Pan, Yun, Pan, Xiaoli, Zhuang, Danyan, Zhou, Ying, Xue, Jiangyang, Wu, Shanshan, Chen, Changshui, and Li, Haibo
Background: Noninvasive prenatal testing (NIPT) is the most common method for prenatal aneuploidy screening. Low fetal fraction (LFF) is the primary reason for NIPT failure. Consequently, factors associated with LFF should be elucidated for optimal clinical implementation of NIPT. Methods: In this study, NIPT data from January 2019 to December 2022 from the laboratory records and obstetrical and neonatal data from the electronic medical records were collected and analyzed. Subjects with FF >3.50% were assigned to the control group, subjects with FF <3.50% once were assigned to the LFF group, and subjects with FF <3.50% twice were assigned to the repetitive low fetal fraction (RLFF) group. Factors, including body mass index (BMI), gestational age, maternal age, twin pregnancy, and in vitro fertilization (IVF) known to be associated with LFF were assessed by Kruskal–Wallis H test and logistic regression. Clinical data on first trimester pregnancy-associated plasma protein-A (PAPP-A), beta-human chorionic gonadotropin (β-hCG), gestational age at delivery, birth weight at delivery, and maternal diseases were obtained from the hospital's prenatal and neonatal screening systems (twin pregnancy was not included in the data on gestational age at delivery and the control group did not include data on maternal diseases.), and were analyzed using Kruskal–Wallis H test and Chi-square test. Results: Among the total of 63,883 subjects, 63,605 subjects were assigned to the control group, 197 subjects were assigned to the LFF group, and 81 subjects were assigned to the RLFF group. The median of BMI in the three groups was 22.43 kg/m2 (control), 25.71 kg/m2 (LFF), and 24.54 kg/m2 (RLFF). The median gestational age in the three groups was 130 days (control), 126 days (LFF), and 122/133 days (RLFF). The median maternal age in the three groups was 29 (control), 29 (LFF), and 33-years-old (RLFF). The proportion of twin pregnancies in the three groups was 3.3% (control), 10.7% (LFF), and 11.7% (RLFF). The proportion of IVF in the three groups was 4.7% (control), 11.7% (LFF), and 21.3% (RLFF). The factors significantly associated with LFF included BMI [2.18, (1.94, 2.45), p < 0.0001], gestational age [0.76, (0.67, 0.87), p < 0.0001], twin pregnancy [1.62, (1.02, 2.52), p = 0.0353], and IVF [2.68, (1.82, 3.86), p < 0.0001]. The factors associated with RLFF included maternal age [1.54, (1.17, 2.05), p = 0.0023] and IVF [2.55, (1.19, 5.54), p = 0.016]. Multiples of the median (MOM) value of β-hCG and pregnant persons' gestational age at delivery were significantly decreased in the LFF and RLFF groups compared to the control group. Conclusion: According to our findings based on the OR value, factors associated strongly with LFF include a high BMI and the use of IVF. Factors associated less strongly with LFF include early gestational age and twin pregnancy, while advanced maternal age and IVF were independent risk factors for a second LFF result. HIGHLIGHTS: Body mass index, gestational age, maternal age, twin pregnancy, and in vitro fertilization are associated with fetal fraction. We added the repetitive low fetal fraction population and used a large normal population as a control to identify the main factors associated with low fetal fraction. [ABSTRACT FROM AUTHOR]