51. Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays)
- Author
-
Ying Xue, Xin-Rong Ma, Yongfeng Gao, Qilin Wang, Guirong Yu, Yongsheng Liu, Xiangli Niu, and Weizao Huang
- Subjects
Copper Sulfate ,Molecular Sequence Data ,Aldehyde dehydrogenase ,Plant Science ,Genetically modified crops ,Protein Sorting Signals ,Sodium Chloride ,Genes, Plant ,Zea mays ,Gene Expression Regulation, Enzymologic ,Chloroplast Proteins ,chemistry.chemical_compound ,Saccharum officinarum ,Gene Expression Regulation, Plant ,Tobacco ,Botany ,Genetics ,Arabidopsis thaliana ,Amino Acid Sequence ,Plastid ,Abscisic acid ,Oryza sativa ,biology ,fungi ,food and beverages ,General Medicine ,Aldehyde Dehydrogenase ,Plants, Genetically Modified ,biology.organism_classification ,Adaptation, Physiological ,Droughts ,Protein Transport ,Transformation (genetics) ,Phenotype ,chemistry ,Biochemistry ,biology.protein ,Sequence Alignment ,Agronomy and Crop Science ,Abscisic Acid ,Subcellular Fractions - Abstract
Aldehyde dehydrogenases (ALDHs) play a central role in detoxification processes of aldehydes generated in plants when exposed to the stressed conditions. In order to identify genes required for the stresses responses in the grass crop Zea mays, an ALDH (ZmALDH22A1) gene was isolated and characterized. ZmALDH22A1 belongs to the family ALDH22 that is currently known only in plants. The ZmALDH22A1 encodes a protein of 593 amino acids that shares high identity with the orthologs from Saccharum officinarum (95%), Oryza sativa (89%), Triticum aestivum (87%) and Arabidopsis thaliana (77%), respectively. Real-time PCR analysis indicates that ZmALDH22A1 is expressed differentially in different tissues. Various elevated levels of ZmALDH22A1 expression have been detected when the seedling roots exposed to abiotic stresses including dehydration, high salinity and abscisic acid (ABA). Tomato stable transformation of construct expressing the ZmALDH22A1 signal peptide fused with yellow fluorescent protein (YFP) driven by the CaMV35S-promoter reveals that the fusion protein is targeted to plastid. Transgenic tobacco plants overexpressing ZmALDH22A1 shows elevated stresses tolerance. Stresses tolerance in transgenic plants is accompanied by a reduction of malondialdehyde (MDA) derived from cellular lipid peroxidation.
- Published
- 2008