51. New alternative convex conditions on exponential stability and stabilisation of switched positive linear systems with dwell time
- Author
-
Weiming Xiang, Hongbin Zhang, and Yang Li
- Subjects
0209 industrial biotechnology ,Control and Optimization ,Linear programming ,Linear system ,Stability (learning theory) ,02 engineering and technology ,Computer Science Applications ,Human-Computer Interaction ,Piecewise linear function ,Dwell time ,Stability conditions ,020901 industrial engineering & automation ,Exponential stability ,Control and Systems Engineering ,Control theory ,Transpose ,Electrical and Electronic Engineering ,Mathematics - Abstract
This study is concerned with dwell time stability and stabilisation problems of switched positive linear systems (SPLSs). The dwell time refers to minimum dwell time and constant dwell time. Several stability conditions for primal and transpose SPLSs with dwell time are presented, and the relation between these conditions is illustrated. Some of these conditions are given in terms of infinite-dimensional linear programming (LP), which cannot be solved directly. Then, by utilising the piecewise linear approach, new alternative convex conditions are formulated in terms of finite-dimensional LP. Compared to the existing literature, results with lower or at least the same conservatism can be obtained under the new conditions for the same discretised order. An algorithm is given to reduce the computational cost. Meanwhile, it is proved that there exists a relation between these convex and non-convex conditions if the discretised order is sufficiently large. By utilising the transpose conditions, alternative convex conditions on stabilisation of SPLSs with dwell time are also presented. The controller gain matrices can be computed by solving a set of LP directly. Finally, the correctness and superiority of the results are verified by numerical examples.
- Published
- 2019