150,838 results on '"Vaughan, A."'
Search Results
52. To trust or not to trust: evaluating the reliability and safety of AI responses to laryngeal cancer queries
- Author
-
Ostrowska, Magdalena, Kacała, Paulina, Onolememen, Deborah, Vaughan-Lane, Katie, Sisily Joseph, Anitta, Ostrowski, Adam, Pietruszewska, Wioletta, Banaszewski, Jacek, and Wróbel, Maciej J.
- Published
- 2024
- Full Text
- View/download PDF
53. Role function in postmenopausal women during aromatase inhibitor therapy for breast cancer
- Author
-
Melnyk, Halia, Dickson, Victoria Vaughan, Bender, Catherine, Yu, Gary, Djukic, Maja, and Merriman, John
- Published
- 2024
- Full Text
- View/download PDF
54. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery
- Author
-
Xue, Lulu, Zhao, Gan, Gong, Ningqiang, Han, Xuexiang, Shepherd, Sarah J., Xiong, Xinhong, Xiao, Zebin, Palanki, Rohan, Xu, Junchao, Swingle, Kelsey L., Warzecha, Claude C., El-Mayta, Rakan, Chowdhary, Vivek, Yoon, Il-Chul, Xu, Jingcheng, Cui, Jiaxi, Shi, Yi, Alameh, Mohamad-Gabriel, Wang, Karin, Wang, Lili, Pochan, Darrin J., Weissman, Drew, Vaughan, Andrew E., Wilson, James M., and Mitchell, Michael J.
- Published
- 2024
- Full Text
- View/download PDF
55. Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo
- Author
-
Han, Xuexiang, Alameh, Mohamad-Gabriel, Gong, Ningqiang, Xue, Lulu, Ghattas, Majed, Bojja, Goutham, Xu, Junchao, Zhao, Gan, Warzecha, Claude C., Padilla, Marshall S., El-Mayta, Rakan, Dwivedi, Garima, Xu, Ying, Vaughan, Andrew E., Wilson, James M., Weissman, Drew, and Mitchell, Michael J.
- Published
- 2024
- Full Text
- View/download PDF
56. Going from Primary to Primordial Prevention: Is the Juice Worth the Squeeze?
- Author
-
Chiou, Andrew, Hermel, Melody, Chai, Zohar, Eiseman, Ariana, Jeschke, Sheila, Mehta, Sandeep, Khan, Unab, Hoodbhoy, Zahra, Safdar, Nilofer, Khoja, Adeel, Junaid, Vashma, Vaughan, Elizabeth, Merchant, Anwar T., Iqbal, Junaid, Almas, Aysha, Virani, Salim S., and Sheikh, Sana
- Published
- 2024
- Full Text
- View/download PDF
57. The biphasic activity of autophagy and heat shock protein response in peripheral blood mononuclear cells following acute resistance exercise in resistance-trained males
- Author
-
Escobar, Kurt A., VanDusseldorp, Trisha A., Johnson, Kelly E., Stratton, Matthew, McCormick, James J., Moriarity, Terence, Dokladny, Karol, Vaughan, Roger A., Kerksick, Chad M., Kravitz, Len, and Mermier, Christine M.
- Published
- 2024
- Full Text
- View/download PDF
58. Echocardiographic characterization of age- and sex-associated differences in cardiac function and morphometry in nonhuman primates
- Author
-
Florio, Maria Cristina, Fusini, Laura, Tamborini, Gloria, Morrell, Christopher, McDonald, Alise, Walcott, Michelle, Ridley, Kenneth, Vaughan, Kelli L., Mattison, Julie A., Pepi, Mauro, Lakatta, Edward G., and Capogrossi, Maurizio C.
- Published
- 2024
- Full Text
- View/download PDF
59. Sitagliptin elevates plasma and CSF incretin levels following oral administration to nonhuman primates: relevance for neurodegenerative disorders
- Author
-
Li, Yazhou, Vaughan, Kelli L., Wang, Yun, Yu, Seong-Jin, Bae, Eun-Kyung, Tamargo, Ian A., Kopp, Katherine O., Tweedie, David, Chiang, Cheng-Chuan, Schmidt, Keith T., Lahiri, Debomoy K., Tones, Michael A., Zaleska, Margaret M., Hoffer, Barry J., Mattison, Julie A., and Greig, Nigel H.
- Published
- 2024
- Full Text
- View/download PDF
60. Aardvark weather: end-to-end data-driven weather forecasting
- Author
-
Vaughan, Anna, Markou, Stratis, Tebbutt, Will, Requeima, James, Bruinsma, Wessel P., Andersson, Tom R., Herzog, Michael, Lane, Nicholas D., Chantry, Matthew, Hosking, J. Scott, and Turner, Richard E.
- Subjects
Physics - Atmospheric and Oceanic Physics ,Computer Science - Machine Learning - Abstract
Weather forecasting is critical for a range of human activities including transportation, agriculture, industry, as well as the safety of the general public. Machine learning models have the potential to transform the complex weather prediction pipeline, but current approaches still rely on numerical weather prediction (NWP) systems, limiting forecast speed and accuracy. Here we demonstrate that a machine learning model can replace the entire operational NWP pipeline. Aardvark Weather, an end-to-end data-driven weather prediction system, ingests raw observations and outputs global gridded forecasts and local station forecasts. Further, it can be optimised end-to-end to maximise performance over quantities of interest. Global forecasts outperform an operational NWP baseline for multiple variables and lead times. Local station forecasts are skillful up to ten days lead time and achieve comparable and often lower errors than a post-processed global NWP baseline and a state-of-the-art end-to-end forecasting system with input from human forecasters. These forecasts are produced with a remarkably simple neural process model using just 8% of the input data and three orders of magnitude less compute than existing NWP and hybrid AI-NWP methods. We anticipate that Aardvark Weather will be the starting point for a new generation of end-to-end machine learning models for medium-range forecasting that will reduce computational costs by orders of magnitude and enable the rapid and cheap creation of bespoke models for users in a variety of fields, including for the developing world where state-of-the-art local models are not currently available.
- Published
- 2024
61. IQMDose3D: a software tool for reconstructing the dose in patient using patient planning CT images and the signals measured by IQM detector
- Author
-
Xing, Aitang, Goozee, Gary, Gray, Alison, Moutrie, Vaughan, Arumugam, Sankar, Deshpande, Shrikant, Espinoza, Anthony, Kondilis, Vasilis, McDonald, Marjorie, and Vial, Philip
- Subjects
Physics - Medical Physics - Abstract
The integral quality monitor (IQM) system compares the signal measured with a large volume chamber mounted to the linear accelerator's head to the signal calculated using the patient DICOM RT plan for patient-specific quality assurance (PSQA). A method was developed to reconstruct the dose in patients using the signal measured by IQM chamber and patient planning CT images. A software tool named IQMDose3D was implemented to automate this procedure and integrated into the IQM-based PSQA workflow. IQMDose3D enables the physicists to evaluate PSQA by focusing on the clinical perspective by comparing the delivered plan to the approved clinical plan in terms of the clinical goals, dose-volume histogram (DVH) in addition to the three-dimensional (3D) gamma map and gamma pass rate., Comment: Accepted by ICCR 2024 conference
- Published
- 2024
62. Interior Schauder estimates for fractional elliptic equations in nondivergence form
- Author
-
Stinga, P. R. and Vaughan, M.
- Subjects
Mathematics - Analysis of PDEs ,Mathematics - Classical Analysis and ODEs - Abstract
We obtain sharp interior Schauder estimates for solutions to nonlocal Poisson problems driven by fractional powers of nondivergence form elliptic operators $(-a^{ij}(x) \partial_{ij})^s$, for $0
- Published
- 2024
63. Metabolomic profiles in Jamaican children with and without autism spectrum disorder
- Author
-
Yazdani, Akram, Samms-Vaughan, Maureen, Saroukhani, Sepideh, Bressler, Jan, Hessabi, Manouchehr, Tahanan, Amirali, Grove, Megan L., Gangnus, Tanja, Putluri, Vasanta, Kamal, Abu Hena Mostafa, Putluri, Nagireddy, Loveland, Katherine A., and Rahbar, Mohammad H.
- Subjects
Quantitative Biology - Biomolecules - Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a wide range of behavioral and cognitive impairments. While genetic and environmental factors are known to contribute to its etiology, the underlying metabolic perturbations associated with ASD which can potentially connect genetic and environmental factors, remain poorly understood. Therefore, we conducted a metabolomic case-control study and performed a comprehensive analysis to identify significant alterations in metabolite profiles between children with ASD and typically developing (TD) controls. The objective of this study is to elucidate potential metabolomic signatures associated with ASD in children and identify specific metabolites that may serve as biomarkers for the disorder. We conducted metabolomic profiling on plasma samples from participants in the second phase of Epidemiological Research on Autism in Jamaica, a cohort of 200 children with ASD and 200 TD controls (2-8 years old). Using high-throughput liquid chromatography-mass spectrometry techniques, we performed a targeted metabolite analysis, encompassing amino acids, lipids, carbohydrates, and other key metabolic compounds. After quality control and imputation of missing values, we performed univariable and multivariable analysis using normalized metabolites while adjusting for covariates, age, sex, socioeconomic status, and child's parish of birth. Our findings revealed unique metabolic patterns in children with ASD for four metabolites compared to TD controls. Notably, three of these metabolites were fatty acids, including myristoleic acid, eicosatetraenoic acid, and octadecenoic acid. Additionally, the amino acid sarcosine exhibited a significant association with ASD. These findings highlight the role of metabolites in the etiology of ASD and suggest opportunities for the development of targeted interventions.
- Published
- 2024
64. Fairness-Aware Interpretable Modeling (FAIM) for Trustworthy Machine Learning in Healthcare
- Author
-
Liu, Mingxuan, Ning, Yilin, Ke, Yuhe, Shang, Yuqing, Chakraborty, Bibhas, Ong, Marcus Eng Hock, Vaughan, Roger, and Liu, Nan
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computers and Society - Abstract
The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework - Fairness-Aware Interpretable Modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a "fairer" model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrated FAIM's value in reducing sex and race biases by predicting hospital admission with two real-world databases, MIMIC-IV-ED and SGH-ED. We show that for both datasets, FAIM models not only exhibited satisfactory discriminatory performance but also significantly mitigated biases as measured by well-established fairness metrics, outperforming commonly used bias-mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides an a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.
- Published
- 2024
65. Performance of a modular ton-scale pixel-readout liquid argon time projection chamber
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chakraborty, S., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmueller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khotjantsev, A., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Pitts, K., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Polo-Toledo, D., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, D., Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements, and provide comparisons to detector simulations., Comment: 47 pages, 41 figures
- Published
- 2024
66. GDCNet: Calibrationless geometric distortion correction of echo planar imaging data using deep learning
- Author
-
Jimeno, Marina Manso, Bachi, Keren, Gardner, George, Hurd, Yasmin L., Vaughan Jr., John Thomas, and Geethanath, Sairam
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Functional magnetic resonance imaging techniques benefit from echo-planar imaging's fast image acquisition but are susceptible to inhomogeneities in the main magnetic field, resulting in geometric distortion and signal loss artifacts in the images. Traditional methods leverage a field map or voxel displacement map for distortion correction. However, voxel displacement map estimation requires additional sequence acquisitions, and the accuracy of the estimation influences correction performance. This work implements a novel approach called GDCNet, which estimates a geometric distortion map by non-linear registration to T1-weighted anatomical images and applies it for distortion correction. GDCNet demonstrated fast distortion correction of functional images in retrospectively and prospectively acquired datasets. Among the compared models, the 2D self-supervised configuration resulted in a statistically significant improvement to normalized mutual information between distortion-corrected functional and T1-weighted images compared to the benchmark methods FUGUE and TOPUP. Furthermore, GDCNet models achieved processing speeds 14 times faster than TOPUP in the prospective dataset., Comment: 30 pages, 9 figures, 3 tables
- Published
- 2024
67. Investigating the Hard State of MAXI J1820+070: A Comprehensive Bayesian Approach to Black Hole Spin and Accretion Properties
- Author
-
Dias, Sachin D., Vaughan, Simon, Lefkir, Mehdy, and Wynn, Graham
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We analyse the X-ray spectrum of the black hole X-ray binary MAXI J1820+070 using observations from XMM-Newton and NuSTAR during 'hard' states of its 2018-2019 outburst. We take a fully Bayesian approach, and this is one of the first papers to present a fully Bayesian workflow for the analysis of an X-ray binary X-ray spectrum. This allows us to leverage the relatively well-understood distance and binary system properties (like inclination and black hole mass), as well as information from the XMM-Newton RGS data to assess the foreground X-ray absorption. We employ a spectral model for a `vanilla' disc-corona system: the disc is flat and in the plane perpendicular to the axis of the jet and the black hole spin, the disc extends inwards to the innermost stable circular orbit around the black hole, and the (non-thermal) hard X-ray photons are up-scattered soft X-ray photons originating from the disc thermal emission. Together, these provide tight constraints on the spectral model and, in combination with the strong prior information about the system, mean we can then constrain other parameters that are poorly understood such as the disc colour correction factor. By marginalising over all the parameters, we calculate a posterior density for the black hole spin parameter, $a$. Our modelling suggests a preference for low or negative spin values, although this could plausibly be reproduced by higher spins and a modest degree of disc truncation. This approach demonstrates the efficacy and some of the complexities of Bayesian methods for X-ray spectral analysis., Comment: 25 pages, 12 figures, 7 tables, accepted for publication in MNRAS
- Published
- 2024
68. Automated detection of motion artifacts in brain MR images using deep learning and explainable artificial intelligence
- Author
-
Jimeno, Marina Manso, Ravi, Keerthi Sravan, Fung, Maggie, Vaughan, Jr., John Thomas, and Geethanath, Sairam
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Quality assessment, including inspecting the images for artifacts, is a critical step during MRI data acquisition to ensure data quality and downstream analysis or interpretation success. This study demonstrates a deep learning model to detect rigid motion in T1-weighted brain images. We leveraged a 2D CNN for three-class classification and tested it on publicly available retrospective and prospective datasets. Grad-CAM heatmaps enabled the identification of failure modes and provided an interpretation of the model's results. The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets. Additionally, the model's classifications on the prospective dataset showed a strong inverse correlation (-0.84) compared to average edge strength, an image quality metric indicative of motion. This model is part of the ArtifactID tool, aimed at inline automatic detection of Gibbs ringing, wrap-around, and motion artifacts. This tool automates part of the time-consuming QA process and augments expertise on-site, particularly relevant in low-resource settings where local MR knowledge is scarce., Comment: 25 pages, 9 figures, 1 table. Submitted to NMR in Biomedicine
- Published
- 2024
69. The SAMI Galaxy Survey: galaxy spin is more strongly correlated with stellar population age than mass or environment
- Author
-
Croom, S. M., van de Sande, J., Vaughan, S. P., Rutherford, T. H., Lagos, C. P., Barsanti, S., Bland-Hawthorn, J., Brough, S., Bryant, J. J., Colless, M., Cortese, L., D'Eugenio, F., Fraser-McKelvie, A., Goodwin, M., Lorente, N. P. F., Richards, S. N., Ristea, A., Sweet, S. M., Yi, S. K., and Zafar, T.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We use the SAMI Galaxy Survey to examine the drivers of galaxy spin, $\lambda_{R_e}$, in a multi-dimensional parameter space including stellar mass, stellar population age (or specific star formation rate) and various environmental metrics (local density, halo mass, satellite vs. central). Using a partial correlation analysis we consistently find that age or specific star formation rate is the primary parameter correlating with spin. Light-weighted age and specific star formation rate are more strongly correlated with spin than mass-weighted age. In fact, across our sample, once the relation between light-weighted age and spin is accounted for, there is no significant residual correlation between spin and mass, or spin and environment. This result is strongly suggestive that present-day environment only indirectly influences spin, via the removal of gas and star formation quenching. That is, environment affects age, then age affects spin. Older galaxies then have lower spin, either due to stars being born dynamically hotter at high redshift, or due to secular heating. Our results appear to rule out environmentally dependent dynamical heating (e.g. galaxy-galaxy interactions) being important, at least within $1R_e$ where our kinematic measurements are made. The picture is more complex when we only consider high-mass galaxies ($M_*\gtrsim 10^{11}$M$_{\odot}$). While the age-spin relation is still strong for these high-mass galaxies, there is a residual environmental trend with central galaxies preferentially having lower spin, compared to satellites of the same age and mass. We argue that this trend is likely due to central galaxies being a preferred location for mergers., Comment: 24 pages, 9 figures. Accepted for publication in MNRAS
- Published
- 2024
- Full Text
- View/download PDF
70. The SAMI Galaxy Survey: Using Tidal Streams and Shells to Trace the Dynamical Evolution of Massive Galaxies
- Author
-
Rutherford, Tomas H., van de Sande, Jesse, Croom, Scott M., Valenzuela, Lucas M., Remus, Rhea-Silvia, D'Eugenio, Francesco, Vaughan, Sam P., Zovaro, Henry R. M., Casura, Sarah, Barsanti, Stefania, Bland-Hawthorn, Joss, Brough, Sarah, Bryant, Julia J., Goodwin, Michael, Lorente, Nuria, Oh, Sree, and Ristea, Andrei
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Slow rotator galaxies are distinct amongst galaxy populations, with simulations suggesting that a mix of minor and major mergers are responsible for their formation. A promising path to resolve outstanding questions on the type of merger responsible, is by investigating deep imaging of massive galaxies for signs of potential merger remnants. We utilise deep imaging from the Subaru-Hyper Suprime Cam Wide data to search for tidal features in massive ($\log_{10}(M_*/M_{\odot}) > 10$) early-type galaxies (ETGs) in the SAMI Galaxy Survey. We perform a visual check for tidal features on images where the galaxy has been subtracted using a Multi-Gauss Expansion (MGE) model. We find that $31\pm 2$ percent of our sample show tidal features. When comparing galaxies with and without features, we find that the distributions in stellar mass, light-weighted mean stellar population age and H$\alpha$ equivalent width are significantly different, whereas spin ($\lambda_{R_e}$), ellipticity and bulge to total ratio have similar distributions. When splitting our sample in age, we find that galaxies below the median age (10.8 Gyr) show a correlation between the presence of shells and lower $\lambda_{R_e}$, as expected from simulations. We also find these younger galaxies which are classified as having "strong" shells have lower $\lambda_{R_e}$. However, simulations suggest that merger features become undetectable within $\sim 2-4$ Gyr post-merger. This implies that the relationship between tidal features and merger history disappears for galaxies with older stellar ages, i.e. those that are more likely to have merged long ago., Comment: Accepted for publication in MNRAS. 22 pages, 14 figures
- Published
- 2024
- Full Text
- View/download PDF
71. The SAMI galaxy survey: predicting kinematic morphology with logistic regression
- Author
-
Vaughan, Sam P., van de Sande, Jesse, Fraser-McKelvie, A., Croom, Scott, McDermid, Richard, Liquet-Weiland, Benoit, Barsanti, Stefania, Cortese, Luca, Brough, Sarah, Sweet, Sarah, Bryant, Julia J., Goodwin, Michael, and Lawrence, Jon
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We use the SAMI galaxy survey to study the the kinematic morphology-density relation: the observation that the fraction of slow rotator galaxies increases towards dense environments. We build a logistic regression model to quantitatively study the dependence of kinematic morphology (whether a galaxy is a fast rotator or slow rotator) on a wide range of parameters, without resorting to binning the data. Our model uses a combination of stellar mass, star-formation rate (SFR), $r$-band half-light radius and a binary variable based on whether the galaxy's observed ellipticity ($\epsilon$) is less than 0.4. We show that, at fixed mass, size, SFR and $\epsilon$, a galaxy's local environmental surface density ($\log_{10}(\Sigma_5/\mathrm{Mpc}^{-2})$) gives no further information about whether a galaxy is a slow rotator, i.e. the observed kinematic-morphology density relation can be entirely explained by the well-known correlations between environment and other quantities. We show how our model can be applied to different galaxy surveys to predict the fraction of slow rotators which would be observed and discuss its implications for the formation pathways of slow rotators., Comment: 12 pages, 6 figures. Accepted for publication in MNRAS
- Published
- 2024
72. Doping Liquid Argon with Xenon in ProtoDUNE Single-Phase: Effects on Scintillation Light
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Aimard, B., Akbar, F., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Es-sghir, H. Amar, Amedo, P., Anderson, J., Andrade, D. A., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barenboim, G., BarhamAlzás, P., Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bracinik, J., Braga, D., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calin, M., Calivers, L., Calvo, E., Caminata, A., Campanelli, W., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clair, J., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collot, J., Conley, E., Conrad, J. M., Convery, M., Cooke, P., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., De la Torre, A., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dvornikov, O., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferraro, F., Ferry, G., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallas, A., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, P., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerard, E., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Haaf, K., Habig, A., Hadavand, H., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmueller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Henry, S., Morquecho, M. A. Hernandez, Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horton-Smith, G. A., Hostert, M., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Joaquim, F. R., Johnson, W., Jones, B., Jones, R., Fernández, D. José, Jovancevic, N., Judah, M., Jung, C. K., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kamiya, F., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., King, B., Kirby, B., Kirby, M., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kuhlmann, S., Kumar, J., Kumar, P., Kumaran, S., Kunze, P., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Lawrence, A., Laycock, P., Lazanu, I., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Lee, C., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y., Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Lineros, R. A., Ling, J., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, March, N. López, Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., Maalmi, J., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marsden, D., Marshak, M., Marshall, C. M., Marshall, J., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., Mazzacane, A., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Messier, M. D., Metallo, S., Metcalf, J., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Miccoli, A., Michna, G., Mikola, V., Milincic, R., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Miranda, O. G., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Mote, M., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nalbandyan, M., Nandakumar, R., Naples, D., Narita, S., Nath, A., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papadimitriou, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pinchault, J., Plows, K., Plunkett, R., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Poppi, F., Pordes, S., Porter, J., Potekhin, M., Potenza, R., Pozimski, J., Pozzato, M., Prakash, S., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Rafique, A., Raguzin, E., Rai, M., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reggiani-Guzzo, M., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, D., Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Saa-Hernandez, A., Saakyan, R., Sacerdoti, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segreto, E., Selyunin, A., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Shaw, K., Shaw, T., Shchablo, K., Shepherd-Themistocleous, C., Sheshukov, A., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Soleti, S. R., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thiebault, A., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Varner, G., Vasina, S., Vaughan, N., Vaziri, K., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Villa, E., Viren, B., Vizcaya-Hernandez, A., Vrba, T., Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, M., Wei, H., Weinstein, A., Wenzel, H., Westerdale, S., Wetstein, M., Whalen, K., Whilhelmi, J., White, A., Whitehead, L. H., Whittington, D., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors - Abstract
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen., Comment: 36 pages, 20 figures. Corrected author list; corrected typos across paper and polished text
- Published
- 2024
73. Canvil: Designerly Adaptation for LLM-Powered User Experiences
- Author
-
Feng, K. J. Kevin, Liao, Q. Vera, Xiao, Ziang, Vaughan, Jennifer Wortman, Zhang, Amy X., and McDonald, David W.
- Subjects
Computer Science - Human-Computer Interaction - Abstract
Advancements in large language models (LLMs) are sparking a proliferation of LLM-powered user experiences (UX). In product teams, designers often craft UX to meet user needs, but it is unclear how they engage with LLMs as a novel design material. Through a formative study with 12 designers, we find that designers seek a translational mechanism that enables design requirements to shape and be shaped by LLM behavior, motivating a need for designerly adaptation to facilitate this translation. We then built Canvil, a Figma widget that operationalizes designerly adaptation. We used Canvil as a technology probe in a group-based design study (6 groups, N=17), finding that designers constructively iterated on both adaptation approaches and interface designs to enhance end-user interaction with LLMs. Furthermore, designers identified promising collaborative workflows for designerly adaptation. Our work opens new avenues for processes and tools that foreground designers' user-centered expertise in LLM-powered applications. Canvil is available for public use at https://www.figma.com/community/widget/1277396720888327660.
- Published
- 2024
74. Stochastic modelling of the instantaneous velocity profile in rough-wall turbulent boundary layers
- Author
-
Ehsani, Roozbeh, Heisel, Michael, Li, Jiaqi, Voller, Vaughan, Hong, Jiarong, and Guala, Michele
- Subjects
Physics - Fluid Dynamics - Abstract
The statistical properties of Uniform Momentum Zones (UMZs) are extracted from laboratory and field measurements in rough wall turbulent boundary layers to formulate a set of stochastic models for the simulation of instantaneous velocity profiles. A spatio-temporally resolved velocity dataset, covering a field of view of $8 \times 9$ m$^2$, was obtained in the atmospheric surface layer using super-large-scale particle image velocimetry (SLPIV), as part of the Grand-scale Atmospheric Imaging Apparatus (GAIA). Wind tunnel data from a previous study are included for comparison \citep{heisel2020mixing}. The probability density function of UMZ attributes such as their thickness, modal velocity, and averaged vertical velocity are built at varying elevations and modeled using log-normal and Gaussian distributions. Inverse transform sampling of the distributions is used to generate synthetic step-like velocity profiles that are spatially and temporally uncorrelated. Results show that in the wide range of wall-normal distances and $Re_\tau$ up to $ \sim O(10^6)$ investigated here, shear velocity scaling is manifested in the velocity jump across shear interfaces between adjacent UMZs, and attached eddy behavior is observed in the linear proportionality between UMZ thickness and their wall normal location. These very same characteristics are recovered in the generated instantaneous profiles, using both a fully stochastic and a data-driven hybrid stochastic models, which address, in different ways, the coupling between modal velocities and UMZ thickness. Our method provides a stochastic approach for generating an ensemble of instantaneous velocity profiles, consistent with the structural organization of UMZs, where the ensemble reproduces the logarithmic mean velocity profile and recovers significant portions of the Reynolds stresses and thus of the streamwise and vertical velocity variability.
- Published
- 2024
- Full Text
- View/download PDF
75. 5-Engel Lie algebras
- Author
-
Vaughan-Lee, Michael
- Subjects
Mathematics - Group Theory ,17B30, 20D15, 20F45 - Abstract
We prove that 5-Engel Lie algebras over a field of characteristic zero, or over a field of prime characteristic $p>7$, are nilpotent of class at most 11. We also prove that if $G$ is a finite 5-Engel $p$-group for $p>7$ then $G$ is nilpotent of class at most 10., Comment: 13 pages, some typos corrected
- Published
- 2024
76. Bases for free Lie superalgebras
- Author
-
Vaughan-Lee, Michael
- Subjects
Mathematics - Group Theory ,17B01 - Abstract
We describe a basis for free Lie superalgebras which uses the theory of basic commutators. The only description for bases for free Lie superalgebras that I have found in the literature is in the book "Infinite dimensional Lie superalgebras" by Bahturin et al. Their bases make use of the theory of Shirshov bases in free Lie algebras, and I believe that there is a case for writing up an alternative approach using basic commutators., Comment: 10 pages
- Published
- 2024
77. Connectome architecture shapes large-scale cortical alterations in schizophrenia: a worldwide ENIGMA study.
- Author
-
Georgiadis, Foivos, Larivière, Sara, Glahn, David, Hong, L, Kochunov, Peter, Mowry, Bryan, Loughland, Carmel, Pantelis, Christos, Henskens, Frans, Green, Melissa, Cairns, Murray, Michie, Patricia, Rasser, Paul, Catts, Stanley, Tooney, Paul, Scott, Rodney, Schall, Ulrich, Carr, Vaughan, Quidé, Yann, Krug, Axel, Stein, Frederike, Nenadić, Igor, Brosch, Katharina, Kircher, Tilo, Gur, Raquel, Gur, Ruben, Satterthwaite, Theodore, Karuk, Andriana, Pomarol-Clotet, Edith, Radua, Joaquim, Fuentes-Claramonte, Paola, Salvador, Raymond, Spalletta, Gianfranco, Voineskos, Aristotle, Sim, Kang, Crespo-Facorro, Benedicto, Tordesillas Gutiérrez, Diana, Ehrlich, Stefan, Crossley, Nicolas, Grotegerd, Dominik, Repple, Jonathan, Lencer, Rebekka, Dannlowski, Udo, Calhoun, Vince, Rootes-Murdy, Kelly, Demro, Caroline, Ramsay, Ian, Sponheim, Scott, Schmidt, Andre, Borgwardt, Stefan, Tomyshev, Alexander, Lebedeva, Irina, Höschl, Cyril, Spaniel, Filip, Preda, Adrian, Nguyen, Dana, Uhlmann, Anne, Stein, Dan, Howells, Fleur, Temmingh, Henk, Diaz Zuluaga, Ana, López Jaramillo, Carlos, Iasevoli, Felice, Ji, Ellen, Homan, Stephanie, Omlor, Wolfgang, Homan, Philipp, Kaiser, Stefan, Seifritz, Erich, Misic, Bratislav, Valk, Sofie, Thompson, Paul, Van Erp, Theodorus, Turner, Jessica, Bernhardt, Boris, and Kirschner, Matthias
- Subjects
Humans ,Schizophrenia ,Connectome ,Adult ,Female ,Male ,Magnetic Resonance Imaging ,Cerebral Cortex ,Nerve Net ,Brain ,Middle Aged ,Neural Pathways ,Young Adult - Abstract
Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenias alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.
- Published
- 2024
78. Methods for building a staff workforce of quantitative scientists in academic health care.
- Author
-
Peskoe, Sarah, Slade, Emily, Rende, Lacey, Boulos, Mary, Desai, Manisha, Gandhi, Mihir, Gelfond, Jonathan, Khalatbari, Shokoufeh, Schulte, Phillip, Snyder, Denise, Taylor, Sandra, Troy, Jesse, Vaughan, Roger, and Pomann, Gina-Maria
- Subjects
academic health care centers ,collaborative biostatistics ,data science ,quantitative staff - Abstract
Collaborative quantitative scientists, including biostatisticians, epidemiologists, bio-informaticists, and data-related professionals, play vital roles in research, from study design to data analysis and dissemination. It is imperative that academic health care centers (AHCs) establish an environment that provides opportunities for the quantitative scientists who are hired as staff to develop and advance their careers. With the rapid growth of clinical and translational research, AHCs are charged with establishing organizational methods, training tools, best practices, and guidelines to accelerate and support hiring, training, and retaining this staff workforce. This paper describes three essential elements for building and maintaining a successful unit of collaborative staff quantitative scientists in academic health care centers: (1) organizational infrastructure and management, (2) recruitment, and (3) career development and retention. Specific strategies are provided as examples of how AHCs can excel in these areas.
- Published
- 2024
79. An Inner Mitochondrial Membrane Microprotein from the SLC35A4 Upstream ORF Regulates Cellular Metabolism.
- Author
-
Rocha, Andréa, Pai, Victor, Perkins, Guy, Chang, Tina, Ma, Jiao, De Souza, Eduardo, Chu, Qian, Vaughan, Joan, Diedrich, Jolene, Ellisman, Mark, and Saghatelian, Alan
- Subjects
cellular metabolism ,inner mitochondrial membrane ,microprotein ,mitochondria ,upstream open reading frame (uORF) ,Humans ,5 Untranslated Regions ,Amino Acid Sequence ,Mitochondria ,Mitochondrial Membranes ,Mitochondrial Proteins ,Open Reading Frames ,Protein Biosynthesis ,RNA ,Messenger ,Nucleotide Transport Proteins ,HEK293 Cells - Abstract
Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.
- Published
- 2024
80. Health Service Utilization in Adolescents Following a First Arrest: The Role of Antisocial Behavior, Callous-Unemotional Traits, and Juvenile Justice System Processing.
- Author
-
Speck, Julianne, Frick, Paul, Vaughan, Erin, Walker, Toni, Robertson, Emily, Ray, James, Myers, Tina, Thornton, Laura, Steinberg, Laurence, and Cauffman, Elizabeth
- Subjects
Antisocial behavior ,Callous-unemotional traits ,Health service utilization ,Juvenile justice system ,Humans ,Adolescent ,Male ,Female ,Juvenile Delinquency ,Mental Health Services ,Antisocial Personality Disorder ,Emotions ,Patient Acceptance of Health Care - Abstract
Previous research indicates that youth exhibiting antisocial behavior are at risk for utilizing a disproportionate amount of health services compared to youth without these problems. The present study investigates whether being processed by the juvenile justice system and showing callous-unemotional (CU) traits independently predict health service utilization (medical and mental health service use and out-of-home placement) over and above the severity of antisocial behavior across adolescence. A total of 766 participants who had been arrested for the first time in adolescence provided data at ten appointments over a period of seven years. Results showed that self-reported antisocial behavior at the time of arrest predicted increased use of most health service use types over the next seven years (i.e. medicine prescriptions, tests for sexually transmitted infections, mental health service appointments, and out-of-home placements). All except prescription medication use remained significant when controlling for justice system processing and CU traits. Further, justice system processing added significantly to the prediction of medical service appointments. Whereas CU traits were associated with mental health service appointments and out-of-home placements, these did not remain significant when controlling for severity of antisocial behavior. These findings are consistent with prior research documenting the health care costs of antisocial behavior.
- Published
- 2024
81. An AI Wishlist from School Leaders
- Author
-
Raffaella Borasi, David E. Miller, Patricia Vaughan-Brogan, Karen DeAngelis, Yu Jung Han, and Sharon Mason
- Abstract
To better understand the current challenges surrounding the use of artificial intelligence (AI) in K-12 schools, a team of researchers (Raffaella Borasi, David E. Miller, Patricia Vaughan-Brogan, Karen DeAngelis, Yu Jung Han, and Sharon Mason) interviewed 36 western New York school leaders in late 2023. Their concerns moved beyond potential cheating, as they instead identified four main priorities: receiving guidance to inform their decisions about AI, empowering all stakeholders to better understand AI and its implications, capitalizing on AI to support the work of teachers and staff, and enabling better technology solutions. These should inform future interventions aiming at leveraging AI in K-12 education.
- Published
- 2024
- Full Text
- View/download PDF
82. Guiding Student Transduction in Elementary School Astronomy
- Author
-
Vaughan Prain and Russell Tytler
- Abstract
Science educators now broadly recognize the multimodal nature of learning in science, where learners make meanings within modes (linguistic, mathematical, visual, and actional) by using the conventions of different sign systems or grammars in these modes. However, how teachers guide students to link and infer new meanings across modes, called "transduction" (Kress & Van Leeuwen, 2006. Reading images: The grammar of visual design. Routledge, p. 39), is less clear. This mapping of meanings across modes through realizing, generating, aligning, and coordinating meanings in representations is crucial to learning and communicating scientific concepts, inquiry processes, and reasoning. In this paper we propose a pragmatist account of how young students can be guided to achieve cohesion in this process. Drawing mainly on Peirce's (1998, The essential Peirce: Selected philosophical writings. Indiana University Press) theory of sign functions and affordances, we describe how, in practice, transduction entails a sequence of meaning-making steps across and within sign systems. For Peirce, sign systems in science enable inferential meaning-making within modes, but signs within these grammars can also prompt, support, and confirm meanings across modes. We analyze student learning in an elementary school astronomy class to identify how transduction is enacted and supported. We draw on micro-ethnographic analysis of the teacher's interactions with students and their artifacts to identify key transduction enablers. We found that young students can engage successfully in trans-modal reasoning if multiple conditions are met, with implications for science inquiry design in general and the teacher's key role in transduction guidance.
- Published
- 2024
- Full Text
- View/download PDF
83. Health Service Utilization in Adolescents Following a First Arrest: The Role of Antisocial Behavior, Callous-Unemotional Traits, and Juvenile Justice System Processing
- Author
-
Julianne S. Speck, Paul J. Frick, Erin P. Vaughan, Toni M. Walker, Emily L. Robertson, James V. Ray, Tina D. Wall Myers, Laura C. Thornton, Laurence Steinberg, and Elizabeth Cauffman
- Abstract
Previous research indicates that youth exhibiting antisocial behavior are at risk for utilizing a disproportionate amount of health services compared to youth without these problems. The present study investigates whether being processed by the juvenile justice system and showing callous-unemotional (CU) traits independently predict health service utilization (medical and mental health service use and out-of-home placement) over and above the severity of antisocial behavior across adolescence. A total of 766 participants who had been arrested for the first time in adolescence provided data at ten appointments over a period of seven years. Results showed that self-reported antisocial behavior at the time of arrest predicted increased use of most health service use types over the next seven years (i.e. medicine prescriptions, tests for sexually transmitted infections, mental health service appointments, and out-of-home placements). All except prescription medication use remained significant when controlling for justice system processing and CU traits. Further, justice system processing added significantly to the prediction of medical service appointments. Whereas CU traits were associated with mental health service appointments and out-of-home placements, these did not remain significant when controlling for severity of antisocial behavior. These findings are consistent with prior research documenting the health care costs of antisocial behavior.
- Published
- 2024
- Full Text
- View/download PDF
84. The Incremental Association of Implementation Leadership and School Personnel Burnout beyond Transformational Leadership
- Author
-
Catherine M. Corbin, Aaron R. Lyon, Vaughan K. Collins, Mark G. Ehrhart, Roger Goosey, and Jill Locke
- Abstract
Successful implementation of school-wide interventions (i.e., delivered to all students by a wide array of school personnel) is key to promoting students' academic achievement and psychosocial development. Yet, the implementation of school-wide interventions is complex and can be psychologically taxing for implementing personnel. If evidence-based practice and program (EBP) implementation goes unsupported, implementation challenges might result in chronic stress among school personnel that leads to burnout. While generally effective leadership tends to decrease educator burnout, implementation-specific leadership may also decrease burnout through its strategic supports for EBP implementation. A series of linear regression and path models were used to examine the concurrent association between transformational (e.g., general) and implementation (e.g., strategic) leadership and burnout and its component parts (i.e., emotional exhaustion, depersonalization, personal accomplishment). In a sample of 338 school personnel, we found transformational and implementation leadership were each significantly associated with decreased burnout. However, transformational leadership was not significantly associated with any of the three burnout components, whereas implementation leadership was significantly associated with increased personal accomplishment. These results suggest both general and strategic forms of leadership are key supports for school personnel burnout and as such, leaders may benefit from training to improve each. Additional implications for schools and future directions to understand how best to support school personnel are discussed.
- Published
- 2024
- Full Text
- View/download PDF
85. Lanthanide Arsenate Chemical Thermodynamics
- Author
-
Gontijo, Vitor L., Ciminelli, Virginia S. T., Rocha, Sônia D. F., Vaughan, James W., and Metallurgy and Materials Society of CIM, editor
- Published
- 2025
- Full Text
- View/download PDF
86. Influence of Rock Strength Variability on the Stability of Potential Planar and Wedge Discontinuity Shear Failures
- Author
-
Butcher, Clarence, Buzzi, Olivier, Giacomini, Anna, Bertuzzi, Robert, Griffiths, Vaughan, di Prisco, Marco, Series Editor, Chen, Sheng-Hong, Series Editor, Vayas, Ioannis, Series Editor, Kumar Shukla, Sanjay, Series Editor, Sharma, Anuj, Series Editor, Kumar, Nagesh, Series Editor, Wang, Chien Ming, Series Editor, Cui, Zhen-Dong, Series Editor, Lu, Xinzheng, Series Editor, Rujikiatkamjorn, Cholachat, editor, Xue, Jianfeng, editor, and Indraratna, Buddhima, editor
- Published
- 2025
- Full Text
- View/download PDF
87. Science Diplomacy and the Rise of Technopoles: During the era of increasing globalization, science diplomacy was a key tool for addressing global challenges. Today, among fracturing alliances, the field must evolve
- Author
-
Turekian, Vaughan and Gluckman, Peter
- Subjects
Foreign policy -- Forecasts and trends ,Climatic changes -- Forecasts and trends ,Market trend/market analysis ,Science and technology - Abstract
In the three decades after the Cold War ended, science diplomacy became an important component of the foreign policy toolkit. In particular, it became a key tool for responding to [...]
- Published
- 2024
88. Building a Grad Nation: Progress and Challenge in Raising High School Graduation Rates. Annual Update 2023: The Final Report
- Author
-
Civic, Johns Hopkins University, Everyone Graduates Center, Matthew Atwell, Robert Balfanz, Vaughan Byrnes, and John M. Bridgeland
- Abstract
For over two decades, there have been sustained efforts across the nation to increase high school graduation rates toward the goal of a 90 percent high school graduation rate for the Class of 2020 and improving educational outcomes for all students. The work of many educators, policymakers, organizations, and young people across the country resulted in significant gains for students from all backgrounds. While this will be the final report of the Grad Nation Campaign, with a look at the graduating cohorts of both 2020 and 2021, the work continues. Renewed efforts are underway to bring the same energy and focus the nation has dedicated to boosting high school graduation rates to ensuring all students have future pathways that link high school, training, postsecondary education, job opportunities, and civic engagement. The first section of this report examines efforts over the past 20 years to increase high school graduation rates and the progress it has helped spawn. The second section of this report will explore these high school graduation trends across the nation, focusing on the 2020 cohort and including data on the 2021 cohort to deepen our understanding of how COVID-19 impacted high school graduation outcomes. The report will also examine trends in postsecondary attainment. The third section of this report will focus on the work that remains and how the nation can reach a 90 percent high school graduation rate for all students, highlighting the continued progress of historically marginalized student subgroups and the equity gaps that remain. The fourth section of this report dives deeper with new analysis of the High School Longitudinal Study of 2009 on the prevalence of credit recovery and the Secondary School Improvement Index developed by the authors of this report. The report will conclude with policy recommendations and will chart a successor effort that puts all young people on a path to a thriving future.
- Published
- 2023
89. Oh, the Places We Learn! Exploring Interest in Science at Science Fiction Conventions
- Author
-
Childers, Gina M., Governor, Donna, Greer, Kania, and James, Vaughan
- Abstract
Science fiction conventions are places where individuals with an interest in diverse genres and mediums can engage with a community that bridges the world of science fiction and fact. Many of these conventions provide a science "track" where science experts share their expertise and research on scientific findings and applications of science with science fiction enthusiasts. This study explored science fiction conference attendees' (n = 241) interest in science, as well as how attendees (n = 172) plan to utilize science shared at science track sessions. Survey responses were analyzed within "STEM career" groups by comparing science track and non-science track attendees, and documenting what science track attendees plan to do with the information gained at a science track session. There were no differences in how science track attendees and non-science track attendees with STEM careers reported their interest in science. For the attendees that did not report having a career related to STEM, science track participants reported higher interest scores than non-science track attendees. Over half of the science track attendees (66%) shared they will apply what they learned from a science track session to their own personal context. Furthermore, the demographics of the survey respondents may suggest that science fiction conventions are an untapped science learning environment connecting to a younger, more diverse community. Overall, recognizing the benefit of science fiction conventions is crucial to provide spaces for accessible venues of science communication to foster an interest in science for a diverse, public audience.
- Published
- 2023
90. White matter lipid alterations during aging in the rhesus monkey brain
- Author
-
Dimovasili, Christina, Vitantonio, Ana T., Conner, Bryce, Vaughan, Kelli L., Mattison, Julie A., and Rosene, Douglas L.
- Published
- 2024
- Full Text
- View/download PDF
91. Digital technology and on-farm responses to climate shocks: exploring the relations between producer agency and the security of food production
- Author
-
Richards, Carol, Messner, Rudolf, and Higgins, Vaughan
- Published
- 2024
- Full Text
- View/download PDF
92. Digital exclusion as a barrier to accessing healthcare: a summary composite indicator and online tool to explore and quantify local differences in levels of exclusion
- Author
-
Mee, Paul, Gussy, Mark, Huntley, Phil, Kenny, Amanda, Jarratt, Theo, Kenward, Nigel, Ward, Derek, and Vaughan, Aiden
- Published
- 2024
- Full Text
- View/download PDF
93. Drivers and Facilitators of HIV-Related Stigma in Healthcare Settings in Ireland
- Author
-
Vaughan, Elena and Költő, András
- Published
- 2024
- Full Text
- View/download PDF
94. Multi-habitat landscapes are more diverse and stable with improved function
- Author
-
Hackett, Talya D., Sauve, Alix M. C., Maia, Kate P., Montoya, Daniel, Davies, Nancy, Archer, Rose, Potts, Simon G., Tylianakis, Jason M., Vaughan, Ian P., and Memmott, Jane
- Published
- 2024
- Full Text
- View/download PDF
95. Machine learning designs new GCGR/GLP-1R dual agonists with enhanced biological potency
- Author
-
Puszkarska, Anna M., Taddese, Bruck, Revell, Jefferson, Davies, Graeme, Field, Joss, Hornigold, David C., Buchanan, Andrew, Vaughan, Tristan J., and Colwell, Lucy J.
- Published
- 2024
- Full Text
- View/download PDF
96. Critical Incident Management: Strengthening the Relationship Between Crisis Negotiations and Tactical Teams
- Author
-
Poorboy, Duwayne A. and Vaughan, Adam D.
- Published
- 2024
- Full Text
- View/download PDF
97. Centering School Leaders’ Expertise: Usability Evaluation of a Leadership-Focused Implementation Strategy to Support Tier 1 Programs in Schools
- Author
-
Collins, Vaughan K., Corbin, Catherine M., Locke, Jill J., Cook, Clayton R., Ehrhart, Mark G., Hatch, Kurt D., and Lyon, Aaron R.
- Published
- 2024
- Full Text
- View/download PDF
98. Stress-resilience impacts psychological wellbeing as evidenced by brain–gut microbiome interactions
- Author
-
An, Eric, Delgadillo, Desiree R., Yang, Jennifer, Agarwal, Rishabh, Labus, Jennifer S., Pawar, Shrey, Leitman, Madelaine, Kilpatrick, Lisa A., Bhatt, Ravi R., Vora, Priten, Vaughan, Allison, Dong, Tien S., and Gupta, Arpana
- Published
- 2024
- Full Text
- View/download PDF
99. Maternal Uterine Artery Adenoviral Vascular Endothelial Growth Factor (Ad.VEGF-A165) Gene Therapy Normalises Fetal Brain Growth and Microglial Activation in Nutrient Restricted Pregnant Guinea Pigs
- Author
-
Hristova, M. D., Krishnan, T., Rossi, C. A., Nouza, J., White, A., Peebles, D. M., Sebire, N. J., Zachary, I. C., David, A. L., and Vaughan, O. R.
- Published
- 2024
- Full Text
- View/download PDF
100. Highlights of Cardiovascular Disease Prevention Studies Presented at the 2024 American College of Cardiology Conference
- Author
-
Gupta, Kartik, Rawlley, Bharat, Meloche, Chelsea, Minhas, Abdul Mannan Khan, Hermel, Melody, Slipczuk, Leandro, Sheikh, Sana, Khoja, Adeel, Vaughan, Elizabeth M., Dalakoti, Mayank, and Virani, Salim S.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.