51. Disentangling the Functional Role of Fungi in Cold Seep Sediment
- Author
-
Shekarriz, Erfan, Chen, Jiawei, Xu, Zhimeng, Liu, Hongbin, Shekarriz, Erfan, Chen, Jiawei, Xu, Zhimeng, and Liu, Hongbin
- Abstract
Cold seeps are biological oases of the deep sea fueled by methane, sulfates, nitrates, and other inorganic sources of energy. Chemolithoautotrophic bacteria and archaea dominate seep sediment, and their diversity and biogeochemical functions are well established. Fungi are likewise diverse, metabolically versatile, and known for their ability to capture and oxidize methane. Still, no study has ever explored the functional role of the mycobiota in the cold seep biome. To assess the complex role of fungi and fill in the gaps, we performed network analysis on 147 samples to disentangle fungal-prokaryotic interactions (fungal 18S and prokaryotic 16S) in the Haima cold seep region. We demonstrated that fungi are central species with high connectivity at the epicenter of prokaryotic networks, reduce their random-attack vulnerability by 60%, and enhance information transfer efficiency by 15%. We then scavenged a global metagenomic and metatranscriptomic data set from 10 cold seep regions for fungal genes of interest (hydrophobins, cytochrome P450s, and ligninolytic family of enzymes); this is the first study to report active transcription of 2,5001 fungal genes in the cold seep sediment. The genera Fusarium and Moniliella were of notable importance and directly correlated with high methane abundance in the sulfate-methane transition zone (SMTZ), likely due to their ability to degrade and solubilize methane and oils. Overall, our results highlight the essential yet overlooked contribution of fungi to cold seep biological networks and the role of fungi in regulating cold seep biogeochemistry.
- Published
- 2023