Xin Li, Chun Cheng, Min Fei, Shangfeng Gao, Shuqiong Niu, Mengling Chen, Yonghua Liu, Zhiqin Guo, Haibo Wang, Jian Zhao, Xiaowei Yu, and Aiguo Shen
Dexras1, a brain-enriched member of the Ras subfamily of GTPases, as a novel physiologic nitric oxide (NO) effector, anchor neuronal nitric oxide synthase (nNOS) that increased after spinal cord injury (SCI), to specific targets to enhance NO signaling, and is strongly and rapidly induced during treatment with dexamethasone. It is unknown how the central nervous system (CNS) trauma affects the expression of Dexras1. Here we used spinal cord transection (SCT) model to detect expression of Dexras1 at mRNA and protein level in spinal cord homogenates by real-time PCR and Western blot analysis. The results showed that Dexras1 mRNA upregulated at 3 day, 5 day, and 7 day significantly (P\0.05) that was consistent with the protein level except at 7 day. Immunofluorescence revealed that both neurons and glial cells showed Dexras1 immunoreactivivty (IR) around SCT site, but the proportion is different. Importantly, injury-induced expression of Dexras1 was co-labeled by caspase-3 (apoptotic marker) and Tau-1 (marker for pathological oligodendrocyte). Furthermore, colocalization of Dexras1, carboxy-terminal PSD95/DLG/ZO-1 (PDZ) ligand of nNOS (CAPON) and nNOS was observed in neurons and glial cells, supporting the existence of ternary complexes in this model. Thus, the results that the transient high expression of Dexras1 which localized in apoptotic neurons and pathological oligodendrocytes might provide new insight into the secondary response after SCT. [ABSTRACT FROM AUTHOR]