29,361 results on '"YANG, Tao"'
Search Results
52. Comparison of thermal shock resistance capabilities of the rotary swaged pure tungsten, potassium-doped tungsten, and W-La2O3 alloys
- Author
-
Yang, Tao, Wang, Hao, Feng, Fan, Liu, Xiang, Gong, Xue-Yu, Lian, You-Yun, and Wang, Jian-Bao
- Published
- 2024
- Full Text
- View/download PDF
53. Zircon U–Pb geochronologic, geochemical and Sr–Nd–Pb isotope characteristics of the Beidaban granites in the North Qilian Orogenic Belt: Petrogenesis and tectonic implications
- Author
-
Yang, Tao, Sun, Zhi-yuan, Wang, Ming-liang, Zhu, Xiao-qiang, and Zhao, Jing-yu
- Published
- 2024
- Full Text
- View/download PDF
54. Relationship between magnetic properties and weathering in red soil profiles developed on weakly magnetic parent rock in the tropical and subtropical region of Yunnan, China
- Author
-
Li, Gangqiang, Zhang, Xiaoling, Li, Haixia, Yang, Tao, Chen, Yudong, Ren, Erhui, Hu, Jingyuan, and Wang, Yang
- Published
- 2024
- Full Text
- View/download PDF
55. Estimating potential vegetation distribution and restoration in a biodiversity hotspot region under future climate change
- Author
-
Xiahou, Mingjian, Liu, Yannan, Yang, Tao, and Shen, Zehao
- Published
- 2024
- Full Text
- View/download PDF
56. Parallel proportional fusion of a spiking quantum neural network for optimizing image classification
- Author
-
Xu, Zuyu, Shen, Kang, Cai, Pengnian, Yang, Tao, Hu, Yuanming, Chen, Shixian, Zhu, Yunlai, Wu, Zuheng, Dai, Yuehua, Wang, Jun, and Yang, Fei
- Published
- 2024
- Full Text
- View/download PDF
57. Mendelian randomization did not support the causal effect of diabetes on aortic diseases
- Author
-
Yang, Tao, Yuan, Xin, Gao, Wei, Hu, Meng-Jin, Lu, Min-Jie, and Sun, Han-Song
- Published
- 2024
- Full Text
- View/download PDF
58. A novel fractional calculus modeling and physics-informed machine learning study on dynamic performance of hybrid flax/basalt fiber-reinforced composite
- Author
-
Wang, Xiaomeng, Yang, Tao, Maeder, Marcus, and Marburg, Steffen
- Published
- 2024
- Full Text
- View/download PDF
59. Switching Step-Size Based Widely Linear Adaptive Filtering Algorithms
- Author
-
Li, Zhiyuan, Guo, Peng, Yang, Tao, Li, Ke, and Yu, Yi
- Published
- 2024
- Full Text
- View/download PDF
60. Distinct element method simulation of mechanical properties of material layer of pellet belt roasting machine
- Author
-
Tang, Yin-hua, Li, Xing-wang, Gao, Xu, Yang, Tao, Long, Hong-ming, and Lei, Jie
- Published
- 2024
- Full Text
- View/download PDF
61. Model-Based Reasoning of Clinical Diagnosis in Integrative Medicine: Real-World Methodological Study of Electronic Medical Records and Natural Language Processing Methods
- Author
-
Geng, Wenye, Qin, Xuanfeng, Yang, Tao, Cong, Zhilei, Wang, Zhuo, Kong, Qing, Tang, Zihui, and Jiang, Lin
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
BackgroundIntegrative medicine is a form of medicine that combines practices and treatments from alternative medicine with conventional medicine. The diagnosis in integrative medicine involves the clinical diagnosis based on modern medicine and syndrome pattern diagnosis. Electronic medical records (EMRs) are the systematized collection of patients health information stored in a digital format that can be shared across different health care settings. Although syndrome and sign information or relative information can be extracted from the EMR and content texts can be mapped to computability vectors using natural language processing techniques, application of artificial intelligence techniques to support physicians in medical practices remains a major challenge. ObjectiveThe purpose of this study was to investigate model-based reasoning (MBR) algorithms for the clinical diagnosis in integrative medicine based on EMRs and natural language processing. We also estimated the associations among the factors of sample size, number of syndrome pattern type, and diagnosis in modern medicine using the MBR algorithms. MethodsA total of 14,075 medical records of clinical cases were extracted from the EMRs as the development data set, and an external test data set consisting of 1000 medical records of clinical cases was extracted from independent EMRs. MBR methods based on word embedding, machine learning, and deep learning algorithms were developed for the automatic diagnosis of syndrome pattern in integrative medicine. MBR algorithms combining rule-based reasoning (RBR) were also developed. A standard evaluation metrics consisting of accuracy, precision, recall, and F1 score was used for the performance estimation of the methods. The association analyses were conducted on the sample size, number of syndrome pattern type, and diagnosis of lung diseases with the best algorithms. ResultsThe Word2Vec convolutional neural network (CNN) MBR algorithms showed high performance (accuracy of 0.9586 in the test data set) in the syndrome pattern diagnosis of lung diseases. The Word2Vec CNN MBR combined with RBR also showed high performance (accuracy of 0.9229 in the test data set). The diagnosis of lung diseases could enhance the performance of the Word2Vec CNN MBR algorithms. Each group sample size and syndrome pattern type affected the performance of these algorithms. ConclusionsThe MBR methods based on Word2Vec and CNN showed high performance in the syndrome pattern diagnosis of lung diseases in integrative medicine. The parameters of each group’s sample size, syndrome pattern type, and diagnosis of lung diseases were associated with the performance of the methods. Trial RegistrationClinicalTrials.gov NCT03274908; https://clinicaltrials.gov/ct2/show/NCT03274908
- Published
- 2020
- Full Text
- View/download PDF
62. End-to-End Models to Imitate Traditional Chinese Medicine Syndrome Differentiation in Lung Cancer Diagnosis: Model Development and Validation
- Author
-
Liu, Ziqing, He, Haiyang, Yan, Shixing, Wang, Yong, Yang, Tao, and Li, Guo-Zheng
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
BackgroundTraditional Chinese medicine (TCM) has been shown to be an efficient mode to manage advanced lung cancer, and accurate syndrome differentiation is crucial to treatment. Documented evidence of TCM treatment cases and the progress of artificial intelligence technology are enabling the development of intelligent TCM syndrome differentiation models. This is expected to expand the benefits of TCM to lung cancer patients. ObjectiveThe objective of this work was to establish end-to-end TCM diagnostic models to imitate lung cancer syndrome differentiation. The proposed models used unstructured medical records as inputs to capitalize on data collected for practical TCM treatment cases by lung cancer experts. The resulting models were expected to be more efficient than approaches that leverage structured TCM datasets. MethodsWe approached lung cancer TCM syndrome differentiation as a multilabel text classification problem. First, entity representation was conducted with Bidirectional Encoder Representations from Transformers and conditional random fields models. Then, five deep learning–based text classification models were applied to the construction of a medical record multilabel classifier, during which two data augmentation strategies were adopted to address overfitting issues. Finally, a fusion model approach was used to elevate the performance of the models. ResultsThe F1 score of the recurrent convolutional neural network (RCNN) model with augmentation was 0.8650, a 2.41% improvement over the unaugmented model. The Hamming loss for RCNN with augmentation was 0.0987, which is 1.8% lower than that of the same model without augmentation. Among the models, the text-hierarchical attention network (Text-HAN) model achieved the highest F1 scores of 0.8676 and 0.8751. The mean average precision for the word encoding–based RCNN was 10% higher than that of the character encoding–based representation. A fusion model of the text-convolutional neural network, text-recurrent neural network, and Text-HAN models achieved an F1 score of 0.8884, which showed the best performance among the models. ConclusionsMedical records could be used more productively by constructing end-to-end models to facilitate TCM diagnosis. With the aid of entity-level representation, data augmentation, and model fusion, deep learning–based multilabel classification approaches can better imitate TCM syndrome differentiation in complex cases such as advanced lung cancer.
- Published
- 2020
- Full Text
- View/download PDF
63. Closed-Loop Unsupervised Representation Disentanglement with -VAE Distillation and Diffusion Probabilistic Feedback
- Author
-
Jin, Xin, Li, Bohan, Xie, Baao, Zhang, Wenyao, Liu, Jinming, Li, Ziqiang, Yang, Tao, Zeng, Wenjun, Goos, Gerhard, Series Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Leonardis, Aleš, editor, Ricci, Elisa, editor, Roth, Stefan, editor, Russakovsky, Olga, editor, Sattler, Torsten, editor, and Varol, Gül, editor
- Published
- 2025
- Full Text
- View/download PDF
64. Dynamical Mode Recognition of Coupled Flame Oscillators by Supervised and Unsupervised Learning Approaches
- Author
-
Xu, Weiming, Yang, Tao, and Zhang, Peng
- Subjects
Computer Science - Machine Learning - Abstract
Combustion instability in gas turbines and rocket engines, as one of the most challenging problems in combustion research, arises from the complex interactions among flames, which are also influenced by chemical reactions, heat and mass transfer, and acoustics. Identifying and understanding combustion instability is essential to ensure the safe and reliable operation of many combustion systems, where exploring and classifying the dynamical behaviors of complex flame systems is a core take. To facilitate fundamental studies, the present work concerns dynamical mode recognition of coupled flame oscillators made of flickering buoyant diffusion flames, which have gained increasing attention in recent years but are not sufficiently understood. The time series data of flame oscillators are generated by fully validated reacting flow simulations. Due to limitations of expertise-based models, a data-driven approach is adopted. In this study, a nonlinear dimensional reduction model of variational autoencoder (VAE) is used to project the simulation data onto a 2-dimensional latent space. Based on the phase trajectories in latent space, both supervised and unsupervised classifiers are proposed for datasets with well known labeling and without, respectively. For labeled datasets, we establish the Wasserstein-distance-based classifier (WDC) for mode recognition; for unlabeled datasets, we develop a novel unsupervised classifier (GMM-DTWC) combining dynamic time warping (DTW) and Gaussian mixture model (GMM). Through comparing with conventional approaches for dimensionality reduction and classification, the proposed supervised and unsupervised VAE-based approaches exhibit a prominent performance for distinguishing dynamical modes, implying their potential extension to dynamical mode recognition of complex combustion problems., Comment: research paper (29 pages, 20 figures)
- Published
- 2024
- Full Text
- View/download PDF
65. Approximate Cluster-Based Sparse Document Retrieval with Segmented Maximum Term Weights
- Author
-
Qiao, Yifan, He, Shanxiu, Yang, Yingrui, Carlson, Parker, and Yang, Tao
- Subjects
Computer Science - Information Retrieval - Abstract
This paper revisits cluster-based retrieval that partitions the inverted index into multiple groups and skips the index partially at cluster and document levels during online inference using a learned sparse representation. It proposes an approximate search scheme with two parameters to control the rank-safeness competitiveness of pruning with segmented maximum term weights within each cluster. Cluster-level maximum weight segmentation allows an improvement in the rank score bound estimation and threshold-based pruning to be approximately adaptive to bound estimation tightness, resulting in better relevance and efficiency. The experiments with MS MARCO passage ranking and BEIR datasets demonstrate the usefulness of the proposed scheme with a comparison to the baselines. This paper presents the design of this approximate retrieval scheme with rank-safeness analysis, compares clustering and segmentation options, and reports evaluation results.
- Published
- 2024
66. Measurement of $e^{+}e^{-}\to \omega\eta^{\prime}$ cross sections at $\sqrt{s}=$ 2.000 to 3.080 GeV
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ai, X. C., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, T. T., Chang, W. L., Che, G. R., Chelkov, G., Chen, C., Chen, Chao, Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Cheng, W. S., Choi, S. K., Chu, X., Cibinetto, G., Coen, S. C., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. H. Y., Fan, Y. L., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fischer, K, Fritsch, M., Fritzsch, C., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Guan, C. Y, Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hüsken, N, Imoehl, W., Jackson, J., Jaeger, S., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, H. J., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., K., X., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Khoukaz, A., Kiuchi, R., Kliemt, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavania, A., Lavezzi, L., Lei, T. T., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, J. W., Li, K. L., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. X., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Y. G., Li, Z. J., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y. P., Libby, J., Limphirat, A., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Pogodin, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Redmer, C. F., Ren, K. J., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, R. S., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. T., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Tang, Y. A., Tao, L. Y, Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, C. W., Wang, D. Y., Wang, F., Wang, H. J., Wang, H. P., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. H., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D., Wei, D. H., Weidner, F., Wen, S. P., Wenzel, C. W., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yuan, C. Z., Yuan, L., Yuan, S. C., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. H., Zhang, H. Q., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Xuyan, Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, L. P., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
The Born cross sections for the process $e^{+}e^{-}\to \omega\eta^{\prime}$ are measured at 22 center-of-mass energies from 2.000 to 3.080 GeV using data collected with the BESIII detector at the BEPCII collider. A resonant structure is observed with a statistical significance of 9.6$\sigma$. A Breit-Wigner fit determines its mass to be $M_R=(2153\pm30\pm31)~{\rm{MeV}}/c^{2}$ and its width to be $\Gamma_{R}=(167\pm77\pm7)~\rm{MeV}$, where the first uncertainties are statistical and the second are systematic.
- Published
- 2024
67. Measurement of the Born cross section for $e^{+}e^{-}\to \eta h_c $ at center-of-mass energies between 4.1 and 4.6\,GeV
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, L., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hölzken, F., Hüsken, N, der Wiesche, N. in, Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavezzi, L., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Z., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qiao, X. K., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J, Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, M., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Y. J., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y, Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Yao, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
We measure the Born cross section for the reaction $e^{+}e^{-} \rightarrow \eta h_c$ from $\sqrt{s} = 4.129$ to $4.600$~GeV using data sets collected by the BESIII detector running at the BEPCII collider. A resonant structure in the cross section line shape near 4.200~GeV is observed with a statistical significance of 7$\sigma$. The parameters of this resonance are measured to be \MeasMass\ and \MeasWidth, where the first uncertainties are statistical and the second systematic.
- Published
- 2024
68. Search for the Rare Decays $D_s^+\to h^+(h^{0})e^+e^-$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Chu, X., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fischer, K., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hölzken, F., Hüsken, N, der Wiesche, N. in, Irshad, M., Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavezzi, L., Lei, T. T., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y. P., Libby, J., Limphirat, A., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, R. S., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D., Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Yao, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Using 7.33~fb$^{-1}$ of $e^{+}e^{-}$ collision data collected by the BESIII detector at center-of-mass energies in the range of $\sqrt{s}=4.128 - 4.226$~GeV, we search for the rare decays $D_{s}^+\to h^+(h^{0})e^{+}e^{-}$, where $h$ represents a kaon or pion. By requiring the $e^{+}e^{-}$ invariant mass to be consistent with a $\phi(1020)$, $0.98
- Published
- 2024
- Full Text
- View/download PDF
69. Search for $C$-even states decaying to $D_{s}^{\pm}D_{s}^{*\mp}$ with masses between $4.08$ and $4.32~\mathrm{GeV}/c^{2}$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, L., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hölzken, F., Hüsken, N, der Wiesche, N. in, Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavezzi, L., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Z., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qiao, X. K., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J, Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, M., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Y. J., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y, Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Yao, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
Six $C$-even states, denoted as $X$, with quantum numbers $J^{PC}=0^{-+}$, $1^{\pm+}$, or $2^{\pm+}$, are searched for via the $e^+e^-\to\gamma D_{s}^{\pm}D_{s}^{*\mp}$ process using $(1667.39\pm8.84)~\mathrm{pb}^{-1}$ of $e^+e^-$ collision data collected with the BESIII detector operating at the BEPCII storage ring at center-of-mass energy of $\sqrt{s}=(4681.92\pm0.30)~\mathrm{MeV}$. No statistically significant signal is observed in the mass range from $4.08$ to $4.32~\mathrm{GeV}/c^{2}$. The upper limits of $\sigma[e^+e^- \to \gamma X] \cdot \mathcal{B}[X \to D_{s}^{\pm} D_{s}^{*\mp}]$ at a $90\%$ confidence level are determined.
- Published
- 2024
70. Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification
- Author
-
Xu, Zuyu, Shen, Kang, Cai, Pengnian, Yang, Tao, Hu, Yuanming, Chen, Shixian, Zhu, Yunlai, Wu, Zuheng, Dai, Yuehua, Wang, Jun, and Yang, Fei
- Subjects
Quantum Physics ,Computer Science - Artificial Intelligence ,Computer Science - Neural and Evolutionary Computing - Abstract
The recent emergence of the hybrid quantum-classical neural network (HQCNN) architecture has garnered considerable attention due to the potential advantages associated with integrating quantum principles to enhance various facets of machine learning algorithms and computations. However, the current investigated serial structure of HQCNN, wherein information sequentially passes from one network to another, often imposes limitations on the trainability and expressivity of the network. In this study, we introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN). The dataset information is simultaneously fed into both the spiking neural network and the variational quantum circuits, with the outputs amalgamated in proportion to their individual contributions. We systematically assess the impact of diverse PPF-QSNN parameters on network performance for image classification, aiming to identify the optimal configuration. Numerical results on the MNIST dataset unequivocally illustrate that our proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness. This study introduces a novel and effective amalgamation approach for HQCNN, thereby laying the groundwork for the advancement and application of quantum advantage in artificial intelligent computations.
- Published
- 2024
71. Measurement of absolute branching fractions of $D_s^+$ hadronic decays
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, L., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hölzken, F., Hüsken, N, der Wiesche, N. in, Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavezzi, L., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Z., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qiao, X. K., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J, Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Y. J., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y, Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Yao, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Using $e^+ e^-$ collision data collected at the BESIII detector at center-of-mass energies between 4.128 and 4.226 GeV, corresponding to an integrated luminosity of $7.33~{\rm fb}^{-1}$, we determine the absolute branching fractions of fifteen hadronic $D_s^{+}$ decays with a double-tag technique. In particular, we make precise measurements of the branching fractions $\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)=(5.49 \pm 0.04 \pm 0.07)\%$, $\mathcal{B}(D_s^+ \to K_S^0 K^+)=(1.50 \pm 0.01 \pm 0.01)\%$ and $\mathcal{B}(D_s^+ \to K^+ K^- \pi^+ \pi^0)=(5.50 \pm 0.05 \pm 0.11)\%$, where the first uncertainties are statistical and the second ones are systematic. The \emph{CP} asymmetries in these decays are also measured and all are found to be compatible with zero.
- Published
- 2024
72. Superfluid Oscillator Circuit with Quantum Current Regulator
- Author
-
Yang, Xue, Bai, Wenkai, Jiao, Chen, Liu, Wu-Ming, Zheng, Jun-Hui, and Yang, Tao
- Subjects
Quantum Physics ,Condensed Matter - Quantum Gases - Abstract
We examine the properties of atomic current in a superfluid oscillating circuit consisting of a mesoscopic channel that connects two reservoirs of a Bose-Einstein condensate. We investigate the presence of a critical current in the channel and examine how the amplitude of the oscillations in the number imbalance between the two reservoirs varies with system parameters. In addition to highlighting that the dissipative resistance stems from the formation of vortex pairs, we also illustrate the role of these vortex pairs as a quantum current regulator. The dissipation strength is discrete based on the number imbalance, which corresponds to the emergence of vortex pairs in the system. Our findings indicate that the circuit demonstrates characteristics of both voltage-limiting and current-limiting mechanisms. To model the damping behavior of the atomic superfluid circuit, we develop an equivalent LC oscillator circuit with a quantum current regulator., Comment: 6 figures
- Published
- 2024
- Full Text
- View/download PDF
73. Are LLMs Effective Backbones for Fine-tuning? An Experimental Investigation of Supervised LLMs on Chinese Short Text Matching
- Author
-
Liu, Shulin, Xu, Chengcheng, Liu, Hao, Yu, Tinghao, and Yang, Tao
- Subjects
Computer Science - Computation and Language - Abstract
The recent success of Large Language Models (LLMs) has garnered significant attention in both academia and industry. Prior research on LLMs has primarily focused on enhancing or leveraging their generalization capabilities in zero- and few-shot settings. However, there has been limited investigation into effectively fine-tuning LLMs for a specific natural language understanding task in supervised settings. In this study, we conduct an experimental analysis by fine-tuning LLMs for the task of Chinese short text matching. We explore various factors that influence performance when fine-tuning LLMs, including task modeling methods, prompt formats, and output formats.
- Published
- 2024
74. Observation of the semileptonic decays $D^0\rightarrow K_S^0\pi^-\pi^0 e^+ \nu_e$ and $D^+\rightarrow K_S^0\pi^+\pi^- e^+ \nu_e$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ai, X. C., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, T. T., Chang, W. L., Che, G. R., Chelkov, G., Chen, C., Chen, Chao, Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Cheng, W. S., Choi, S. K., Chu, X., Cibinetto, G., Coen, S. C., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. L., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fischer, K, Fritsch, M., Fritzsch, C., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y, Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hüsken, N, Imoehl, W., Jackson, J., Jaeger, S., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, H. J., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., K., X., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Khoukaz, A., Kiuchi, R., Kliemt, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavania, A., Lavezzi, L., Lei, T. T., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, J. W., Li, K. L., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. X., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y. P., Libby, J., Limphirat, A., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Pogodin, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Redmer, C. F., Ren, K. J., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, R. S., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. T., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Tang, Y. A., Tao, L. Y, Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, C. W., Wang, D. Y., Wang, F., Wang, H. J., Wang, H. P., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. H., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D., Wei, D. H., Weidner, F., Wen, S. P., Wenzel, C. W., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yuan, C. Z., Yuan, L., Yuan, S. C., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. H., Zhang, H. Q., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Xuyan, Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, L. P., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
By analyzing $e^+e^-$ annihilation data corresponding to an integrated luminosity of 2.93 $\rm fb^{-1}$ collected at a center-of-mass energy of 3.773 GeV with the \text{BESIII} detector, the first observation of the semileptonic decays $D^0\rightarrow K_S^0\pi^-\pi^0 e^+ \nu_e$ and $D^+\rightarrow K_S^0\pi^+\pi^- e^+ \nu_e$ is reported. With a dominant hadronic contribution from $K_1(1270)$, the branching fractions are measured to be $\mathcal{B}(D^0\rightarrow {K}_1(1270)^-(\to K^0_S\pi^-\pi^0)e^+\nu_e)=(1.69^{+0.53}_{-0.46}\pm0.15)\times10^{-4}$ and $\mathcal{B}(D^+\to \bar{K}_1(1270)^0(\to K^0_S\pi^+\pi^-)e^+\nu_e)=(1.47^{+0.45}_{-0.40}\pm0.20)\times10^{-4}$ with statistical significance of 5.4$\sigma$ and 5.6$\sigma$, respectively. When combined with measurements of the $K_1(1270)\to K^+\pi^-\pi$ decays, the absolute branching fractions are determined to be $\mathcal{B}(D^0\to K_1(1270)^-e^+\nu_e)=(1.05^{+0.33}_{-0.28}\pm0.12\pm0.12)\times10^{-3}$ and $\mathcal{B}(D^+\to \bar{K}_1(1270)^0e^+\nu_e)=(1.29^{+0.40}_{-0.35}\pm0.18\pm0.15)\times10^{-3}$. The first and second uncertainties are statistical and systematic, respectively, and the third uncertainties originate from the assumed branching fractions of the $K_1(1270)\to K\pi\pi$ decays., Comment: 19pages
- Published
- 2024
75. Robust and Scalable Model Editing for Large Language Models
- Author
-
Chen, Yingfa, Zhang, Zhengyan, Han, Xu, Xiao, Chaojun, Liu, Zhiyuan, Chen, Chen, Li, Kuai, Yang, Tao, and Sun, Maosong
- Subjects
Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
Large language models (LLMs) can make predictions using parametric knowledge--knowledge encoded in the model weights--or contextual knowledge--knowledge presented in the context. In many scenarios, a desirable behavior is that LLMs give precedence to contextual knowledge when it conflicts with the parametric knowledge, and fall back to using their parametric knowledge when the context is irrelevant. This enables updating and correcting the model's knowledge by in-context editing instead of retraining. Previous works have shown that LLMs are inclined to ignore contextual knowledge and fail to reliably fall back to parametric knowledge when presented with irrelevant context. In this work, we discover that, with proper prompting methods, instruction-finetuned LLMs can be highly controllable by contextual knowledge and robust to irrelevant context. Utilizing this feature, we propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing. To better evaluate the robustness of model editors, we collect a new dataset, that contains irrelevant questions that are more challenging than the ones in existing datasets. Empirical results show that our method outperforms current state-of-the-art methods by a large margin. Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs (and vice versa). The source code can be found at https://github.com/thunlp/EREN., Comment: LREC-COLING 2024 paper, 16 pages, 4 figures
- Published
- 2024
76. Electrically controlled nonvolatile switching of single-atom magnetism in a Dy@C84 single-molecule transistor
- Author
-
Wang, Feng, Shen, Wangqiang, Shui, Yuan, Chen, Jun, Wang, Huaiqiang, Wang, Rui, Qin, Yuyuan, Wang, Xuefeng, Wan, Jianguo, Zhang, Minhao, Lu, Xing, Yang, Tao, and Song, Fengqi
- Subjects
Condensed Matter - Materials Science ,Physics - Atomic and Molecular Clusters - Abstract
Single-atom magnetism switching is a key technique towards the ultimate data storage density of computer hard disks and has been conceptually realized by leveraging the spin bistability of a magnetic atom under a scanning tunnelling microscope. However, it has rarely been applied to solid-state transistors, an advancement that would be highly desirable for enabling various applications. Here, we demonstrate realization of the electrically controlled Zeeman effect in Dy@C84 single-molecule transistors, thus revealing a transition in the magnetic moment from 3.8 {\mu}B to 5.1 {\mu}B for the ground-state GN at an electric field strength of 3-10 MV/cm. The consequent magnetoresistance significantly increases from 600% to 1100% at the resonant tunneling point. Density functional theory calculations further corroborate our realization of nonvolatile switching of single-atom magnetism, and the switching stability emanates from an energy barrier of 92 meV for atomic relaxation. These results highlight the potential of using endohedral metallofullerenes for high-temperature, high-stability, high-speed, and compact single-atom magnetic data storage., Comment: 26 pages, 4 figures
- Published
- 2024
77. Determination of the number of $\psi(3686)$ events taken at BESIII
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, L., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hölzken, F., Hüsken, N., der Wiesche, N. in, Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavezzi, L., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, Ke, Li, L. J., Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Z., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y. P., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, J. R., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qiao, X. K., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, M., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y., Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Yao, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
The number of $\psi(3686)$ events collected by the BESIII detector during the 2021 run period is determined to be $(2259.3\pm 11.1)\times 10^6$ by counting inclusive $\psi(3686)$ hadronic events. The uncertainty is systematic and the statistical uncertainty is negligible. Meanwhile, the numbers of $\psi(3686)$ events collected during the 2009 and 2012 run periods are updated to be $(107.7\pm0.6)\times 10^6$ and $(345.4\pm 2.6)\times 10^6$, respectively. Both numbers are consistent with the previous measurements within one standard deviation. The total number of $\psi(3686)$ events in the three data samples is $(2712.4\pm14.3)\times10^6$.
- Published
- 2024
78. Observation of the decay $h_{c}\to3(\pi^{+}\pi^{-})\pi^{0}$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, H. Y., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Y. Y., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, X. B., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, L., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hanisch, F., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, S. L., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hölzken, F., Hüsken, N, der Wiesche, N. in, Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kumar, N., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavezzi, L., Lei, T. T., Lei, Z. H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, X. Z., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Li, Z. Y., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Limphirat, A., Lin, C. C., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, J. R., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, T., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nie, L. S., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qiao, X. K., Qin, J. J., Qin, L. Q., Qin, L. Y., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shang, Z. J, Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, M., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, M., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yu, Y. C., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Y. J., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. R., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. S., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, R. Y, Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Yao, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhang, Z. Z., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, N., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, B. M., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, S., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, K. S., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. D., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Based on $(2712.4\pm14.1)\times10^{6}$ $\psi(3686)$ events collected with the BESIII detector, we study the decays $h_{c}\to3(\pi^{+}\pi^{-})\pi^{0}$, $h_{c}\to2(\pi^{+}\pi^{-})\omega$, $h_{c}\to2(\pi^{+}\pi^{-})\pi^{0}\eta$, $h_{c}\to2(\pi^{+}\pi^{-})\eta$, and $h_{c}\to p\bar{p}$ via $\psi(3686)\to\pi^{0}h_{c}$. The decay channel $h_{c}\to3(\pi^{+}\pi^{-})\pi^{0}$ is observed for the first time, and its branching fraction is determined to be $\left( {9.28\pm 1.14 \pm 0.77} \right) \times {10^{ - 3}}$, where the first uncertainty is statistical and the second is systematic. In addition, first evidence is found for the modes $h_{c} \to 2(\pi^{+}\pi^{-})\pi^{0}\eta$ and $h_{c}\to2(\pi^{+}\pi^{-})\omega$ with significances of 4.8$\sigma$ and 4.7$\sigma$, and their branching fractions are determined to be $(7.55\pm1.51\pm0.77)\times10^{-3}$ and $\left( {4.00 \pm 0.86 \pm 0.35}\right) \times {10^{ - 3}}$, respectively. No significant signals of $h_c\to 2(\pi^+\pi^-)\eta$ and $h_{c}\to p\bar{p}$ are observed, and the upper limits of the branching fractions of these decays are determined to be $<6.19\times10^{-4}$ and $<4.40\times10^{-5}$ at the 90% confidence level, respectively., Comment: 11 pages, 3 figures
- Published
- 2024
- Full Text
- View/download PDF
79. ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models
- Author
-
Song, Chenyang, Han, Xu, Zhang, Zhengyan, Hu, Shengding, Shi, Xiyu, Li, Kuai, Chen, Chen, Liu, Zhiyuan, Li, Guangli, Yang, Tao, and Sun, Maosong
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,I.2.7 - Abstract
Activation sparsity refers to the existence of considerable weakly-contributed elements among activation outputs. As a prevalent property of the models using the ReLU activation function, activation sparsity has been proven a promising paradigm to boost model inference efficiency. Nevertheless, most large language models (LLMs) adopt activation functions without intrinsic activation sparsity (e.g., GELU and Swish). Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance. This paper introduces a simple and effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity while maintaining comparable performance. Specifically, after substituting the activation function of LLMs with ReLU, ProSparse adopts progressive sparsity regularization with a factor smoothly increasing along the multi-stage sine curves. This can enhance activation sparsity and mitigate performance degradation by avoiding radical shifts in activation distributions. With ProSparse, we obtain high sparsity of 89.32% for LLaMA2-7B, 88.80% for LLaMA2-13B, and 87.89% for end-size MiniCPM-1B, respectively, achieving comparable performance to their original Swish-activated versions. These present the most sparsely activated models among open-source LLaMA versions and competitive end-size models, considerably surpassing ReluLLaMA-7B (66.98%) and ReluLLaMA-13B (71.56%). Our inference acceleration experiments further demonstrate the significant practical acceleration potential of LLMs with higher activation sparsity, obtaining up to 4.52$\times$ inference speedup., Comment: 19 pages, 4 figures, 9 tables
- Published
- 2024
80. Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement
- Author
-
Yang, Tao, Lan, Cuiling, Lu, Yan, and zheng, Nanning
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Disentangled representation learning strives to extract the intrinsic factors within observed data. Factorizing these representations in an unsupervised manner is notably challenging and usually requires tailored loss functions or specific structural designs. In this paper, we introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias to facilitate the learning of disentangled representations. We propose to encode an image to a set of concept tokens and treat them as the condition of the latent diffusion for image reconstruction, where cross-attention over the concept tokens is used to bridge the interaction between the encoder and diffusion. Without any additional regularization, this framework achieves superior disentanglement performance on the benchmark datasets, surpassing all previous methods with intricate designs. We have conducted comprehensive ablation studies and visualization analysis, shedding light on the functioning of this model. This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs. We anticipate that our findings will inspire more investigation on exploring diffusion for disentangled representation learning towards more sophisticated data analysis and understanding.
- Published
- 2024
81. Precise Measurement of Born Cross Sections for $e^+e^-\to D\bar{D}$ at $\sqrt{s} = 3.80-4.95$ GeV
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ai, X. C., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, T. T., Chang, W. L., Che, G. R., Chelkov, G., Chen, C., Chen, Chao, Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Cheng, W. S., Choi, S. K., Chu, X., Cibinetto, G., Coen, S. C., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fischer, K, Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y, Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hüsken, N, der Wiesche, N. in, Irshad, M., Jackson, J., Jaeger, S., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, H. J., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., K., X., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khoukaz, A., Kiuchi, R., Kliemt, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavania, A., Lavezzi, L., Lei, T. T., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, J. W., Li, K. L., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. X., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y. P., Libby, J., Limphirat, A., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, R. S., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Song, Y. X., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. T., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Tang, Y. A., Tao, L. Y, Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, C. W., Wang, D. Y., Wang, F., Wang, H. J., Wang, H. P., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. H., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D., Wei, D. H., Weidner, F., Wen, S. P., Wenzel, C. W., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yuan, C. Z., Yuan, L., Yuan, S. C., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Xuyan, Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, L. P., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
Using data samples collected with the BESIII detector at the BEPCII collider at center-of-mass energies ranging from 3.80 to 4.95 GeV, corresponding to an integrated luminosity of 20 fb$^{-1}$, a measurement of Born cross sections for the $e^+e^-\to D^{0}\bar{D}^{0}$ and $D^{+}D^{-}$ processes is presented with unprecedented precision. Many clear peaks in the line shape of $e^+e^-\to D^{0}\bar{D}^{0}$ and $D^{+}D^{-}$ around the mass range of $G(3900)$, $\psi(4040)$, $\psi(4160)$, $Y(4260)$, and $\psi(4415)$, etc., are foreseen. These results offer crucial experimental insights into the nature of hadron production in the open-charm region., Comment: 9 pages, 3 figures, 1 Supplemental Material, consistent with the publication in Phys. Rev. Lett. 133 (2024) 081901
- Published
- 2024
- Full Text
- View/download PDF
82. Closed-Loop Unsupervised Representation Disentanglement with $\beta$-VAE Distillation and Diffusion Probabilistic Feedback
- Author
-
Jin, Xin, Li, Bohan, Xie, BAAO, Zhang, Wenyao, Liu, Jinming, Li, Ziqiang, Yang, Tao, and Zeng, Wenjun
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Representation disentanglement may help AI fundamentally understand the real world and thus benefit both discrimination and generation tasks. It currently has at least three unresolved core issues: (i) heavy reliance on label annotation and synthetic data -- causing poor generalization on natural scenarios; (ii) heuristic/hand-craft disentangling constraints make it hard to adaptively achieve an optimal training trade-off; (iii) lacking reasonable evaluation metric, especially for the real label-free data. To address these challenges, we propose a \textbf{C}losed-\textbf{L}oop unsupervised representation \textbf{Dis}entanglement approach dubbed \textbf{CL-Dis}. Specifically, we use diffusion-based autoencoder (Diff-AE) as a backbone while resorting to $\beta$-VAE as a co-pilot to extract semantically disentangled representations. The strong generation ability of diffusion model and the good disentanglement ability of VAE model are complementary. To strengthen disentangling, VAE-latent distillation and diffusion-wise feedback are interconnected in a closed-loop system for a further mutual promotion. Then, a self-supervised \textbf{Navigation} strategy is introduced to identify interpretable semantic directions in the disentangled latent space. Finally, a new metric based on content tracking is designed to evaluate the disentanglement effect. Experiments demonstrate the superiority of CL-Dis on applications like real image manipulation and visual analysis.
- Published
- 2024
83. Enhance Reasoning for Large Language Models in the Game Werewolf
- Author
-
Wu, Shuang, Zhu, Liwen, Yang, Tao, Xu, Shiwei, Fu, Qiang, Wei, Yang, and Fu, Haobo
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
This paper presents an innovative framework that integrates Large Language Models (LLMs) with an external Thinker module to enhance the reasoning capabilities of LLM-based agents. Unlike augmenting LLMs with prompt engineering, Thinker directly harnesses knowledge from databases and employs various optimization techniques. The framework forms a reasoning hierarchy where LLMs handle intuitive System-1 tasks such as natural language processing, while the Thinker focuses on cognitive System-2 tasks that require complex logical analysis and domain-specific knowledge. Our framework is presented using a 9-player Werewolf game that demands dual-system reasoning. We introduce a communication protocol between LLMs and the Thinker, and train the Thinker using data from 18800 human sessions and reinforcement learning. Experiments demonstrate the framework's effectiveness in deductive reasoning, speech generation, and online game evaluation. Additionally, we fine-tune a 6B LLM to surpass GPT4 when integrated with the Thinker. This paper also contributes the largest dataset for social deduction games to date.
- Published
- 2024
84. Measurement of the Electromagnetic Transition Form-factors in the decays $\eta'\rightarrow\pi^+\pi^-l^+l^-$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Afedulidis, O., Ai, X. C., Aliberti, R., Amoroso, A., An, Q., Bai, Y., Bakina, O., Balossino, I., Ban, Y., Bao, H. -R., Batozskaya, V., Begzsuren, K., Berger, N., Berlowski, M., Bertani, M., Bettoni, D., Bianchi, F., Bianco, E., Bortone, A., Boyko, I., Briere, R. A., Brueggemann, A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Che, G. R., Chelkov, G., Chen, C., Chen, C. H., Chen, Chao, Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, S. L., Chen, S. M., Chen, T., Chen, X. R., Chen, X. T., Chen, Y. B., Chen, Y. Q., Chen, Z. J., Chen, Z. Y., Choi, S. K., Chu, X., Cibinetto, G., Cossio, F., Cui, J. J., Dai, H. L., Dai, J. P., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, C. Q., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, B., Ding, X. X., Ding, Y., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, M. C., Du, S. X., Duan, Z. H., Egorov, P., Fan, Y. H., Fang, J., Fang, S. S., Fang, W. X., Fang, Y., Fang, Y. Q., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Feng, Y. T., Fischer, K., Fritsch, M., Fu, C. D., Fu, J. L., Fu, Y. W., Gao, H., Gao, Y. N., Gao, Yang, Garbolino, S., Garzia, I., Ge, P. T., Ge, Z. W., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Gramigna, S., Greco, M., Gu, M. H., Gu, Y. T., Guan, C. Y., Guan, Z. L., Guo, A. Q., Guo, L. B., Guo, M. J., Guo, R. P., Guo, Y. P., Guskov, A., Gutierrez, J., Han, K. L., Han, T. T., Hao, X. Q., Harris, F. A., He, K. K., He, K. L., Heinsius, F. H., Heinz, C. H., Heng, Y. K., Herold, C., Holtmann, T., Hong, P. C., Hou, G. Y., Hou, X. T., Hou, Y. R., Hou, Z. L., Hu, B. Y., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, K. X., Huang, L. Q., Huang, X. T., Huang, Y. P., Hussain, T., Hölzken, F., Hüsken, N, der Wiesche, N. in, Irshad, M., Jackson, J., Janchiv, S., Jeong, J. H., Ji, Q., Ji, Q. P., Ji, W., Ji, X. B., Ji, X. L., Ji, Y. Y., Jia, X. Q., Jia, Z. K., Jiang, D., Jiang, H. B., Jiang, P. C., Jiang, S. S., Jiang, T. J., Jiang, X. S., Jiang, Y., Jiao, J. B., Jiao, J. K., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Jing, X. M., Johansson, T., Kabana, S., Kalantar-Nayestanaki, N., Kang, X. L., Kang, X. S., Kavatsyuk, M., Ke, B. C., Khachatryan, V., Khoukaz, A., Kiuchi, R., Kolcu, O. B., Kopf, B., Kuessner, M., Kui, X., Kupsc, A., Kühn, W., Lane, J. J., Larin, P., Lavezzi, L., Lei, T. T., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, H. N., Li, Hui, Li, J. R., Li, J. S., Li, Ke, Li, L. J, Li, L. K., Li, Lei, Li, M. H., Li, P. R., Li, Q. M., Li, Q. X., Li, R., Li, S. X., Li, T., Li, W. D., Li, W. G., Li, X., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Y. G., Li, Z. J., Li, Z. X., Liang, C., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Liao, Y. P., Libby, J., Limphirat, A., Lin, D. X., Lin, T., Liu, B. J., Liu, B. X., Liu, C., Liu, C. X., Liu, F. H., Liu, Fang, Liu, Feng, Liu, G. M., Liu, H., Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, L. C., Liu, Lu, Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, T., Liu, W. K., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. D., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Lu, Z. H., Luo, C. L., Luo, M. X., Luo, T., Luo, X. L., Lyu, X. R., Lyu, Y. F., Ma, F. C., Ma, H., Ma, H. L., Ma, J. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, X. T., Ma, X. Y., Ma, Y., Ma, Y. M., Maas, F. E., Maggiora, M., Malde, S., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Miao, H., Min, T. J., Mitchell, R. E., Mo, X. H., Moses, B., Muchnoi, N. Yu., Muskalla, J., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Niu, Q. L., Niu, W. D., Niu, Y., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pei, Y. P., Pelizaeus, M., Peng, H. P., Peng, Y. Y., Peters, K., Ping, J. L., Ping, R. G., Plura, S., Prasad, V., Qi, F. Z., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qiao, C. F., Qin, J. J., Qin, L. Q., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Qu, Z. H., Redmer, C. F., Ren, K. J., Rivetti, A., Rolo, M., Rong, G., Rosner, Ch., Ruan, S. N., Salone, N., Sarantsev, A., Schelhaas, Y., Schoenning, K., Scodeggio, M., Shan, K. Y., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, L. G., Shao, M., Shen, C. P., Shen, H. F., Shen, W. H., Shen, X. Y., Shi, B. A., Shi, H. C., Shi, J. L., Shi, J. Y., Shi, Q. Q., Shi, R. S., Shi, S. Y., Shi, X., Song, J. J., Song, T. Z., Song, W. M., Song, Y. J., Sosio, S., Spataro, S., Stieler, F., Su, Y. J., Sun, G. B., Sun, G. X., Sun, H., Sun, H. K., Sun, J. F., Sun, K., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y., Sun, Y. J., Sun, Y. Z., Sun, Z. Q., Sun, Z. T., Tang, C. J., Tang, G. Y., Tang, J., Tang, Y. A., Tao, L. Y., Tao, Q. T., Tat, M., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y., Tian, Z. F., Uman, I., Wan, Y., Wang, S. J., Wang, B., Wang, B. L., Wang, Bo, Wang, D. Y., Wang, F., Wang, H. J., Wang, J. P., Wang, K., Wang, L. L., Wang, M., Wang, Meng, Wang, N. Y., Wang, S., Wang, T., Wang, T. J., Wang, W., Wang, W. P., Wang, X., Wang, X. F., Wang, X. J., Wang, X. L., Wang, X. N., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. L., Wang, Y. N., Wang, Y. Q., Wang, Yaqian, Wang, Yi, Wang, Z., Wang, Z. L., Wang, Z. Y., Wang, Ziyi, Wei, D., Wei, D. H., Weidner, F., Wen, S. P., Wen, Y. R., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, C., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, X. H., Wu, Y., Wu, Y. H., Wu, Y. J., Wu, Z., Xia, L., Xian, X. M., Xiang, B. H., Xiang, T., Xiao, D., Xiao, G. Y., Xiao, S. Y., Xiao, Y. L., Xiao, Z. J., Xie, C., Xie, X. H., Xie, Y., Xie, Y. G., Xie, Y. H., Xie, Z. P., Xing, T. Y., Xu, C. F., Xu, C. J., Xu, G. F., Xu, H. Y., Xu, Q. J., Xu, Q. N., Xu, W., Xu, W. L., Xu, X. P., Xu, Y. C., Xu, Z. P., Xu, Z. S., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X. Q., Yang, H. J., Yang, H. L., Yang, H. X., Yang, Tao, Yang, Y., Yang, Y. F., Yang, Y. X., Yang, Yifan, Yang, Z. W., Yao, Z. P., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yu, X. D., Yuan, C. Z., Yuan, J., Yuan, L., Yuan, S. C., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, F. R., Zeng, S. H., Zeng, X., Zeng, Y., Zeng, Y. J., Zhai, X. Y., Zhai, Y. C., Zhan, Y. H., Zhang, A. Q., Zhang, B. L., Zhang, B. X., Zhang, D. H., Zhang, G. Y., Zhang, H., Zhang, H. C., Zhang, H. H., Zhang, H. Q., Zhang, H. Y., Zhang, J., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. X., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, L. M., Zhang, Lei, Zhang, P., Zhang, Q. Y., Zhang, Shuihan, Zhang, Shulei, Zhang, X. D., Zhang, X. M., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y. M., Zhang, Yan, Zhang, Yao, Zhang, Z. D., Zhang, Z. H., Zhang, Z. L., Zhang, Z. Y., Zhao, G., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, R. P., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, W. J., Zheng, Y. H., Zhong, B., Zhong, X., Zhou, H., Zhou, J. Y., Zhou, L. P., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhou, Y. Z., Zhu, J., Zhu, K., Zhu, K. J., Zhu, L., Zhu, L. X., Zhu, S. H., Zhu, S. Q., Zhu, T. J., Zhu, W. J., Zhu, Y. C., Zhu, Z. A., Zou, J. H., and Zu, J.
- Subjects
High Energy Physics - Experiment - Abstract
With a sample of $(10087\pm44)\times10^{6}$ $J/\psi$ events accumulated with the BESIII detector, we analyze the decays $\eta'\rightarrow\pi^+\pi^-l^+l^-(l=e,$ $\mu)$ via the process $J/\psi\rightarrow\gamma\eta'$. The branching fractions are measured to be $\mathcal{B}(\eta'\rightarrow\pi^+\pi^-e^+e^-)=(2.45\pm0.02(\rm{stat.})\pm0.08(\rm{syst.})) \times10^{-3}$ and $\mathcal{B}(\eta'\rightarrow\pi^+\pi^-\mu^+\mu^-)=(2.16\pm0.12(\rm{stat.})\pm0.06(\rm{syst.}))\times10^{-5}$, and the ratio is $\frac{\mathcal{B}(\eta'\rightarrow\pi^{+}\pi^{-}e^{+}e^{-})}{\mathcal{B}(\eta'\rightarrow\pi^{+}\pi^{-}\mu^{+}\mu^{-})} = 113.4\pm0.9(\rm{stat.})\pm3.7(\rm{syst.})$. In addition, by combining the $\eta'\rightarrow\pi^+\pi^-e^+e^-$ and $\eta'\rightarrow\pi^+\pi^-\mu^+\mu^-$ decays, the slope parameter of the electromagnetic transition form factor is measured to be $b_{\eta'}=1.30\pm0.19\ (\mathrm{GeV}/c^{2})^{-2}$, which is consistent with previous measurements from BESIII and theoretical predictions from the VMD model. The asymmetry in the angle between the $\pi^+\pi^-$ and $l^+l^-$ decay planes, which has the potential to reveal the $CP$-violation originating from an unconventional electric dipole transition, is also investigated. The asymmetry parameters are determined to be $\mathcal{A}_{CP}(\eta'\rightarrow\pi^+\pi^-e^+e^-)=(-0.21\pm0.73(\rm{stat.})\pm0.01(\rm{syst.}))\%$ and $\mathcal{A}_{CP}(\eta'\rightarrow\pi^+\pi^-\mu^+\mu^-)=(0.62\pm4.71(\rm{stat.})\pm0.08(\rm{syst.}))\%$, implying that no evidence of $CP$-violation is observed at the present statistics. Finally, an axion-like particle is searched for via the decay $\eta'\rightarrow\pi^+\pi^-a, a\rightarrow e^+e^-$, and upper limits of the branching fractions are presented for the mass assumptions of the axion-like particle in the range of $0-500\ \mathrm{MeV}/c^{2}$.
- Published
- 2024
85. Using Learning Analytics to Enhance College Students' Shared Epistemic Agency in Mobile Instant Messaging: A New Way to Support Deep Discussion
- Author
-
Yawen Yu, Yang Tao, Gaowei Chen, and Can Sun
- Abstract
Background: Deep discussions play an important role in students' online learning. However, researchers have largely focused on engaging students in deep discussions in online asynchronous forums. Few studies have investigated how to promote deep discussion via mobile instant messaging (MIM). Objectives: In this study, we applied learning analytical tools (i.e., KBdeX and word clouds) to enhance students' shared epistemic agency and thereby support their deep discussions in MIM. Methods: Forty Chinese college students participated in this study and reflected on their MIM engagement by participating in the learning analytics (LA)-augmented meta-discourse sessions. The study used multiple data analysis methods, including content analysis, statistical analysis, epistemic network analysis and lag sequential analysis. Results: We found that LA engaged students in deep discussions and shared epistemic agency-related discourse, such as creating shared understanding, creating knowledge objects, and projective and regulative processes. In particular, word clouds engaged students in more complete shared epistemic agency discourse trajectory which started from creating awareness of unknowns, then progressed to setting projective plans and sharing information, and ultimately, creating shared understanding. Moreover, our analysis indicated that epistemic agency discourse moves of creating shared understanding led students to a high level of deep discussion. Implications: This study contributes to research by extending the 'comparison paradigm', which focuses on comparing (a)synchronous forums with MIM, to a 'design paradigm', which mobilises design features from (a)synchronous forums to MIM and using learning analytical tools to engage students in deep online discussions by promoting their epistemic agency.
- Published
- 2024
- Full Text
- View/download PDF
86. Genome-Wide Characterization of Differentially Expressed Scent Genes in the MEP Control Network of the Flower of Lilium ‘Sorbonne’
- Author
-
Cao, Lei, Jiang, Fan, Liu, Dongying, Zhang, Jiaohua, Yang, Tao, Zhang, Jinzhu, Che, Daidi, and Fan, Jinping
- Published
- 2025
- Full Text
- View/download PDF
87. Filamentous phages as tumour-targeting immunotherapeutic bionanofibres
- Author
-
Yue, Hui, Li, Yan, Yang, Tao, Wang, Yecheng, Bao, Qing, Xu, Yajing, Liu, Xiangyu, Miao, Yao, Yang, Mingying, and Mao, Chuanbin
- Published
- 2024
- Full Text
- View/download PDF
88. A regulatory variant rs9379874 in T1D risk region 6p22.2 affects BTN3A1 expression regulating T cell function
- Author
-
Jiang, Liying, Shen, Min, Zhang, Saisai, Zhang, Jie, Shi, Yun, Gu, Yong, Yang, Tao, Fu, Qi, Wang, Bingwei, Chen, Yang, Xu, Kuanfeng, and Chen, Heng
- Published
- 2024
- Full Text
- View/download PDF
89. Blocking GATA6 Alleviates Pyroptosis and Inhibits Abdominal Wall Endometriosis Lesion Growth Through Inactivating the PI3K/AKT Pathway
- Author
-
Du, Xiufang, Yang, Hongjie, Kang, Xiaobei, Fu, Changna, and Yang, Tao
- Published
- 2024
- Full Text
- View/download PDF
90. Development of Serum Cell-Free miRNA Panel for Identification of Central Precocious Puberty and Premature Thelarche in Girls
- Author
-
Shen, Yifen, Hu, Yanping, Yang, Tao, Shen, Hao, Shen, Genhai, Orlov, Yuriy L., Zhou, Shasha, and Shen, Yihang
- Published
- 2024
- Full Text
- View/download PDF
91. An integrated land change modeler and distributed hydrological model approach for quantifying future urban runoff dynamics
- Author
-
Muhammad, Asad Hussain, Muhammad, Waseem, Muhammad, Ajmal, Muhammad, Atiq Ur Rehman Tariq, Xiao, Jiaqing, Yang, Tao, and Shi, Pengfei
- Published
- 2024
- Full Text
- View/download PDF
92. Frontiers in high entropy alloys and high entropy functional materials
- Author
-
Zhang, Wen-Tao, Wang, Xue-Qian, Zhang, Feng-Qi, Cui, Xiao-Ya, Fan, Bing-Bing, Guo, Jia-Ming, Guo, Zhi-Min, Huang, Rui, Huang, Wen, Li, Xu-Bo, Li, Meng-Ru, Ma, Yan, Shen, Zhi-Hua, Sun, Yong-Gang, Wang, De-Zhuang, Wang, Fei-Yang, Wang, Li-Qiang, Wang, Nan, Wang, Tian-Li, Wang, Wei, Wang, Xiao-Yang, Wang, Yi-Han, Yu, Fu-Jie, Yin, Yu-Zhen, Zhang, Ling-Kun, Zhang, Yi, Zhang, Jian-Yang, Zhao, Qi, Zhao, Yu-Ping, Zhu, Xin-Dong, Sohail, Yasir, Chen, Ya-Nan, Feng, Tao, Gao, Qi-Long, He, Hai-Yan, Huang, Yong-Jiang, Jiao, Zeng-Bao, Ji, Hua, Jiang, Yao, Li, Qiang, Li, Xiao-Ming, Liao, Wei-Bing, Lin, Huai-Jun, Liu, Hui, Liu, Qi, Liu, Qing-Feng, Liu, Wei-Di, Liu, Xiong-Jun, Lu, Yang, Lu, Yi-Ping, Ma, Wen, Miao, Xue-Fei, Pan, Jie, Wang, Qing, Wu, Hong-Hui, Wu, Yuan, Yang, Tao, Yang, Wei-Ming, Yu, Qian, Zhang, Jin-Yu, Chen, Zhi-Gang, Mao, Liang, Ren, Yang, Shen, Bao-Long, Wang, Xun-Li, Jia, Zhe, Zhu, He, Wu, Zhen-Duo, and Lan, Si
- Published
- 2024
- Full Text
- View/download PDF
93. An inorganic-organic hybrid CQDs@PVP lubricant additive: Achieving low friction and wear in PEG and water
- Author
-
Yang, Tao, Wang, Xiaozhen, Liu, Huanchen, Zhao, Qin, Gong, Kuiliang, Li, Weimin, Liang, Yongmin, and Wang, Xiaobo
- Published
- 2024
- Full Text
- View/download PDF
94. Theoretical insights into efficient oxygen evolution reaction using non-noble metal single-atom catalysts on W2CO2 MXene
- Author
-
Zhou, Jing-Yu, Han, Zhi-Cheng, Zhao, Shu, Yang, Tao, Yan, Da-Zhou, and Yu, Hai-Jun
- Published
- 2024
- Full Text
- View/download PDF
95. A Highly Sensitive Coaxial Nanofiber Mask for Respiratory Monitoring Assisted with Machine Learning
- Author
-
Lan, Boling, Zhong, Cheng, Wang, Shenglong, Ao, Yong, Liu, Yang, Sun, Yue, Yang, Tao, Tian, Guo, Huang, Longchao, Zhang, Jieling, Deng, Weili, and Yang, Weiqing
- Published
- 2024
- Full Text
- View/download PDF
96. Performance analysis of a novel medium temperature compressed air energy storage system based on inverter-driven compressor pressure regulation
- Author
-
Li, Yanghai, Xu, Wanbing, Zhang, Ming, Zhang, Chunlin, Yang, Tao, Ding, Hongyu, and Zhang, Lei
- Published
- 2024
- Full Text
- View/download PDF
97. Irisin Alleviates Autoimmune Uveitis Through Promoting Retinal Microglial M1 to M2 Phenotypic Polarization Mediated by HIF-1α Pathway
- Author
-
Wang, Meiqi, Huang, Xue, shu, Jia, Li, Hongxi, Yang, Tao, Li, Na, and Yang, Peizeng
- Published
- 2024
- Full Text
- View/download PDF
98. The impact of gelatin on the electrodeposition behavior and microstructure of copper in industrial electrolyte solutions
- Author
-
Xu, Yang-Tao, Li, Yan-Hong, Du, Hai-Yang, Zhong, Zhi-Qiang, and Peng, Yin
- Published
- 2024
- Full Text
- View/download PDF
99. Global marine microbial diversity and its potential in bioprospecting
- Author
-
Chen, Jianwei, Jia, Yangyang, Sun, Ying, Liu, Kun, Zhou, Changhao, Liu, Chuan, Li, Denghui, Liu, Guilin, Zhang, Chengsong, Yang, Tao, Huang, Lei, Zhuang, Yunyun, Wang, Dazhi, Xu, Dayou, Zhong, Qiaoling, Guo, Yang, Li, Anduo, Seim, Inge, Jiang, Ling, Wang, Lushan, Lee, Simon Ming Yuen, Liu, Yujing, Wang, Dantong, Zhang, Guoqiang, Liu, Shanshan, Wei, Xiaofeng, Yue, Zhen, Zheng, Shanmin, Shen, Xuechun, Wang, Sen, Qi, Chen, Chen, Jing, Ye, Chen, Zhao, Fang, Wang, Jun, Fan, Jie, Li, Baitao, Sun, Jiahui, Jia, Xiaodong, Xia, Zhangyong, Zhang, He, Liu, Junnian, Zheng, Yue, Liu, Xin, Wang, Jian, Yang, Huanming, Kristiansen, Karsten, Xu, Xun, Mock, Thomas, Li, Shengying, Zhang, Wenwei, and Fan, Guangyi
- Published
- 2024
- Full Text
- View/download PDF
100. Effect of Annealing Treatment on the Heterogeneous Microstructure and Properties of Cold-Rolled FeCoCrNiMn High-Entropy Alloy
- Author
-
Hu, Yong, Yang, Tao, Pan, Chunwang, Liu, Lincheng, and Jiao, Haitao
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.