51. Mapping local and global variability in plant trait distributions
- Author
-
Fernando Valladares, Thomas Hickler, Benjamin Blonder, Kirk R. Wythers, Peter B. Reich, Kerry A. Brown, Ethan E. Butler, Andrés González-Melo, Enio E. Sosinski, Vanessa Minden, Nicolas Gross, Josep Peñuelas, Peter M. van Bodegom, Steven Jansen, Daniel C. Laughlin, Yusuke Onoda, Giandiego Campetella, Nathan J. B. Kraft, Bruno Enrico Leone Cerabolini, Ming Chen, Patrick Meir, Peter E. Thornton, Farideh Fazayeli, Tomas F. Domingues, Lawren Sack, Bernard Amiaud, Sandra Díaz, Dylan Craven, Ben Bond-Lamberty, Quentin D. Read, Ülo Niinemets, Gerhard Boenisch, Habacuc Flores-Moreno, Franciska T. de Vries, Chaeho Byun, Christian Wirth, Abhirup Datta, Marko J. Spasojevic, Koen Kramer, Brandon S. Schamp, Wenxuan Han, Arindam Banerjee, Joseph M. Craine, Mathew Williams, Jens Kattge, Nadejda A. Soudzilovskaia, Wesley N. Hattingh, Johannes H. C. Cornelissen, Estelle Forey, Owen K. Atkin, Hiroko Kurokawa, Department of Forest Resources, University of Minnesota, St. Paul, MN, USA, Department of Biostatistics [Baltimore], Johns Hopkins University (JHU), University of Minnesota [Twin Cities] (UMN), University of Minnesota System, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences [Beijing] (CAS), University of Minnesota, Department of Computer Science and Engineering, Australian National University (ANU), German Centre for Integrative Biodiversity Research, Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Environmental Change Institute, University of Oxford, Oxford, UK, Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Joint Global Change Research Institute, University Research Court, Department of Geography and Geology, Kingston University, Kingston upon Thames, UK, Seoul National University [Seoul] (SNU), University of Camerino, Department of Theoretical and Applied Sciences [Insubria], University of Insubria, Varese, Jonah Ventures, School of Earth and Environmental Sciences [Manchester] (SEES), University of Manchester [Manchester], Insituto Multidisciplinario de Biologia Vegetal, Universidad Nacional de Córdoba [Argentina], Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Étude et compréhension de la biodiversité (ECODIV), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre d'Etudes Biologiques de Chizé [France] (USC 1339 INRA), Institut National de la Recherche Agronomique (INRA), College of Resources and Environmental Sciences, Ministry of Agriculture, Key Laboratory of Arable Land Conservation (North China), China Agricultural University (CAU), Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences [Changchun Branch] (CAS), School of Animal, Plant & Environmental Sciences, University of the Witwatersrand [Johannesburg] (WITS), Department of Physical Geography and Ecosystem Science [Lund], Lund University [Lund], Universität Ulm - Ulm University [Ulm, Allemagne], Alterra - Green World Research, Wageningen University and Research [Wageningen] (WUR), Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, Tohoku University [Sendai], Department of Botany, University of Wyoming, Laramie, WY, USA, University of Wyoming, Laramie, Research School of Biology, Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, Kyoto University [Kyoto], Global Ecology Unit CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona (UAB), Department of Forestry, Michigan State University, East Lansing, Department of Ecology and Evolutionary Biology, University of California, Department of Biology, Algoma University, Marie, OA, Canada, Algoma University, Institute of Environmental Sciences [Leiden] (CML), Leiden University, Laboratorio de Planejamento Ambiental, Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Climate Change Science Institute [Oak Ridge] (CCSI), UT-Battelle, LLC-UT-Battelle, LLC, Escuela Superior de Ciencias Experimentales y Tecnológicas, Departamento de Biología y Geología, Universidad Rey Juan Carlos [Madrid] (URJC), School of Geosciences [Edinburgh], University of Edinburgh, Department of Systematic Botany and Functional Biodiversity, Universität Leipzig [Leipzig], Department of Forest Resources, University of Minnesota System-University of Minnesota System, European Project: 609398,EC:FP7:PEOPLE,FP7-PEOPLE-2013-COFUND,AGREENSKILLSPLUS(2014), Biology, Butler, Ethan E., Datta, Abhirup, Systems Ecology, Environmental Change Institute, University of Oxford, Università degli Studi di Camerino = University of Camerino (UNICAM), Universitá degli Studi dell’Insubria = University of Insubria [Varese] (Uninsubria), Institut National de la Recherche Agronomique (INRA)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), Kyoto University, University of California (UC), Universiteit Leiden, Universität Leipzig, INRA - CEBC, Institut National de la Recherche Agronomique (INRA)-Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Wageningen University and Research Centre [Wageningen] (WUR), Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Universitat Autònoma de Barcelona [Barcelona] (UAB), University of Minnesota [Twin Cities], Department of Energy (US), National Science Foundation (US), University of Minnesota, European Commission, Natural Environment Research Council (UK), Generalitat de Catalunya, Wageningen University and Research Centre, National Natural Science Foundation of China, and Australian Research Council
- Subjects
0106 biological sciences ,Bayes theorem ,Data base ,010504 meteorology & atmospheric sciences ,Biodiversité et Ecologie ,répartition territoriale ,échelle globale ,statistique spatiale ,01 natural sciences ,Filosofie ,spatial statistics ,Leaf area ,Bayes' theorem ,Models ,échelle locale ,ComputingMilieux_MISCELLANEOUS ,Priority journal ,2. Zero hunger ,changement climatique ,Multidisciplinary ,Geography ,Phosphorus ,Vegetation ,Plants ,Statistical ,PE&RC ,global ,Bayesian modeling ,Climate ,Global ,Plant traits ,Spatial statistics ,PNAS Plus ,[SDE]Environmental Sciences ,Trait ,Centre for Crop Systems Analysis ,Statistical model ,Cartography ,CIENCIAS NATURALES Y EXACTAS ,Nitrogen ,Otras Ciencias Biológicas ,Bayesian probability ,plant traits ,climate ,Quantitative trait locus ,Environment ,010603 evolutionary biology ,Article ,Ciencias Biológicas ,Biodiversity and Ecology ,Quantitative Trait ,Quantitative Trait, Heritable ,Spatial analysis ,Heritable ,Ecosystem ,0105 earth and related environmental sciences ,Spatial Analysis ,Models, Statistical ,Plant Dispersal ,diversité végétale fonctionnelle ,Leaf litter ,Plant ,15. Life on land ,Nonhuman ,modèle bayésien ,Philosophy ,Evergreen ,13. Climate action ,Concentration (parameters) ,Prediction ,Scale (map) ,Bayesian modelling ,Model - Abstract
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∼50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means., This research was supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (Grant DE-SC0012677 to P.B.R. and A.B.). O.K.A. acknowledges the support of the Australian Research Council (CE140100008). This research was also funded by programs from the NSF Long-Term Ecological Research (Grant DEB-1234162) and Long-Term Research in Environmental Biology (Grant DEB-1242531). A.B., F.F., and P.B.R. acknowledge funding from NSF Grant IIS-1563950. P.B.R. also acknowledges support from two University of Minnesota Institute on the Environment discovery grants. This study has been supported by the TRY initiative on plant traits (www.try-db.org). The TRY database is hosted at the Max Planck Institute for Biogeochemistry (Jena, Germany) and supported by DIVERSITAS/Future Earth, the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, and the EU H2020 project BACI (Grant 640176). B.B. acknowledges a Natural Environment Research Council (NERC) independent research fellowship NE/M019160/1. J.P. acknowledges the financial support from the European Research Council Synergy Grant ERC-SyG-2013-610028 IMBALANCE-P, the Spanish Government Grant CGL2013-48074-P, and the Catalan Government Grant SGR 2014-274. B.B.-L. was supported by the Earth System Modeling program of the US Department of Energy, Office of Science, Office of Biological and Environmental Research. K.K. acknowledges the contribution of the Wageningen University and Research Investment theme Resilience for the project Resilient Forest (KB-29-009-003). P.M. acknowledges support from ARC Grant FT110100457 and NERC Grant NE/F002149/1. W.H. acknowledges support from the National Natural Science Foundation of China (Grant 41473068) and the “Light of West China” Program of the Chinese Academy of Sciences.
- Published
- 2017