51. Synthesis of adenosine-imprinted microspheres for the recognition of ADP-ribosylated proteins.
- Author
-
Gong X, Tang B, Liu JJ, You XY, Gu J, Deng JY, and Xie WH
- Subjects
- Adenosine isolation & purification, Adenosine Diphosphate isolation & purification, Animals, Biosensing Techniques, Cattle, Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) chemistry, Microspheres, Polymerization, Polystyrenes chemistry, Serum Albumin, Bovine chemistry, Adenosine analysis, Adenosine Diphosphate analysis, Molecular Imprinting methods, Polymers chemistry, Proteins chemistry
- Abstract
Core-shell structural adenosine-imprinted microspheres were prepared via a two-step procedure. Polystyrene core particles (CP) were firstly prepared via a reversible addition-fragmentation chain transfer (RAFT) polymerization leaving the iniferter on the surface of the cores, then a molecularly imprinted polymer (MIP) shell was synthesized on the surface of the cores by using acrylamide (AAm) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The formation and growth of the MIP layer were seen dependent on the initiator (AIBN), AAm and the polymerization time used within the polymerization. SEM/TEM images showed that the dimensions of the cores and shells were 2μM and 44nm, respectively. The MIP microspheres exhibited a fast rebinding rate within 2h and a maximum adsorption capacity of 177μg per gram for adenosine. The adsorption fitted a Langmuir-Freundlich (LF) isotherm model with a K
LF value of 41mL/μg and a qm value of 177μg/g for the MIP microspheres. The values were larger than those for a non-molecularly imprinted polymer (NIP) particles (5mL/μg and 88μg/g) indicating a better adsorption ability towards adenosine. The MIP microspheres showed a good selectivity for adenosine with a higher adsorption (683nmol/g) for adenosine than that (91nmol/g, 24nmol/g and 54nmol/g) for guanosine, cytidine and uridine respectively. Further experiment proved that the adenosine-imprinted polymer microspheres also had a good selectivity for ADP-ribosylated proteins that the MIP could extract the ADP-ribosylated proteins from the cell extract samples., (Copyright © 2016 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF