Xinzhou Wu, François Baccelli, Tien V. Nguyen, Kai Zhu, Sundar Subramanian, Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), University of Texas at Austin [Austin], Laboratory of Information, Network and Communication Sciences (LINCS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT), Dynamics of Geometric Networks (DYOGENE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria), Arizona State University [Tempe] (ASU), Qualcomm Technologies, Inc., Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria Paris-Rocquencourt, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
International audience; The broadcast of periodic messages is a key functionality in vehicular ad hoc networks. In the emerging vehicular networks, IEEE 802.11p is the standard of choice to support the PHY and MAC layer functionalities. The broadcast process in IEEE 802.11p is based on the CSMA mechanism where a device transmitting a packet senses the channel for ongoing transmissions and performs a random back-off before accessing the channel. Without RTS/CTS mechanisms, carrier sensing is expected to provide a protection region around the transmitter where no other transmitters are allowed. The point process characterizing the concurrent transmitters is expected to enforce a minimum separation between concurrent transmitters. However, at increasing densities, the CSMA behavior breaks down to an ALOHA-like transmission pattern where concurrent transmitters are distributed as a Poisson point process, indicating the lack of protection around transmitters. In this paper, we model the CSMA mechanism as a slotted system and analytically characterize the critical node/packet arrival density where the CSMA mechanism approaches an ALOHAlike behavior. Further, we use tools from stochastic geometry to establish closed-form expressions for the performance metrics of the broadcast mechanism in the ALOHA regime. Finally, using ns2 (an unslotted asynchronous simulator), we compare the theoretical results with simulations