51. POM‐Incorporated CoO Nanowires for Enhanced Photocatalytic Syngas Production from CO2.
- Author
-
Yang, Haozhou, Yang, Deren, and Wang, Xun
- Subjects
- *
NANOWIRES , *SYNTHESIS gas , *PHOTOCATALYSIS , *CHEMICAL energy , *ACTIVATION (Chemistry) , *SILICON nanowires , *CATALYSTS - Abstract
Utilizing sustainable energy for chemical activation of small molecules, such as CO2, to produce important chemical feedstocks is highly desirable. The simultaneous production of CO/H2 mixture (syngas) from photoreduction of CO2 and H2O is highly promising. However, the relationships between structure, composition, crystallinity, and photocatalytic performance are still indistinct. Here, amorphous ultrathin CoO nanowires and polyoxometalate incorporated nanowires with even lower crystallinity were synthesized. The POM‐incorporated ultrathin nanowires exhibit high photocatalytic syngas production activity, reaching H2 and CO evolution rates of 11555 and 4165 μmol g−1 h−1 respectively. Further experiments indicate that the ultrathin morphology and incorporation of POM both contribute to the superior performance. Multiple characterizations reveal the enhanced charge–hole separation efficiency of the catalyst would facilitate the photocatalysis. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF