51. HIGH-FIELD THZ GENERATION AND BEAM CHARACTERIZATION WITH LASER BASED INTENSE THZ SOURCES
- Author
-
Yoo, Yungjun and Yoo, Yungjun
- Abstract
The main topic of this dissertation is about the generation of intense terahertz (THz) pulses with field strengths up to tens of MV/cm and their characterization with energy, pulse duration, and spot size measurements. As a strong THz source, we used two-color laser mixing in air, which can produce coherent, high energy (> µJ), broadband (0.01~100 THz) THz radiation. In this scheme, 800-nm, 1-kHz, 30-fs laser pulses are weakly focused onto a BBO (Beta Barium Borate) crystal to generate the 2nd harmonic (400 nm) pulses. The original (800 nm) and second harmonic (400 nm) pulses are focused together to generate plasma filaments in air, and this works as a broadband source of THz radiation. In particular, we have studied THz energy scaling with various focal length conditions and input laser energies up to 10 mJ. With high laser input energy, the THz output energy does not simply increase but rather saturates or even decreases. We find that this occurs due to plasma-induced laser defocusing, which prohibits efficient laser energy coupling into the plasma. We have overcome this saturation effect by increasing the plasma volume in the longitudinal or transverse direction. At a high repetition rate (1 kHz), we have achieved 2.6 µJ of THz energy with 10 mJ laser energy by elongating the plasma length (~7 cm). This provides a conversion efficiency of 2.6 10-4 from optical to THz energy. Also, at a low repetition rate (10 Hz) with high laser input energy (~50 mJ), we increased the plasma volume in the transverse direction by generating a 2-dimensional plasma sheet and obtained 31 µJ of THz energy. We have also investigated THz generation from two-color laser filamentation in different types of gases (room air, nitrogen, oxygen, carbon dioxide, helium, argon, krypton, and xenon) at various gas pressures. By elongating the plasma length in a long gas cell, we have achieved laser-to-THz conversion efficiency of ~0.1%, one order of magnitude higher than a typical value (0.01%)
- Published
- 2018