282 results on '"Tiegs, Scott D."'
Search Results
52. Reply to comment by Jackson and Martin on 'does timber harvest influence the dynamics of marine-derived nutrients in Southeast Alaska streams?'
- Author
-
Levi, Peter S., Tank, Jennifer L., Tiegs, Scott D., Ruegg, Janine, Chaloner, Dominic T., and Lamberti, Gary A.
- Subjects
Salmon -- Environmental aspects ,Ecological research ,Geomorphology -- Research ,Timber -- Distribution ,Company distribution practices ,Earth sciences - Abstract
The stated goal of Levi et al. (2011, Can. J. Fish. Aquat. Sci. 68: 1316-1329) was to determine the influence of geomorphic complexity on the dynamics of salmon-derived nutrients. We studied seven streams in Southeast Alaska with varying degrees of historical (mid-1900s) timber harvest and, as a result, differences in stream geomorphology. In a comment on our study, Jackson and Martin (2012, Can. J. Fish. Aquat. Sci. 69: this issue) suggest that the geomorphic complexity we ascribe to timber harvest may be due to natural variation in watershed characteristics and offer alternative hypotheses. We sought to reduce the natural variation among our study streams by using a stratified sampling design (i.e., selecting reaches classified as floodplain 4 or 5 by the USDA Forest Service), but acknowledge that, as with any ecological field study, alternative hypotheses may exist to explain observed patterns in ecological responses. We maintain that our study design was sufficiently robust (i.e., 300 m reaches studied in seven streams for 3 years, totaling 21 stream-years) to draw inferences about the influence of salmon on streamwater nutrients and, secondarily, the role of geomorphic variation in mediating nutrient dynamics. Our data also support our finding that the legacy of timber harvest altered nutrient dynamics in salmon-bearing streams via alterations to stream geomorphology that were quantifiable. Le but enonce de Levi et al. (2011, J. Can. Sci. Halieutiques Aquat. 68 : 1316-1329) consistait a determiner l'influence de la complexite geomorphologique sur la dynamique des nutriments provenant des saumons. Nous avons etudie sept cours d'eau du sud-est de l'Alaska presentant differentes intensites de coupe de bois historique (au milieu du 20e siecle) et, du coup, des differences sur le plan de leur geomorphologie fluviale. Dans un commentaire concernant notre etude, Jackson et Martin (2012, J. Can. Sci. Halieutiques Aquat. 69 : present numero) suggerent que la complexite geomorphologique que nous attribuons a la coupe de bois pourrait etre le fait de la variabilite naturelle des caracteristiques des cours d'eau et ces auteurs presentent d'autres explications possibles. Bien que nous ayons tente de limiter la variabilite naturelle parmi les cours d'eau etudies en utilisant un plan d'echantillonnage stratifie (c.-a-d. en choisissant des passages designes plaine inondable 4 ou 5 par le Service des forets du USDA), nous admettons que, comme il en va de toute etude ecologique de terrain, differentes hypotheses peuvent expliquer les patrons de reactions ecologiques observes. Nous maintenons cependant que notre methodologie etait assez robuste (c.-a-d. des passages de 300 m etudies dans sept cours d'eau pendant 3 ans, pour un total de 21 annees-cours d'eau) pour permettre de tirer des conclusions sur l'influence du saumon sur les nutriments dans l'eau et, secondairement, sur le role de la variabilite geomorphologique dans la mediation de la dynamique des nutriments. Nos donnees appuient egalement notre conclusion a l'effet que la coupe de bois a modifie la dynamique des nutriments dans les cours d'eau a saumons en modifiant de maniere quantifiable la geomorphologie de ces derniers. [Traduit par la Redaction], In Levi et al. (2011), our research objective was to 'explain spatial and temporal variation in the magnitude of nutrient enrichment' from salmon-derived nutrients during annual spawning runs. Numerous studies [...]
- Published
- 2012
- Full Text
- View/download PDF
53. Do non-native earthworms in Southeast Alaska use streams as invasional corridors in watersheds harvested for timber?
- Author
-
Costello, David M., Tiegs, Scott D., and Lamberti, Gary A.
- Published
- 2011
- Full Text
- View/download PDF
54. Does timber harvest influence the dynamics of marine-derived nutrients in Southeast Alaska streams?
- Author
-
Levi, Peter S., Tank, Jennifer L., Tiegs, Scott D., Ruegg, Janine, Chaloner, Dominic T., and Lamberti, Gary A.
- Subjects
Logging -- Environmental aspects ,Timber -- Environmental aspects ,Company business management ,Earth sciences - Abstract
Streams often rely on nutrient subsidies, and variation in nutrient delivery may alter the ecosystem response. Pacific salmon (Oncorhynchus spp.) provide marine-derived nutrients to their natal streams but also cause benthic disturbance, with the net effect determined by watershed and stream characteristics. To understand the factors contributing to variation in salmon-derived nutrients (SDN), we studied nutrient concentration and export in seven streams with varying physical characteristics due to timber harvest (e.g., channel complexity) over three years in Southeast Alaska, USA. Salmon increased concentrations and export of dissolved and particulate nitrogen, phosphorus, and carbon, but the magnitude of increase varied up to 41-fold among streams. The density of live salmon best predicted the increase in nutrient concentration and export, whereas the density of carcasses had a negligible effect. Nutrient export was predicted by transient storage before and after the salmon run. Streams in harvested watersheds with simplified channels had greater nutrient export than those in pristine watersheds with complex channels. However, enrichment from salmon overrode the effect of timber harvest on export during the run. Our study demonstrates that enrichment via SDN is short-lived and related to run size, whereas timber harvest and carcasses exert little influence on SDN dynamics. Les cours d'eau dependent souvent de subsides de nutriments et la variation dans les apports de nutriments peut modifier les reactions de l'ecosysteme. Les saumons du Pacifique (Oncorhynchus spp.) procurent des nutriments d'origine marine a leur cours d' eau de naissance, mais ils causent aussi des bouleversements benthiques; l'effet net depend des caracteristiques du bassin versant et du cours d'eau. Afin de connaitre les facteurs qui contribuent a la variation dans les nutriments provenant des saumons (SDN), nous avons etudie les concentrations et les exportations de nutriments dans sept cours d' eau presentant des caracteristiques physiques differentes dues a la coupe du bois (par ex., complexite du chenal) pendant trois ans dans le sud-est de l'Alaska. Les saumons font augmenter les concentrations et l'exportation de l'azote dissous et particulaire, du phosphore et du carbone, mais l'importance de l'augmentation varie par un facteur pouvant atteindre 41 entre les cours d'eau. La densite des saumons est la meilleure variable predictive de l'augmentation des concentrations et de l'exportation des nutriments, alors que la densite des carcasses a un effet negligeable. L'exportation des nutriments peut etre predite en tenant compte de l'accumulation temporaire avant et apres la montaison des saumons. Les cours d'eau dans les bassins versants ayant subi la coupe forestiere qui ont un chenal simplifie exportent plus de nutriments que ceux dans des bassins versants non affectes avec un chenal plus complexe. Cependant, l'enrichissement apporte par les saumons surpasse l'effet de la recolte du bois sur l'exportation durant la montaison. Notre etude demontre que l'enrichissement en SDN est de courte duree et qu'il est relie a la taille de la montaison, mais que le recolte du bois et les carcasses ont peu d'influence sur la dynamique des SDN. [Traduit par la Redaction], Introduction Stream ecosystems often depend on nutrient subsidies to maintain their structure and function (Polis et al. 1997). In coastal watersheds and tributaries to large lakes, the migration of anadromous [...]
- Published
- 2011
- Full Text
- View/download PDF
55. Salmon subsidies alleviate nutrient limitation of benthic biofilms in southeast Alaska streams
- Author
-
Ruegg, Janine, Tiegs, Scott D., Chaloner, Dominic T., Levi, Peter S., Tank, Jennifer L., and Lamberti, Gary A.
- Subjects
Alaska -- Environmental aspects ,Salmon -- Nutritional aspects -- Physiological aspects -- Analysis -- Environmental aspects ,Microbial mats -- Physiological aspects -- Nutritional aspects -- Analysis -- Environmental aspects ,Earth sciences - Abstract
Using nutrient-diffusing substrata (NDS) in seven streams in southeast Alaska, USA, we tested whether (i) nutrient limitation of autotrophic and heterotrophic biofilms was alleviated by salmon resource subsidies, and (ii) whether the degree of alleviation could be predicted by environmental variables. Before salmon spawners arrived, autotrophic biofilms were nitrogen (N)-limited, or co-limited by N and phosphorus (P), whereas heterotrophic biofilms were either P-limited, or co-limited by N and P. Combined N and P amendments resulted in a 2.6-fold increase in biofilm chlorophyll a, and a 3.2-fold increase in community respiration. After salmon arrived, autotroph nutrient limitation was alleviated in six of the seven streams. Heterotrophs still exhibited nutrient limitation in six streams, but most streams shifted from co-limitation to P-limitation. Nutrient-diffusing substrata amended with salmon tissue indicated that salmon could also be an important source of organic carbon for biofilms. Autotrophs responded less to N and P amendments as streamwater ammonium concentration increased with the arrival of salmon. For heterotrophs, ammonium concentration and N:P ratio best predicted changes in response following the arrival of salmon. We provide the first direct evidence that biofilm nutrient limitation can be alleviated by salmon spawners in nutrient-poor streams. A l'aide de substrats diffuseurs de nutriments (NDS) dans sept cours d'eau du sud-est de l'Alaska, E.-U., nous avons teste (i) si la limitation par les nutriments des biofilms autotrophes et heterotrophes est reduite par les apports de ressources provenant des saumons et (ii) si l'importance de la reduction peut etre predite a partir des variables environnementales. Avant que les saumons n'arrivent pour frayer, les biofilms autotrophes sont limites par l'azote (N) ou limites conjointement par N et le phosphore (P), alors que les films heterotrophes sont limites par P ou conjointement par N et P. Des amendements combines en N et P entrainent une augmentation de la chlorophylle a des biofilms par un facteur de 2,6 et un accroissement de la respiration de la communaute par un facteur de 3,2. Apres l'arrivee des saumons, la limitation des autotrophes par les nutriments a ete reduite dans six des sept cours d'eau. Chez les heterotrophes, six des cours d'eau montraient encore une limitation par les nutriments, bien que la plupart des cours d'eau aient change d'une limitation conjointe pour une limitation par P. Les NDS amendes avec du tissu de saumons montrent que les saumons peuvent aussi representer une source importante de carbone organique pour les biofilms. Les autotrophes reagissent moins aux amendements en N et en P, alors que la concentration d'ammonium augmente dans l'eau des cours d'eau avec l'arrivee des saumons. Chez les heterotrophes, la concentration d'ammonium et le rapport N :P sont les meilleures variables predictives des changements consecutifs a l'arrivee des saumons. Nous presenteras les premieres donnees qui demontrent directement que la limitation des biofilms par les nutriments peut etre attenuee par les saumons reproducteurs dans les cours d'eau pauvres en nutriments. [Traduit par la Redaction], Introduction Ecological resource subsidies, the movements of material, energy, and organisms across ecosystem boundaries, are considered vital to the structure and function of many ecosystems (Polis et al. 2004). A [...]
- Published
- 2011
- Full Text
- View/download PDF
56. Leaf-decomposition heterogeneity across a riverine floodplain mosaic
- Author
-
Langhans, Simone D., Tiegs, Scott D., Gessner, Mark O., and Tockner, Klement
- Published
- 2008
- Full Text
- View/download PDF
57. Impacts of Detritivore Diversity Loss on Instream Decomposition Are Greatest in the Tropics
- Author
-
Biología vegetal y ecología, Landaren biologia eta ekologia, Boyero González, María Luz, López Rojo, Naiara, Tonin, Alan M., Pérez Viñuela, Javier, Correa Araneda, Francisco, Pearson, Richard G., Bosch, Jaime, Albariño, Ricardo J., Anbalagan, Sankarappan, Barmuta, Leon A., Basaguren del Campo, Ana Luisa, Burdon, Francis J., Caliman, Adriano, Callisto, Marcos, Calor, Adolfo R., Campbell, Ian C., Cardinale, Bradley J., Casas Jiménez, José Jesús, Chara Serna, Ana M., Chauvet, Eric, Ciapala, Szymon, Colón-Gaud, Checo, Cornejo, Aydeé, Davis, Aaron M., Degebrodt, Monika, Dias, Emerson S., Díaz, María E., Douglas, Michael M., Encalada, Andrea C., Figueroa, Ricardo, Flecker, Alexander S., Fleituch, Tadeusz, García, Erica A., García, Gabriela, García, Pavel E., Gessner, Mark O., Gómez, Jesús E., Gómez, Sergio, Gonçalves Jr., José F., Graça, Manuel A. S., Gwinn, Daniel C., Hall Jr., Robert O., Hamada, Neusa, Hui, Cang, Imazawa, Daichi, Iwata, Tomoya, Kariuki, Samuel, Landeira-Dabarca, Andrea, Laymon, Kelsey, Leal, María, Marchant, Richard, Martins, Renato T., Masese, Frank O., Maul, Megan, McKie, Brendan G., Medeiros, Adriana O., M'Erimba, Charles, Middleton, Jen A., Monroy Zarzuelo, Silvia, Muotka, Timo, Negishi, Junjiro N., Ramírez, Alonso, Richardson, John S., Rincón, José, Rubio Ríos, Juan, Dos Santos, Gisele M., Sarremejane, Romain, Sheldon, Fran, Sitati, Augustine, Tenkiano, Nathalie S. D., Tiegs, Scott D., Tolod, Janine R., Venarsky, Michael, Watson, Anne, Yule, Catherine M., Biología vegetal y ecología, Landaren biologia eta ekologia, Boyero González, María Luz, López Rojo, Naiara, Tonin, Alan M., Pérez Viñuela, Javier, Correa Araneda, Francisco, Pearson, Richard G., Bosch, Jaime, Albariño, Ricardo J., Anbalagan, Sankarappan, Barmuta, Leon A., Basaguren del Campo, Ana Luisa, Burdon, Francis J., Caliman, Adriano, Callisto, Marcos, Calor, Adolfo R., Campbell, Ian C., Cardinale, Bradley J., Casas Jiménez, José Jesús, Chara Serna, Ana M., Chauvet, Eric, Ciapala, Szymon, Colón-Gaud, Checo, Cornejo, Aydeé, Davis, Aaron M., Degebrodt, Monika, Dias, Emerson S., Díaz, María E., Douglas, Michael M., Encalada, Andrea C., Figueroa, Ricardo, Flecker, Alexander S., Fleituch, Tadeusz, García, Erica A., García, Gabriela, García, Pavel E., Gessner, Mark O., Gómez, Jesús E., Gómez, Sergio, Gonçalves Jr., José F., Graça, Manuel A. S., Gwinn, Daniel C., Hall Jr., Robert O., Hamada, Neusa, Hui, Cang, Imazawa, Daichi, Iwata, Tomoya, Kariuki, Samuel, Landeira-Dabarca, Andrea, Laymon, Kelsey, Leal, María, Marchant, Richard, Martins, Renato T., Masese, Frank O., Maul, Megan, McKie, Brendan G., Medeiros, Adriana O., M'Erimba, Charles, Middleton, Jen A., Monroy Zarzuelo, Silvia, Muotka, Timo, Negishi, Junjiro N., Ramírez, Alonso, Richardson, John S., Rincón, José, Rubio Ríos, Juan, Dos Santos, Gisele M., Sarremejane, Romain, Sheldon, Fran, Sitati, Augustine, Tenkiano, Nathalie S. D., Tiegs, Scott D., Tolod, Janine R., Venarsky, Michael, Watson, Anne, and Yule, Catherine M.
- Abstract
The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.
- Published
- 2021
58. Latitude Dictates Plant Diversity Effects on Instream Decomposition
- Author
-
Biología vegetal y ecología, Landaren biologia eta ekologia, Boyero González, María Luz, Pérez, Javier, López Rojo, Naiara, Tonin, Alan M., Correa Araneda, Francisco, Pearson, Richard G., Bosch, Jaime, Albariño, Ricardo J., Anbalagan, Sankarappan, Barmuta, Leon A., Beesley, Leah, Burdon, Francis J., Caliman, Adriano, Callisto, Marcos, Campbell, Ian C., Cardinale, Bradley J., Casas Jiménez, José Jesús, Chara Serna, Ana M., Ciapala, Szymon, Chauvet, Eric, Colón-Gaud, Checo, Cornejo, Aydeé, Davis, Aaron M., Degebrodt, Monika, Dias, Emerson S., Díaz, María E., Douglas, Michael M., Elosegi Irurtia, Arturo, Encalada, Andrea C., De Eyto, Elvira, Figueroa, Ricardo, Flecker, Alexander S., Fleituch, Tadeusz, Frainer, André, Franca, Juliana S., García, Erica A., García, Gabriela, García, Pavel, Gessner, Mark O., Giller, Paul S., Gómez, Jesús E., Gómez, Sergio, Gonçalves Jr., José F., Graça, Manuel A. S., Hall Jr., Robert O., Hamada, Neusa, Hepp, Luiz U., Hui, Cang, Imazawa, Daichi, Iwata, Tomoya, Edson Jr., S. A., Kariuki, Samuel, Landeira-Dabarca, Andrea, Leal, María, Lehosmaa, Kaisa, M'Erimba, Charles, Marchant, Richard, Martins, Renato T., Masese, Frank O., Camden, Megan, McKie, Brendan G., Medeiros, Adriana O., Middleton, Jen A., Muotka, Timo, Negishi, Junjiro N., Pozo Martínez, Jesús, Ramírez, Alonso, Rezende, Renan S., Richardson, John S., Rincón, José, Rubio Ríos, Juan, Serrano, Claudia, Shaffer, Angela R., Sheldon, Fran, Swan, Christopher M., Tenkiano, Nathalie S. D., Tiegs, Scott D., Tolod, Janine R., Vernasky, Michael, Watson, Anne, Yegon, Mourine J., Yule, Catherine M., Biología vegetal y ecología, Landaren biologia eta ekologia, Boyero González, María Luz, Pérez, Javier, López Rojo, Naiara, Tonin, Alan M., Correa Araneda, Francisco, Pearson, Richard G., Bosch, Jaime, Albariño, Ricardo J., Anbalagan, Sankarappan, Barmuta, Leon A., Beesley, Leah, Burdon, Francis J., Caliman, Adriano, Callisto, Marcos, Campbell, Ian C., Cardinale, Bradley J., Casas Jiménez, José Jesús, Chara Serna, Ana M., Ciapala, Szymon, Chauvet, Eric, Colón-Gaud, Checo, Cornejo, Aydeé, Davis, Aaron M., Degebrodt, Monika, Dias, Emerson S., Díaz, María E., Douglas, Michael M., Elosegi Irurtia, Arturo, Encalada, Andrea C., De Eyto, Elvira, Figueroa, Ricardo, Flecker, Alexander S., Fleituch, Tadeusz, Frainer, André, Franca, Juliana S., García, Erica A., García, Gabriela, García, Pavel, Gessner, Mark O., Giller, Paul S., Gómez, Jesús E., Gómez, Sergio, Gonçalves Jr., José F., Graça, Manuel A. S., Hall Jr., Robert O., Hamada, Neusa, Hepp, Luiz U., Hui, Cang, Imazawa, Daichi, Iwata, Tomoya, Edson Jr., S. A., Kariuki, Samuel, Landeira-Dabarca, Andrea, Leal, María, Lehosmaa, Kaisa, M'Erimba, Charles, Marchant, Richard, Martins, Renato T., Masese, Frank O., Camden, Megan, McKie, Brendan G., Medeiros, Adriana O., Middleton, Jen A., Muotka, Timo, Negishi, Junjiro N., Pozo Martínez, Jesús, Ramírez, Alonso, Rezende, Renan S., Richardson, John S., Rincón, José, Rubio Ríos, Juan, Serrano, Claudia, Shaffer, Angela R., Sheldon, Fran, Swan, Christopher M., Tenkiano, Nathalie S. D., Tiegs, Scott D., Tolod, Janine R., Vernasky, Michael, Watson, Anne, Yegon, Mourine J., and Yule, Catherine M.
- Abstract
Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.
- Published
- 2021
59. Flood disturbance and riparian species diversity on the Colorado River Delta
- Author
-
Tiegs, Scott D., O’leary, John F., Pohl, Molly M., and Munill, Carrie L.
- Published
- 2005
- Full Text
- View/download PDF
60. Latitude dictates plant diversity effects on instream decomposition
- Author
-
Boyero, Luz, primary, Pérez, Javier, additional, López-Rojo, Naiara, additional, Tonin, Alan M., additional, Correa-Araneda, Francisco, additional, Pearson, Richard G., additional, Bosch, Jaime, additional, Albariño, Ricardo J., additional, Anbalagan, Sankarappan, additional, Barmuta, Leon A., additional, Beesley, Leah, additional, Burdon, Francis J., additional, Caliman, Adriano, additional, Callisto, Marcos, additional, Campbell, Ian C., additional, Cardinale, Bradley J., additional, Casas, J. Jesús, additional, Chará-Serna, Ana M., additional, Ciapała, Szymon, additional, Chauvet, Eric, additional, Colón-Gaud, Checo, additional, Cornejo, Aydeé, additional, Davis, Aaron M., additional, Degebrodt, Monika, additional, Dias, Emerson S., additional, Díaz, María E., additional, Douglas, Michael M., additional, Elosegi, Arturo, additional, Encalada, Andrea C., additional, de Eyto, Elvira, additional, Figueroa, Ricardo, additional, Flecker, Alexander S., additional, Fleituch, Tadeusz, additional, Frainer, André, additional, França, Juliana S., additional, García, Erica A., additional, García, Gabriela, additional, García, Pavel, additional, Gessner, Mark O., additional, Giller, Paul S., additional, Gómez, Jesús E., additional, Gómez, Sergio, additional, Gonçalves, Jose F., additional, Graça, Manuel A. S., additional, Hall, Robert O., additional, Hamada, Neusa, additional, Hepp, Luiz U., additional, Hui, Cang, additional, Imazawa, Daichi, additional, Iwata, Tomoya, additional, Junior, Edson S. A., additional, Kariuki, Samuel, additional, Landeira-Dabarca, Andrea, additional, Leal, María, additional, Lehosmaa, Kaisa, additional, M’Erimba, Charles, additional, Marchant, Richard, additional, Martins, Renato T., additional, Masese, Frank O., additional, Camden, Megan, additional, McKie, Brendan G., additional, Medeiros, Adriana O., additional, Middleton, Jen A., additional, Muotka, Timo, additional, Negishi, Junjiro N., additional, Pozo, Jesús, additional, Ramírez, Alonso, additional, Rezende, Renan S., additional, Richardson, John S., additional, Rincón, José, additional, Rubio-Ríos, Juan, additional, Serrano, Claudia, additional, Shaffer, Angela R., additional, Sheldon, Fran, additional, Swan, Christopher M., additional, Tenkiano, Nathalie S. D., additional, Tiegs, Scott D., additional, Tolod, Janine R., additional, Vernasky, Michael, additional, Watson, Anne, additional, Yegon, Mourine J., additional, and Yule, Catherine M., additional
- Published
- 2021
- Full Text
- View/download PDF
61. Stream Ecosystem Functioning in an Agricultural Landscape
- Author
-
Hladyz, Sally, primary, Åbjörnsson, Kajsa, additional, Chauvet, Eric, additional, Dobson, Michael, additional, Elosegi, Arturo, additional, Ferreira, Verónica, additional, Fleituch, Tadeusz, additional, Gessner, Mark O., additional, Giller, Paul S., additional, Gulis, Vladislav, additional, Hutton, Stephen A., additional, Lacoursière, Jean O., additional, Lamothe, Sylvain, additional, Lecerf, Antoine, additional, Malmqvist, Björn, additional, McKie, Brendan G., additional, Nistorescu, Marius, additional, Preda, Elena, additional, Riipinen, Miira P., additional, Rîşnoveanu, Geta, additional, Schindler, Markus, additional, Tiegs, Scott D., additional, Vought, Lena B.-M., additional, and Woodward, Guy, additional
- Published
- 2011
- Full Text
- View/download PDF
62. Research advances emerging from SEFS11: The 11th Symposium for European Freshwater Sciences
- Author
-
Pardo, Isabel, primary, Stubbington, Rachel, additional, Tiegs, Scott D., additional, and Robertson, Anne, additional
- Published
- 2021
- Full Text
- View/download PDF
63. Artificial light at night at the terrestrial-aquatic interface: Effects on predators and fluxes of insect prey
- Author
-
Parkinson, Elizabeth, primary, Lawson, Justine, additional, and Tiegs, Scott D., additional
- Published
- 2020
- Full Text
- View/download PDF
64. Stream microbial communities and ecosystem functioning show complex responses to multiple stressors in wastewater
- Author
-
Burdon, Francis J., primary, Bai, Yaohui, additional, Reyes, Marta, additional, Tamminen, Manu, additional, Staudacher, Philipp, additional, Mangold, Simon, additional, Singer, Heinz, additional, Räsänen, Katja, additional, Joss, Adriano, additional, Tiegs, Scott D., additional, Jokela, Jukka, additional, Eggen, Rik I. L., additional, and Stamm, Christian, additional
- Published
- 2020
- Full Text
- View/download PDF
65. Organic Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review
- Author
-
Biología vegetal y ecología, Landaren biologia eta ekologia, Ferreira, Verónica, Elosegi Irurtia, Arturo, Tiegs, Scott D., Von Schiller Calle, Daniel Gaspar, Young, Roger, Biología vegetal y ecología, Landaren biologia eta ekologia, Ferreira, Verónica, Elosegi Irurtia, Arturo, Tiegs, Scott D., Von Schiller Calle, Daniel Gaspar, and Young, Roger
- Abstract
Streams and rivers provide important services to humans, and therefore, their ecological integrity should be a societal goal. Although ecological integrity encompasses structural and functional integrity, stream bioassessment rarely considers ecosystem functioning. Organic matter decomposition and ecosystem metabolism are prime candidate indicators of stream functional integrity, and here we review each of these functions, the methods used for their determination, and their strengths and limitations for bioassessment. We also provide a systematic review of studies that have addressed organic matter decomposition (88 studies) and ecosystem metabolism (50 studies) for stream bioassessment since the year 2000. Most studies were conducted in temperate regions. Bioassessment based on organic matter decomposition mostly used leaf litter in coarse-mesh bags, but fine-mesh bags were also common, and cotton strips and wood were frequent in New Zealand. Ecosystem metabolism was most often based on the open-channel method and used a single-station approach. Organic matter decomposition and ecosystem metabolism performed well at detecting environmental change (≈75% studies), with performances varying between 50 and 100% depending on the type of environmental change; both functions were sensitive to restoration practices in 100% of the studies examined. Finally, we provide examples where functional tools are used to complement the assessments of stream ecological integrity. With this review, we hope to facilitate the widespread incorporation of ecosystem processes into bioassessment programs with the broader aim of more effectively managing stream and river ecosystems.
