51. Fusion hierarchy motion feature for video saliency detection.
- Author
-
Xiao, Fen, Luo, Huiyu, Zhang, Wenlei, Li, Zhen, and Gao, Xieping
- Abstract
Saliency detection plays an important role in computer vision and scene understanding, which has attracted increasing attention in recent years. Compared to the widely studied image saliency prediction, there are still many problems to be solved in the area of video saliency. Different from images, effectively describing and utilizing the motion information contained in video data is a critical issue. In this paper, we propose a spatial and motion dual-stream framework for video saliency detection. The coarse motion features extracting from optical flow are fine-tuned with higher level semantic spatial features via a residual cross-connection. A hierarchical fusion structure is proposed to maintain contextual information by integrating spatial and motion features in each level. To model the inter-frame correlation in the video, the convolutional gated recurrent unit (convGRU) is used to retain global consistency of the saliency area between neighbor frames. Experimental results on four widely used datasets demonstrate the effectiveness of the proposed method with other state-of-the-art methods. Our source codes can be acquired at https://github.com/banhuML/MFHF. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF