51. A Dual-Input Neural Network for Online State-of-Charge Estimation of the Lithium-Ion Battery throughout Its Lifetime
- Author
-
Cheng Qian, Binghui Xu, Quan Xia, Yi Ren, Dezhen Yang, and Zili Wang
- Subjects
lithium-ion battery ,SOC estimation ,lifetime ,recurrent neural network ,SOH ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
Online state-of-charge (SOC) estimation for lithium-ion batteries is one of the most important tasks of the battery management system in ensuring its operation safety and reliability. Due to the advantages of learning the long-term dependencies in between the sequential data, recurrent neural networks (RNNs) have been developed and have shown their superiority over SOC estimation. However, only time-series measurements (e.g., voltage and current) are taken as inputs in these RNNs. Considering that the mapping relationship between the SOC and the time-series measurements evolves along with the battery degradation, there still remains a challenge for RNNs to estimate the SOC accurately throughout the battery’s lifetime. In this paper, a dual-input neural network combining gated recurring unit (GRU) layers and fully connected layers (acronymized as a DIGF network) is developed to overcome the above-mentioned challenge. Its most important characteristic is the adoption of the state of health (SOH) of the battery as the network input, in addition to time-series measurements. According to the experimental data from a batch of LiCoO2 batteries, it is validated that the proposed DIGF network is capable of providing more accurate SOC estimations throughout the battery’s lifetime compared to the existing RNN counterparts. Moreover, it also shows greater robustness against different initial SOCs, making it more applicable for online SOC estimations in practical situations. Based on these verification results, it is concluded that the proposed DIGF network is feasible for estimating the battery’s SOC accurately throughout the battery’s lifetime against varying initial SOCs.
- Published
- 2022
- Full Text
- View/download PDF