Kolomensky, Y, Maruyama, R, Navick, X, Norman, E, O’Donnell, T, Ouellet, J, Poda, D, Polischuk, O, Surukuchi, P, Tretyak, V, Vetter, K, Wagaarachchi, S, Winslow, L, and Zarytskyy, M
- Subjects
neural network ,Convolutional neural network ,hierarchy ,crystal ,Cryogenic calorimeters ,neutrino ,Machine learning ,CUPID ,calorimeter ,[INFO]Computer Science [cs] ,General Materials Science ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Neutrinoless double beta decay ,neutrinoless ,Pile-up ,CUORE ,background ,double-beta decay ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Gran Sasso ,injection ,cryogenics ,efficiency ,mass ,readout ,Convolutional neural networks ,upgrade ,Cryogenic calorimeter ,performance ,Majorana - Abstract
CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li2MoO4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of 100Mo. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency.
- Published
- 2022
83. A high-granularity timing detector for the ATLAS phase-II upgrade: Technical design report
- Author
-
Casado, M.P., Adam Bourdarios, C., Belfkir, M., Berger, N., Costanza, F., Cueto, A., Delmastro, M., Di Ciaccio, L., Franco, L., Goy, C., Guillemin, T., Hryn’ova, T., Jézéquel, S., Koletsou, I., Lafaye, R., Levêque, J., Lorenzo Martinez, N., Portales, L., Sauvan, E., Wingerter-Seez, I., Agaras, M.N., Barbe, W.M., Boumediene, D., Calvet, D., Calvet, S., Donini, J., Jimenez Morales, F.A., Jouve, F., Lambert, D., Madar, R., Manen, S., Megy, T., Nibigira, E., Royer, L., Rustige, L., Santoni, C., Soulier, A., Vandaele, R., Vazeille, F., Collot, J., Crépé-Renaudin, S., Delsart, P.A., Genest, M.H., Hulsken, R., Kuna, M., Lleres, A., Lucotte, A., Malek, F., Portillo Quintero, D.M., Stark, J., Trocmé, B., Agapopoulou, C., Al Khoury, K., Atmani, H., Bassalat, A., Blot, A., Bonis, J., de Vivie De Regie, J.B., Delgove, D., Delporte, C., Duflot, L., Escalier, M., Falou, A.C., Fayard, L., Fournier, D., Ghosh, A., Grivaz, J.-F., Guerguichon, A., Hohov, D., Hrivnac, J., Iconomidou-Fayard, L., Kotsokechagia, A., Lounis, A., Makovec, N., Migayron, A., Morange, N., Perego, M.M., Petroff, P., Puzo, P., Rousseau, D., Rybkin, G., Sacerdoti, S., Schaffer, A.C., Serin, L., Simion, S., Tanaka, R., Trofymov, A., Varouchas, D., Zerwas, D., Zhang, Z., Rahal, G., Aad, G., Barbero, M., Bartolini, G., Calvet, T.P., Coadou, Y., Diaconu, C., Djama, F., Duperrin, A., Feligioni, L., Fortin, E., Guo, Z., Hallewell, G.D., Hubaut, F., Knoops, E.B.F.G., Guirriec, E. Le, Monnier, E., Muanza, S., Nagy, E., Nguyen, H.D.N., Petit, E., Pralavorio, P., Rozanov, A., Strebler, T., Talby, M., Tisserant, S., Toth, J., Vu, N.K., Conforti, S., de La Taille, C., Dinaucourt, P., Martin-Chassard, G., Seguin-Moreau, N., Beau, T., Bernardi, G., Bomben, M., Calderini, G., Camacho Toro, R., Crescioli, F., Derue, F., Hankache, R., Krasny, M.W., Lacour, D., Laforge, B., Laporte, D., Leopold, A., Luise, I., Malaescu, B., Marchiori, G., Nikolic-Audit, I., Nomidis, I., Ocariz, J., Pascual Dominguez, L., Poggioli, L., Ridel, M., Roos, L., Trincaz-Duvoid, S., Zahreddine, J., Andari, N., Bachacou, H., Balli, F., Bauer, F., Besson, N., Boonekamp, M., Chevalérias, T.J.A., Chevalier, L., Deliot, F., Formica, A., Giraud, P.F., Guyot, C., Hassani, S., Jeanneau, F., Kawamoto, T., Khandoga, M., Kolb, M., Laporte, J.F., Mansoulie, B., Meyer, J-P., Moskalets, T., Nicolaidou, R., Ouraou, A., Peyaud, A., Schoeffel, L., Schune, Ph., Schwemling, Ph., Vandenbroucke, M., Xu, T., Institut de Física d’Altes Energies [Barcelone] (IFAE), Universitat Autònoma de Barcelona (UAB), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre d'Investigation Clinique [Rennes] (CIC), Université de Rennes (UR)-Hôpital Pontchaillou-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Laboratoire de Pathologie Comparée (LPC), Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Calcul de l'IN2P3 (CC-IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Organisation de Micro-Électronique Générale Avancée (OMEGA), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CERN-LHC-ATLAS, CERN-HL-LHC, and ATLAS
- Subjects
detector: technology ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,tracking detector: upgrade ,HGTD ,ATLAS ,pile-up ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,semiconductor detector ,High Energy Physics::Experiment ,Detectors and Experimental Techniques ,Pp collisions ,Instrumentation ,time resolution ,Particle Physics - Experiment ,activity report ,performance ,HL-LHC - Abstract
The increase of the particle flux (pile-up) at the HL-LHC with instantaneous luminosities up to L = 7.5 $\times$ 10 $^{34}$ cm $^{-2}$ s $^{-1}$ will have a severe impact on the ATLAS detector reconstruction and trigger performance. The end-cap and forward region where the liquid Argon calorimeter has coarser granularity and the inner tracker has poorer momentum resolution will be particularly affected. A High Granularity Timing Detector (HGTD) will be installed in front of the LAr end-cap calorimeters for pile-up mitigation and luminosity measurement. The HGTD is a novel detector introduced to augment the new all-silicon Inner Tracker in the pseudo-rapidity range from 2.4 to 4.0, adding the capability to measure charged-particle trajectories in time as well as space. Two silicon-sensor double-sided layers will provide precision timing information for minimum-ionising particles with a resolution as good as 30 ps per track in order to assign each particle to the correct vertex. Readout cells have a size of 1.3 mm $\times$ 1.3 mm, leading to a highly granular detector with 3.7 million channels. Low Gain Avalanche Detectors (LGAD) technology has been chosen as it provides enough gain to reach the large signal over noise ratio needed. The requirements and overall specifications of the HGTD will be presented as well as the technical design and the project status. The on-going R\&D effort carried out to study the sensors, the readout ASIC, and the other components, supported by laboratory and test beam results, will also be presented.
- Published
- 2022
84. 32 Mcps time-correlated single photon counting with a single SPAD avoiding pile-up
- Author
-
Serena Farina, Ivan Labanca, Giulia Acconcia, Alberto Ghezzi, Andrea Farina, Cosimo D'Andrea, and Ivan Rech
- Subjects
SPAD ,Fluorescence Microscopy ,TCSPC ,Timing ,Fast FLIM ,Pile-up ,Single Photon Avalanche Diode - Published
- 2022
85. Medipix4, a high granularity four sides buttable pixel readout chip for high resolution spectroscopic X-ray imaging at rates compatible with medical CT scans
- Author
-
Sriskaran, Viros, Sallese, Jean-Michel, and Koukab, Adil
- Subjects
Photon processing ,Timepix ,Medipix ,X-ray imaging ,Front-end electronics ,Charge sharing ,Photon counting ,Hybrid pixel detectors ,Pile-up - Abstract
Medipix4 is the latest member in the Medipix/Timepix family of pixel detector chips aimed at high rate spectroscopic X-ray imaging using high-Z materials. The chip address the limitations of conventional hybrid pixel detectors for X-ray imaging. Its predecessor, Medipix3RX, covered some of those limitations and demonstrated the possibility of spectroscopic X-ray imaging at a fine pitch while keeping the spectral fidelity using a charge-sharing correction algorithm. However, its use in medical imaging, synchrotron applications, material analysis, and other applications highlighted some limitations. Indeed, the 3-side buttable architecture in Medipix3RX and other actual X-ray imaging systems introduces a dead zone in the imaging that closes the door to constructing large-area detectors. Moreover, the improvement in the dynamic energy range, the count-rate capability, and the energy resolution will benefit those applications. This thesis describes the Medipix4 chip implementation and discusses the proposed new pulse processing electronics in the analog pixel. The readout architecture relies on single photon counting with charge sharing correction for the energy binning of incoming hits. The chip consists of 320 x 320 pixels of 75 µm x 75 µm. It can work in Fine Pitch Mode (FPM) with 75 µm pixel pitch and two threshold bins per pixel or in Spectroscopic Mode (SM) with 150 µm pitch and up to eight energy threshold bins. Unlike its predecessor, Medipix3RX, it will be possible to tile the ASIC fully in both x and y directions, permitting seamless large area coverage. The chip size is 24 mm x 24 mm and covers 99.37% active area when using TSV connections only. The ASIC is designed in a commercial CMOS 130 nm process technology with a power supply of 1.2 V. The new analog front-end architecture improves the energy dynamic range, the count-rate capability, and the energy resolution compared with Medipix3RX while the charge sharing correction is still supported. Those improvements come at the expense of power consumption and spatial resolution. The latter should not be a problem since studies have shown that the optimal pixel pitch for CdTe or CdZnTe should be slightly larger than the Medipix3RX pixel in order to account for a larger fraction of fluorescence photons. Each analog pixel contains a Charge Sensitive Amplifier with a DC leakage compensation network up to 50 nA. Two pulse-shaping circuits in the second stage implement the charge sharing correction mode. The new shaper amplifier has a reduced baseline drift at high flux compared to the amplifier implemented in the previous Medipix/Timepix chips. The implemented ASIC has three modes of operation: High Dynamic Range Mode (HDRM), Low Noise Mode (LNM), and Ultra-Fast Mode (UFM). In HDRM, the chip can process X-ray photons with energies up to 154 keV with a CdTe sensor, implying 40% improvement compared to Medipix3RX. In LNM, the expected energy resolution has been improved by 55 %. In UFM, the post-layout simulated count-rate capability of the front-end is 19 x 10^6 photons.mm^(-2).s^(-1) at 10% hit loss for a 150 µm pixel pitch and not affected by charge sharing effect, showing an improvement by a factor of 5. In addition, the pixel includes a digital pile-up filtering method that improves spectral fidelity at high rates.
- Published
- 2022
- Full Text
- View/download PDF
86. Star clusters as cosmic ray accelerators
- Author
-
Gabici, Stefano, HEP, INSPIRE, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,particle ,accelerator ,turbulence ,FOS: Physical sciences ,feedback ,acceleration ,cavity ,flux ,massive ,star ,cosmic radiation ,pile-up ,gas ,supernova ,galaxy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena ,cluster ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,fine structure ,energy - Abstract
Massive stars blow powerful winds and eventually explode as supernovae. By doing so, they inject energy and momentum in the circumstellar medium, which is pushed away from the star and piles up to form a dense and expanding shell of gas. The effect is larger when many massive stars are grouped together in bound clusters or associations. Large cavities form around clusters as a result of the stellar feedback on the ambient medium. They are called superbubbles and are characterised by the presence of turbulent and supersonic gas motions. This makes star clusters ideal environments for particle acceleration, and potential contributors to the observed Galactic cosmic ray intensity. The acceleration of particles at star clusters and in their surroundings may provide a major contribution to the observed CR flux. Moreover, it may explain the fine structures observed in the chemical composition of these particles, and possibly provide a solution to the puzzle of the origin of cosmic rays of energies in the PeV range and beyond., Comment: 8 pages, 0 figures (sorry!). Highlight talk at GAMMA2022, Barcelona, 4-8 July 2022
- Published
- 2022
87. Above pile-up fluorescence microscopy with a 32 Mc/s single-channel time-resolved SPAD system
- Author
-
Ivan Labanca, Giulia Acconcia, Serena Farina, Alberto Ghezzi, Ivan Rech, Andrea Farina, and Cosimo D'Andrea
- Subjects
Fluorescence microscopy ,Materials science ,business.industry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,010309 optics ,SPAD ,Optics ,0103 physical sciences ,Fluorescence microscope ,Channel (broadcasting) ,0210 nano-technology ,Pile ,business ,Pile-up - Abstract
One of the major drawbacks of time-correlated single-photon counting (TCSPC) is generally represented by pile-up distortion, which strongly bounds the maximum acquisition speed to a few percent of the laser excitation rate. Based on a previous theoretical analysis, recently we presented the first, to the best of our knowledge, low-distortion and high-speed TCSPC system capable of overcoming the pile-up limitation by perfectly matching the single-photon avalanche diode (SPAD) dead time to the laser period. In this work, we validate the proposed system in a standard fluorescence measurement by comparing experimental data with the reference theoretical framework. As a result, a count rate of 32 Mc/s was achieved with a single-channel system still observing a negligible lifetime distortion.
- Published
- 2021
88. Characteristics of Sea Ice floes Run-up caused by Tsunami Considering Ice Jams and Ice Pile-ups around Structures.
- Author
-
Shinji Kioka, Takahiro Takeuchi, and Yasunori Watanabe
- Abstract
The article discusses research which explored the characteristics of sea ice floes run-up due to tsunamis dammed by the formation of ice jams and ice pile-ups between the structures. Topics discussed include the model experiment on tsunami run-up with ice floes, overview of tsunami run-up flow and fundamental characteristics of the tsunami at the time of ice jam formation.
- Published
- 2015
89. Application of Fluorescence Lifetime Imaging Microscopy of DNA Binding Dyes to Assess Radiation-Induced Chromatin Compaction Changes
- Author
-
Elham Abdollahi, Gisela Taucher-Scholz, and Burkhard Jakob
- Subjects
FLIM microcopy ,Hoechst 34580 ,Syto 13 ,chromatin compaction ,histone deacetylation inhibitor (HDACi) ,irradiation ,pile-up ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions—but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction.
- Published
- 2018
- Full Text
- View/download PDF
90. The ATLAS Tile Calorimeter performance and its upgrade towards the High-Luminosity LHC
- Author
-
Vaslin, Louis, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), and ATLAS Tile Calorimeter Group
- Subjects
wavelength shifter: fibre ,Physics::Instrumentation and Detectors ,ATLAS ,calibration ,pile-up ,calorimeter: hadronic ,muon: cosmic radiation ,electronics: readout ,High Energy Physics::Experiment ,upgrade ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,activity report ,performance ,Particle Physics - Experiment ,electronics: design - Abstract
The Tile Calorimeter (TileCal) is a sampling hadronic calorimeter covering the central region of the ATLAS experiment. TileCal uses steel as absorber and plastic scintillators as active medium. The scintillators are read-out by the wavelength shifting fibres coupled to the photomultiplier tubes (PMTs). The analogue signals from the PMTs are amplified, shaped, digitized by sampling the signal every 25 ns and stored on detector until a trigger decision is received. The TileCal front-end electronics reads out the signals produced by about 10000 channels measuring energies ranging from about 30 MeV to about 2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated to better than 1% using radioactive source, laser and charge injection systems. The performance of the calorimeter has been measured and monitored using calibration data, cosmic ray muons and the large sample of proton-proton collisions acquired in 2009-2018 during LHC Run-1 and Run-2. The High-Luminosity phase of LHC, delivering five times the LHC nominal instantaneous luminosity, is expected to begin in 2028. TileCal will require new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and to ensure better performance under high pile-up conditions. Both the on- and off-detector TileCal electronics will be replaced during the shutdown of 2025-2027. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the data integrity and reliability of the system. New electronics prototypes were tested in laboratories as well as in beam tests. Results of the calorimeter calibration and performance during LHC Run-2 are summarized, the main features and beam test results obtained with the new front-end electronics are also presented.
- Published
- 2021
91. Software emulator of nuclear pulse generation with different pulse shapes and pile-up.
- Author
-
Pechousek, Jiri, Konecny, Daniel, Novak, Petr, Kouril, Lukas, Kohout, Pavel, Celiktas, Cuneyt, and Vujtek, Milan
- Subjects
- *
PULSE generators , *SCINTILLATION counters , *PILE-up (Spectrometry) , *NUCLEAR counters , *EMULATION software - Abstract
The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
92. Estimation of Tensile Properties of Pressure Vessel Steel Through Automated Ball Indentation and Small Punch Test.
- Author
-
Arunkumar, S. and Prakash, Raghu
- Abstract
Extraction of mechanical properties of in-service materials through small specimen test techniques has become attractive in the recent years. Of the available small specimen test techniques, automated ball indentation (ABI) and small punch test (SPT) methods have proved to be more promising. These test methods are basically non-destructive in nature and are proficient enough to extract the flow properties of the materials using small volume specimen. In this work, tensile properties of a pressure vessel steel (P12) have been estimated through ABI and SPT. The objective is to compare the capability of these test methods in determining the tensile properties. The influence of lubrication (between the indenter and the specimen) on the ABI response is also investigated. The ABI response is found to be similar and the effect on the tensile properties was under 2 %. The tensile properties estimated from ABI and SPT are found to be in good agreement with conventional tensile test results. Nevertheless, in case of SPT, the error in the estimation of yield strength and ultimate tensile strength using empirical correlations is significantly high. However, the use of analytical formulations to convert the SPT load-displacement response to stress-strain curve are found to be reliable, since the error in the estimated properties is considerably less. The ABI process is numerically simulated to study the stress-strain field beneath the indenter. The maximum strain occurs at the edge of the contact indicating the material displacement along the radial direction. The plastic zone beneath the indenter resemble hemispherical shape which is in agreement with the expanding cavity model. The nature of stress changes from compressive (right below the indentation axis) to tensile at the edge of contact. This indicates that radial cracks may initiate on the specimen and propagate outwards. The pile-up is significantly higher in the case of frictionless contact between the indenter and the specimen but found to converge for a value of around 0.2. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
93. Performance of pile-up mitigation techniques for jets in pp collisions with the ATLAS detector.
- Author
-
Testa, M.
- Subjects
- *
PILE-up (Spectrometry) , *PARTICLE detectors , *ENERGY density , *COLLISIONS (Nuclear physics) , *PARTICLE interactions - Abstract
The large rate of multiple simultaneous proton–proton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. The methods employed to correct for the impact of pile-up on jet energy, shapes and multiplicity with the ATLAS detector are presented here. They include energy correction techniques based on estimates of the average pile-up energy density and jet-to-vertex association techniques. Extensions of these methods to reduce the impact of pile-up on jet shapes use both subtraction and grooming procedures. Prospects for pile-up suppression at the HL-LHC are also shown. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
94. Technique for Recovering Pile-Up Events from Microcalorimeter Data.
- Author
-
Wulf, D., Jaeckel, F., McCammon, D., and Morgan, K.
- Subjects
- *
PILE-up (Spectrometry) , *CALORIMETERS , *PULSE amplitude modulation , *PIXELS , *CALIBRATION , *SIGNAL processing - Abstract
We report here a technique for processing microcalorimeter data that offers improved live-time over conventional optimal filtering techniques without loss of spectral resolution. Separate filters optimized for pulse amplitude and pulse arrival time (constructed in the usual way from the averaged signal and noise spectral densities) are applied to the entire pixel data stream. Pulses in the resulting filtered streams are then simultaneously fit as the sum of scaled and shifted copies of an isolated filtered pulse template. Analysis using calibration data from the University of Wisconsin/Goddard Space Flight Center X-ray quantum calorimeter sounding rocket payload demonstrates the ability of this technique to recover pulses separated by as little as the rise-time of the detectors without observable spectral broadening. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
95. The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation.
- Author
-
Hardiman, M., Vaughan, T.J., and McCarthy, C.T.
- Subjects
- *
HYDROSTATIC stress , *PILE-up (Spectrometry) , *VISCOELASTICITY , *NANOINDENTATION , *ELASTIC modulus - Abstract
It is well known that a clear disparity exists between the elastic modulus determined using macroscopic tensile testing of polymers and those determined using nanoindentation, with indentation moduli generally overestimating the elastic modulus significantly. The effects of pile-up, viscoelasticity and hydrostatic stress on the indentation modulus of an epoxy matrix material are investigated. An analysis of residual impressions using scanning probe microscopy indicates that material pile-up is insignificant. Viscous effects are negated by increasing the time on the sample during the loading/hold segment phases of the indentation test, and by calculating the contact stiffness at a drift-insensitive point of the unloading curve. Removing the effects of viscous deformation reduces the modulus by 10–13%, while also significantly improving the non-liner curve fitting procedure of the Oliver and Pharr method. The effect of hydrostatic stress on the indentation modulus is characterised using relations from literature, reducing the measured property by 16%. Once viscous and hydrostatic stress effects are accounted for, the indentation modulus of the material compares very well with the bulk tensile modulus, and modifications to standard indentation protocols for polymers are proposed. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
96. Strongly non-local modelling of dislocation transport and pile-up.
- Author
-
Rezaei Mianroodi, Jaber, Peerlings, Ron, and Svendsen, Bob
- Subjects
- *
PILE-up (Spectrometry) , *MATHEMATICAL continuum , *APPROXIMATION theory , *DISLOCATION structure , *INFINITY (Mathematics) , *STRAINS & stresses (Mechanics) - Abstract
The purpose of this work is the continuum modelling of transport and pile-up of infinite discrete dislocation walls driven by non-local interaction and external loading. To this end, the underlying model for dislocation wall interaction is based on the non-singular Peierls–Nabarro (PN) model for the dislocation stress field. For simplicity, attention is restricted to walls consisting of single-sign dislocations and to continuous wall distributions on a single glide plane. In this context, the influence of strongly non-local (SNL; long-range) interaction, and its approximation as weakly non-local (WNL; short-range) are studied in the context of interaction- and external-load-driven wall pile-up at a boundary. The pile-up boundary is modelled via a spatially dependent dislocation mobility which decreases to zero at the boundary. The pile-up behaviour predicted by the current SNL-based continuous wall distribution modelling is consistent with that predicted by discrete wall distribution modelling. Both deviate substantially from the pile-up behaviour predicted by WNL-based continuous wall distribution modelling. As such, it is clearly essential to account in continuum models for the intrinsic SNL character of the interaction between same-sign dislocations ‘close’ to the boundary. Gradient-based WNL ‘approximation’ of this interaction is not justified. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
97. Nanoindentation of solvent-cast and compression-moulded poly(lactic-co-glycolic acid) to determine elastic modulus and hardness.
- Author
-
Shirazi, Reyhaneh Neghabat, Rochev, Yury, and McHugh, Peter
- Subjects
- *
NANOINDENTATION , *SOLVENTS , *COMPRESSION loads , *ELASTIC modulus , *POLYLACTIC acid , *HARDNESS - Abstract
Nano- and micro-mechanical properties of solvent-cast and compression-moulded poly(lactic-co-glycolic acid) materials were investigated. Nanoindentation experiments were performed at different indentation depths and used to investigate the elastic modulus, hardness, contact stiffness, plasticity index and indentation pile-up behaviour of the material for a range of loading and unloading rates. The solvent-cast material was more elastically compliant and plastically softer than the compression-moulded material, and it also displayed lower work hardening characteristics. Loading rate dependence was found to be relatively insignificant. The measured elastic modulus and hardness were strongly depth dependent for both forms of the material, for indentations less than 3000 nm. The results allowed recommendations to be made on the choice of test protocol parameters for reliable nanoindentation testing of this material. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
98. Investigation of Pile-Up Behavior for Thermal Barrier Coatings Under Elevated-Temperature Indentation.
- Author
-
Zhaoliang Qu, Yongmao Pei, Rujie He, and Daining Fang
- Subjects
- *
INDENTATION (Materials science) , *THERMAL barrier coatings , *METALS , *THERMOMECHANICAL treatment , *FINITE element method , *MODULUS of elasticity - Abstract
The elevated-temperature indentation has been utilized to measure the elevated-temperature mechanical properties of thermal barrier coatings (TBCs), which have a major influence on their thermomechanical characteristics and failures. In this paper, the pile-up phenomenon of TBCs under elevated-temperature indentation was investigated, and a characterization method for Young's modulus of TBCs was proposed. According to the dimensional analysis and finite-element method, a critical temperature-dependent factor was conducted as the criterion for pile-up behavior. Some experiment results agreed fairly well with the criterion. Then, the pile-up behavior of TBCs at elevated temperature was studied. It was found that the pile-up behavior depended on the temperature-dependent factor and got larger with increasing temperature. Finally, a characterization method was proposed to extract the Young's modulus of TBCs, which was found to be more suitable for elevated-temperature indentation. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
99. Digital Silicon Photomultipliers With OR/XOR Pulse Combining Techniques.
- Author
-
Gnecchi, Salvatore, Dutton, Neale A. W., Parmesan, Luca, Rae, Bruce R., Pellegrini, Sara, McLeod, Stuart J., Grant, Lindsay A., and Henderson, Robert K.
- Subjects
- *
PHOTOMULTIPLIERS , *ELECTRON tubes , *OPTOELECTRONIC devices , *PILE-up (Spectrometry) , *POSITRON emission tomography - Abstract
A recently proposed XOR-based digital silicon photomultiplier (dSiPM) is compared against the OR-based counterpart. We show experimental data from a set of single-photon avalanche diode (SPAD) pixel arrays in 130-nm CMOS process with selectable OR tree and XOR tree for direct comparison. We demonstrate how XOR-based dSiPMs solve the limitation caused by monostable circuits and reach higher maximum count rates compared with optimized OR-based dSiPMs. The increased throughput of the SPAD array allows higher sampling rates for the digitization of the light signal enhancing dynamic range and linearity. [ABSTRACT FROM PUBLISHER]
- Published
- 2016
- Full Text
- View/download PDF
100. Effects of loading rate on development of pile-up during indentation creep of polycrystalline copper.
- Author
-
Chen, Jian, Shen, Yuanfang, Liu, Wenlin, Beake, Ben D., Shi, Xiangru, Wang, Zengmei, Zhang, Yao, and Guo, Xinli
- Subjects
- *
POLYCRYSTALS , *NANOINDENTATION , *MATERIAL plasticity , *HARDENABILITY of metals , *PILE-up (Spectrometry) , *CREEP (Materials) - Abstract
Nanoindentation tests with loading rates spanning three orders of magnitude were carried out on annealed polycrystalline copper. In addition to the hardness increasing with loading rate, the formation and development of pile-up around the indentation sites were also found to be strongly rate-dependent. The development of pile-up with increased time at peak load was found to be sensitive to the prior loading rate, being much larger for tests at 50 mN/s than at 0.05 mN/s. The underlying mechanisms were investigated in terms of the kinetic aspects of the nucleation and interactions of dislocations, and can be well explained by the activation volume and the strain gradient plasticity theory. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.