- Published
- 2020
66. Global patterns and drivers of ecosystem functioning in rivers and riparian zones
- Author
-
Tiegs, Scott D. and Robinson, Christopher T.
- Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale., Science Advances, 5 (1), ISSN:2375-2548
- Published
- 2019
67. Science Advances
- Author
-
Tiegs, Scott D., Costello, David M., Isken, Mark W., Woodward, Guy, McIntyre, Peter B., Gessner, Mark O., Chauvet, Eric, Griffiths, Natalie A., Flecker, Alex S., Acuña, Vicenç, Albariño, Ricardo, Allen, Daniel C., Alonso, Cecilia, Andino, Patricio, Arango, Clay, Aroviita, Jukka, Barbosa, Marcus V. M., Barmuta, Leon A., Baxter, Colden V., Bell, Thomas D. C., Bellinger, Brent, Boyero, Luz, Brown, Lee E., Bruder, Andreas, Bruesewitz, Denise A., Burdon, Francis J., Callisto, Marcos, Canhoto, Cristina, Capps, Krista A., Castillo, María M., Clapcott, Joanne, Colas, Fanny, Colón-Gaud, Checo, Cornut, Julien, Crespo-Pérez, Verónica, Cross, Wyatt F., Culp, Joseph M., Danger, Michael, Dangles, Olivier, de Eyto, Elvira, Derry, Alison M., Villanueva, Veronica Díaz, Douglas, Michael M., Elosegi, Arturo, Encalada, Andrea C., Entrekin, Sally, Espinosa, Rodrigo, Ethaiya, Diana, Ferreira, Verónica, Ferriol, Carmen, Flanagan, Kyla M., Fleituch, Tadeusz, Follstad Shah, Jennifer J., Frainer, André, Friberg, Nikolai, Frost, Paul C., Garcia, Erica A., García Lago, Liliana, García Soto, Pavel Ernesto, Ghate, Sudeep, Giling, Darren P., Gilmer, Alan, Gonçalves, José Francisco, Gonzales, Rosario Karina, Graça, Manuel A. S., Grace, Mike, Grossart, Hans-Peter, Guérold, François, Gulis, Vlad, Hepp, Luiz U., Higgins, Scott, Hishi, Takuo, Huddart, Joseph, Hudson, John, Imberger, Samantha, Iñiguez-Armijos, Carlos, Iwata, Tomoya, Janetski, David J., Jennings, Eleanor, Kirkwood, Andrea E., Koning, Aaron A., Kosten, Sarian, Kuehn, Kevin A., Laudon, Hjalmar, Leavitt, Peter R., Lemes da Silva, Aurea L., Leroux, Shawn J., LeRoy, Carri J., Lisi, Peter J., MacKenzie, Richard, Marcarelli, Amy M., Masese, Frank O., McKie, Brendan G., Oliveira Medeiros, Adriana, Meissner, Kristian, Miliša, Marko, Mishra, Shailendra, Miyake, Yo, Moerke, Ashley, Mombrikotb, Shorok, Mooney, Rob, Moulton, Tim, Muotka, Timo, Negishi, Junjiro N., Neres-Lima, Vinicius, Nieminen, Mika L., Nimptsch, Jorge, Ondruch, Jakub, Paavola, Riku, Pardo, Isabel, Patrick, Christopher J., Peeters, Edwin T. H. M., Pozo, Jesus, Pringle, Catherine, Prussian, Aaron, Quenta, Estefania, Quesada, Antonio, Reid, Brian, Richardson, John S., Rigosi, Anna, Rincón, José, Rîşnoveanu, Geta, Robinson, Christopher T., Rodríguez-Gallego, Lorena, Royer, Todd V., Rusak, James A., Santamans, Anna C., Selmeczy, Géza B., Simiyu, Gelas, Skuja, Agnija, Smykla, Jerzy, Sridhar, Kandikere R., Sponseller, Ryan, Stoler, Aaron, Swan, Christopher M., Szlag, David, Teixeira-de Mello, Franco, Tonkin, Jonathan D., Uusheimo, Sari, Veach, Allison M., Vilbaste, Sirje, Vought, Lena B. M., Wang, Chiao-Ping, Webster, Jackson R., Wilson, Paul B., Woelfl, Stefan, Xenopoulos, Marguerite A., Yates, Adam G., Yoshimura, Chihiro, Yule, Catherine M., Zhang, Yixin X., Zwart, Jacob A., School of Biological and Chemical Sciences, Queen Mary University of London (QMUL), Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Leibniz Association, Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, ICRA, Catalan Institute for Water Research, ICRA, Pontificia Universidad Catolica del Ecuador, Wetland ecology department (Seville, Espagne), Doñana biological station - CSIC (SPAIN), Swiss Federal Institute of Aquatic Science and Technology - EAWAG (SWITZERLAND), Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences – Uppsala, Sweden, Burdon, Universidade Federal de Minas Gerais [Belo Horizonte] (UFMG), Marine and environmental research centre - IMAR-CMA (Coimbra, Portugal), University of Coimbra [Portugal] (UC), GRET, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU), Laboratorio de Limnología [Bariloche], Instituto Nacional de Investigaciones en Biodiversidad y Medioambiente [Bariloche] (INIBIOMA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA)-Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Faculty of Science and Technology, University of the Basque Country, Polska Akademia Nauk (PAN), Norwegian Institute for Water Research (NIVA), Limnology of Stratified Lakes, IGB-Neuglobsow, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Faculty of Agriculture, Kyushu University, University of Bath [Bath], Yamanashi University, Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), University of Vienna [Vienna], University of Zagreb, VTT Information technology, Technical Research Centre of Finland, Instituto de Ciencias Marinas y Limnológicas, Universidate de Vigo, Hospital Universitario La Paz, Department of Biology, Universidad Autonoma de Madrid (UAM), Universidad del Zulia (LUZ), Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany, University of Southampton, Research Institute of New-Type Urbanization, Avignon Université (AU)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Oakland University (USA), Kent State University, Imperial College London, Cornell University, Department of Ecology and Evolutionary Biology, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Climate Change Science Institute [Oak Ridge] (CCSI), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC-UT-Battelle, LLC, Instituto Catalán de Investigación del Agua - ICRA (SPAIN) (ICRA), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), DEPARTMENT OF BIOLOGY UNIVERSITY OF OKLAHOMA NORMAN USA, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), University of the Republic of Uruguay, Central Washington University, Finnish Environment Institute (SYKE), Federal University of Tocantins, University of Tasmania [Hobart, Australia] (UTAS), Idaho State University, Watershed Protection Department, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), School of Geography, University of Leeds, Leeds, UK, Swiss Federal Insitute of Aquatic Science and Technology [Dübendorf] (EAWAG), Colby College, Department of Aquatic Sciences and Assessment, University of Georgia [USA], EI Colegio de la Frontera Sur (ECOSUR), Consejo Nacional de Ciencia y Tecnología [Mexico] (CONACYT), Cawthron Institute, Risques, Ecosystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix Marseille Université (AMU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Georgia Southern University, University System of Georgia (USG), Pontifical Catholic University of Ecuador, Montana State University (MSU), Wilfrid Laurier University (WLU), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Universidade de Vigo, Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Department of Ecology and Evolutionary Biology [CALS], College of Agriculture and Life Sciences [Cornell University] (CALS), Cornell University [New York]-Cornell University [New York], Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Pontificia Universidad Católica del Ecuador, Universidade Federal do Tocantins (UFT), University of Leeds, Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE), Universidad Autónoma de Madrid (UAM), and Entomology
- Subjects
Aquatic Ecology and Water Quality Management ,riparian zones ,ORGANIC-MATTER DECOMPOSITION ,Biodiversité et Ecologie ,Oceanografi, hydrologi och vattenresurser ,Carbon Cycle ,CARBON ,ekosysteemit ,Oceanography, Hydrology and Water Resources ,biomes ,biomit ,ddc:570 ,carbon cycle ,Humans ,STREAMS ,Life Science ,Human Activities ,Riparian zones ,TEMPERATURE ,Institut für Biochemie und Biologie ,Ecosystem ,ComputingMilieux_MISCELLANEOUS ,SDG 15 - Life on Land ,aquatic ecosystems ,Science & Technology ,WIMEK ,hiilen kierto ,vesiekosysteemit ,Aquatic Ecology ,Aquatische Ecologie en Waterkwaliteitsbeheer ,rivers ,Multidisciplinary Sciences ,ekosysteemit (ekologia) ,Biomonitoring ,articles ,Science & Technology - Other Topics ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,ecosystems ,joet ,Environmental Monitoring - Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. This research was supported by awards to S.D.T. from the Ecuadorian Ministry of Science [Secretaría de Educación Superior Ciencia, Tecnología e Innovación (SENESCYT)] through the PROMETEO scholar exchange program, the Oakland University Research Development Grant program, and a Huron Mountain Wildlife Foundation research grant. N.A.G. was supported by the U.S. Department of Energy’s Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We are grateful for open-access-publishing funds from Kresge Library at Oakland University and Queen’s University Belfast. This research was supported by awards to S.D.T. from the Ecuadorian Ministry of Science [Secretaría de Educación Superior Ciencia, Tecnología e Innovación (SENESCYT)] through the PROMETEO scholar exchange program, the Oakland University Research Development Grant program, and a Huron Mountain Wildlife Foundation research grant. N.A.G. was supported by the U.S. Department of Energy’s Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We are grateful for open-access-publishing funds from Kresge Library at Oakland University and Queen’s University Belfast.
- Published
- 2019
- Full Text
- View/download PDF
68. Understanding the Relative Roles of Salmon Spawner Enrichment and Disturbance: A High-Frequency, Multi-Habitat Field and Modeling Approach
- Author
-
Rüegg, Janine, primary, Chaloner, Dominic T., additional, Ballantyne, Ford, additional, Levi, Peter S., additional, Song, Chao, additional, Tank, Jennifer L., additional, Tiegs, Scott D., additional, and Lamberti, Gary A., additional
- Published
- 2020
- Full Text
- View/download PDF
69. Global patterns and drivers of ecosystem functioning in rivers and riparian zones
- Author
-
Entomology, Tiegs, Scott D., Costello, David M., Isken, Mark W., Woodward, Guy, McIntyre, Peter B., Gessner, Mark O., Chauvet, Eric, Griffiths, Natalie A., Flecker, Alex S., Acuna, Vicenc, Albarino, Ricardo, Allen, Daniel C., Alonso, Cecilia, Andino, Patricio, Arango, Clay, Aroviita, Jukka, Barbosa, Marcus V. M., Barmuta, Leon A., Baxter, Colden V., Bell, Thomas D. C., Bellinger, Brent, Boyero, Luz, Brown, Lee E., Bruder, Andreas, Bruesewitz, Denise A., Burdon, Francis J., Callisto, Marcos, Canhoto, Cristina, Capps, Krista A., Castillo, Maria M., Clapcott, Joanne, Colas, Fanny, Colon-Gaud, Checo, Cornut, Julien, Crespo-Perez, Veronica, Cross, Wyatt F., Culp, Joseph M., Danger, Michael, Dangles, Olivier, de Eyto, Elvira, Derry, Alison M., Diaz Villanueva, Veronica, Douglas, Michael M., Elosegi, Arturo, Encalada, Andrea C., Entrekin, Sally A., Espinosa, Rodrigo, Ethaiya, Diana, Ferreira, Veronica, Ferriol, Carmen, Flanagan, Kyla M., Fleituch, Tadeusz, Shah, Jennifer J. Follstad, Frainer, Andre, Friberg, Nikolai, Frost, Paul C., Garcia, Erica A., Lago, Liliana Garcia, Garcia Soto, Pavel Ernesto, Ghate, Sudeep, Giling, Darren P., Gilmer, Alan, Goncalves, Jose Francisco, Jr., Gonzales, Rosario Karina, Graca, Manuel A. S., Grace, Mike, Grossart, Hans-Peter, Guerold, Francois, Gulis, Vlad, Hepp, Luiz U., Higgins, Scott, Hishi, Takuo, Huddart, Joseph, Hudson, John, Imberger, Samantha, Iniguez-Armijos, Carlos, Iwata, Tomoya, Janetski, David J., Jennings, Eleanor, Kirkwood, Andrea E., Koning, Aaron A., Kosten, Sarian, Kuehn, Kevin A., Laudon, Hjalmar, Leavitt, Peter R., Lemes da Silva, Aurea L., Leroux, Shawn J., Leroy, Carri J., Lisi, Peter J., MacKenzie, Richard, Marcarelli, Amy M., Masese, Frank O., Mckie, Brendan G., Oliveira Medeiros, Adriana, Meissner, Kristian, Milisa, Marko, Mishra, Shailendra, Miyake, Yo, Moerke, Ashley, Mombrikotb, Shorok, Mooney, Rob, Moulton, Tim, Muotka, Timo, Negishi, Junjiro N., Neres-Lima, Vinicius, Nieminen, Mika L., Nimptsch, Jorge, Ondruch, Jakub, Paavola, Riku, Pardo, Isabel, Patrick, Christopher J., Peeters, Edwin T. H. M., Pozo, Jesus, Pringle, Catherine, Prussian, Aaron, Quenta, Estefania, Quesada, Antonio, Reid, Brian, Richardson, John S., Rigosi, Anna, Rincon, Jose, Risnoveanu, Geta, Robinson, Christopher T., Rodriguez-Gallego, Lorena, Royer, Todd V., Rusak, James A., Santamans, Anna C., Selmeczy, Geza B., Simiyu, Gelas, Skuja, Agnija, Smykla, Jerzy, Sridhar, Kandikere R., Sponseller, Ryan, Stoler, Aaron, Swan, Christopher M., Szlag, David, Teixeira-de Mello, Franco, Tonkin, Jonathan D., Uusheimo, Sari, Veach, Allison M., Vilbaste, Sirje, Vought, Lena B. M., Wang, Chiao-Ping, Webster, Jackson R., Wilson, Paul B., Woelfl, Stefan, Xenopoulos, Marguerite A., Yates, Adam G., Yoshimura, Chihiro, Yule, Catherine M., Zhang, Yixin X., Zwart, Jacob A., Entomology, Tiegs, Scott D., Costello, David M., Isken, Mark W., Woodward, Guy, McIntyre, Peter B., Gessner, Mark O., Chauvet, Eric, Griffiths, Natalie A., Flecker, Alex S., Acuna, Vicenc, Albarino, Ricardo, Allen, Daniel C., Alonso, Cecilia, Andino, Patricio, Arango, Clay, Aroviita, Jukka, Barbosa, Marcus V. M., Barmuta, Leon A., Baxter, Colden V., Bell, Thomas D. C., Bellinger, Brent, Boyero, Luz, Brown, Lee E., Bruder, Andreas, Bruesewitz, Denise A., Burdon, Francis J., Callisto, Marcos, Canhoto, Cristina, Capps, Krista A., Castillo, Maria M., Clapcott, Joanne, Colas, Fanny, Colon-Gaud, Checo, Cornut, Julien, Crespo-Perez, Veronica, Cross, Wyatt F., Culp, Joseph M., Danger, Michael, Dangles, Olivier, de Eyto, Elvira, Derry, Alison M., Diaz Villanueva, Veronica, Douglas, Michael M., Elosegi, Arturo, Encalada, Andrea C., Entrekin, Sally A., Espinosa, Rodrigo, Ethaiya, Diana, Ferreira, Veronica, Ferriol, Carmen, Flanagan, Kyla M., Fleituch, Tadeusz, Shah, Jennifer J. Follstad, Frainer, Andre, Friberg, Nikolai, Frost, Paul C., Garcia, Erica A., Lago, Liliana Garcia, Garcia Soto, Pavel Ernesto, Ghate, Sudeep, Giling, Darren P., Gilmer, Alan, Goncalves, Jose Francisco, Jr., Gonzales, Rosario Karina, Graca, Manuel A. S., Grace, Mike, Grossart, Hans-Peter, Guerold, Francois, Gulis, Vlad, Hepp, Luiz U., Higgins, Scott, Hishi, Takuo, Huddart, Joseph, Hudson, John, Imberger, Samantha, Iniguez-Armijos, Carlos, Iwata, Tomoya, Janetski, David J., Jennings, Eleanor, Kirkwood, Andrea E., Koning, Aaron A., Kosten, Sarian, Kuehn, Kevin A., Laudon, Hjalmar, Leavitt, Peter R., Lemes da Silva, Aurea L., Leroux, Shawn J., Leroy, Carri J., Lisi, Peter J., MacKenzie, Richard, Marcarelli, Amy M., Masese, Frank O., Mckie, Brendan G., Oliveira Medeiros, Adriana, Meissner, Kristian, Milisa, Marko, Mishra, Shailendra, Miyake, Yo, Moerke, Ashley, Mombrikotb, Shorok, Mooney, Rob, Moulton, Tim, Muotka, Timo, Negishi, Junjiro N., Neres-Lima, Vinicius, Nieminen, Mika L., Nimptsch, Jorge, Ondruch, Jakub, Paavola, Riku, Pardo, Isabel, Patrick, Christopher J., Peeters, Edwin T. H. M., Pozo, Jesus, Pringle, Catherine, Prussian, Aaron, Quenta, Estefania, Quesada, Antonio, Reid, Brian, Richardson, John S., Rigosi, Anna, Rincon, Jose, Risnoveanu, Geta, Robinson, Christopher T., Rodriguez-Gallego, Lorena, Royer, Todd V., Rusak, James A., Santamans, Anna C., Selmeczy, Geza B., Simiyu, Gelas, Skuja, Agnija, Smykla, Jerzy, Sridhar, Kandikere R., Sponseller, Ryan, Stoler, Aaron, Swan, Christopher M., Szlag, David, Teixeira-de Mello, Franco, Tonkin, Jonathan D., Uusheimo, Sari, Veach, Allison M., Vilbaste, Sirje, Vought, Lena B. M., Wang, Chiao-Ping, Webster, Jackson R., Wilson, Paul B., Woelfl, Stefan, Xenopoulos, Marguerite A., Yates, Adam G., Yoshimura, Chihiro, Yule, Catherine M., Zhang, Yixin X., and Zwart, Jacob A.
- Abstract
River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.
- Published
- 2019
70. Chapter 27 - Leaf-Litter Breakdown
- Author
-
Benfield, E.F., Fritz, Ken M., and Tiegs, Scott D.
- Published
- 2017
- Full Text
- View/download PDF
71. Chapter 26 - Coarse Particulate Organic Matter: Storage, Transport, and Retention
- Author
-
Lamberti, Gary A., Entrekin, Sally A., Griffiths, Natalie A., and Tiegs, Scott D.
- Published
- 2017
- Full Text
- View/download PDF
72. Erratum to: Litter Decomposition, and Associated Invertebrate Communities, in Wetland Ponds of the Copper River Delta, Alaska (USA)
- Author
-
Tiegs, Scott D., Entrekin, Sally A., Reeves, Gordon H., Kuntzsch, Deyna, and Merritt, Richard W.
- Published
- 2014
- Full Text
- View/download PDF
73. Combined Effects of Vegetation and Drought on Organic-Matter Decomposition in Vernal Pool Soils
- Author
-
Hervé, Pauline, primary, Tiegs, Scott D., additional, Grellier, Séraphine, additional, Wantzen, Karl Matthias, additional, and Isselin-Nondedeu, Francis, additional
- Published
- 2018
- Full Text
- View/download PDF
74. Ranking stressor impacts on periphyton structure and function with mesocosm experiments and environmental-change forecasts
- Author
-
Costello, David M., primary, Kulacki, Konrad J., additional, McCarthy, Mary E., additional, Tiegs, Scott D., additional, and Cardinale, Bradley J., additional
- Published
- 2018
- Full Text
- View/download PDF
75. Litter Decomposition as an Indicator of Stream Ecosystem Functioning at Local-to-Continental Scales
- Author
-
Chauvet, Eric, Ferreira, Verónica, Giller, Paul S., McKie, Brendan G., Tiegs, Scott D., Woodward, Guy, Elosegi, Arturo, Dobson, Michael, Fleituch, Tadeusz, Graça, Manuel A. S., Gulis, Vladislav, Hladyz, Sally, Lacoursiere, Jean O., Lecerf, Antoine, Pozo, Jesús, Preda, Elena, Riipinen, Miira P., Risnoveanu, Geta, Vadineanu, Angheluta, Vought, Lena B.-M., Gessner, Mark O., Centre National de la Recherche Scientifique - CNRS (FRANCE), Universidade de Coimbra (PORTUGAL), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Polish Academy of Sciences (POLAND), Technische Universität Berlin - TU Berlin (GERMANY), University College Cork (IRELAND), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Universidad del País Vasco - Euskal Herriko Unibertsitatea - EHU (SPAIN), University of Bucharest (ROMANIA), Coastal Carolina University - CCU (USA), Edinburgh Technopole (UNITED KINGDOM), Imperial College London (UNITED KINGDOM), Kristianstad University College - HKR (SWEDEN), Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (GERMANY), Monash University (AUSTRALIA), Oakland University (USA), Plymouth University (UNITED KINGDOM), Sveriges lantbruksuniversitet - SLU (SWEDEN), Laboratoire Ecologie Fonctionnelle et Environnement (LEFE), Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Swedish University of Agricultural Sciences (SLU), Oakland University (UNITED STATES), Imperial College London, Coastal Carolina University - CCU (UNITED STATES), and Plymouth University
- Subjects
River ,Biodiversité et Ecologie ,Ecosystem functioning ,Stream ,Riparian forest ,Biodiversity ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Functional assessment ,Leaf litter decomposition ,Nutrient ,Management - Abstract
International audience; RivFunction is a pan-European initiative that started in 2002 and was aimed at esta- blishing a novel functional-based approach to assessing the ecological status of rivers. Litter decomposition was chosen as the focal process because it plays a central role in stream ecosystems and is easy to study in the field. Impacts of two stressors that occur across the continent, nutrient pollution and modified riparian vegetation, were exam- ined at >200 paired sites in nine European ecoregions. In response to the former, decomposition was dramatically slowed at both extremes of a 1000-fold nutrient gra- dient, indicating nutrient limitation in unpolluted sites, highly variable responses across Europe in moderately impacted streams, and inhibition via associated toxic and addi- tional stressors in highly polluted streams. Riparian forest modification by clear cutting or replacement of natural vegetation by plantations (e.g. conifers, eucalyptus) or pasture produced similarly complex responses. Clear effects caused by specific riparian distur- bances were observed in regionally focused studies, but general trends across different types of riparian modifications were not apparent, in part possibly because of important indirect effects. Complementary field and laboratory experiments were undertaken to tease apart the mechanistic drivers of the continental scale field bioassays by addressing the influence of litter, fungal and detritivore diversity. These revealed generally weak and context-dependent effects on decomposition, suggesting high levels of redundancy (and hence potential insurance mechanisms that can mitigate a degree of species loss) within the food web. Reduced species richness consistently increased decomposition variability, if not the absolute rate. Further field studies were aimed at identifying impor- tant sources of this variability (e.g. litter quality, temporal variability) to help constrain ranges of predicted decomposition rates in different field situations. Thus, although many details still need to be resolved, litter decomposition holds considerable potential in some circumstances to capture impairment of stream ecosystem functioning. For instance, species traits associated with the body size and metabolic capacity of the con- sumers were often the main driver at local scales, and these were often translated into important determinants of otherwise apparently contingent effects at larger scales. Key insights gained from conducting continental scale studies included resolving the appar- ent paradox of inconsistent relationships between nutrients and decomposition rates, as the full complex multidimensional picture emerged from the large-scale dataset, of which only seemingly contradictory fragments had been seen previously.
- Published
- 2016
- Full Text
- View/download PDF
76. Litter Decomposition as an Indicator of Stream Ecosystem Functioning at Local-to-Continental Scales: Insights from the European RivFunction Project
- Author
-
Chauvet, Eric, Ferreira, Verónica, Giller, Paul S., Mckie, Brendan G., Tiegs, Scott D., Woodward, Guy, Elosegi, Arturo, Graça, M. A. S., Dumbrell, A.J., Kordas, R.L., and Woodward, Guy
- Abstract
RivFunction is a pan-European initiative that started in 2002 and was aimed at establishing a novel functional-based approach to assessing the ecological status of rivers. Litter decomposition was chosen as the focal process because it plays a central role in stream ecosystems and is easy to study in the field. Impacts of two stressors that occur across the continent, nutrient pollution and modified riparian vegetation, were examined at >200 paired sites in nine European ecoregions. In response to the former, decomposition was dramatically slowed at both extremes of a 1000-fold nutrient gradient, indicating nutrient limitation in unpolluted sites, highly variable responses across Europe in moderately impacted streams, and inhibition via associated toxic and additional stressors in highly polluted streams. Riparian forest modification by clear cutting or replacement of natural vegetation by plantations (e.g. conifers, eucalyptus) or pasture produced similarly complex responses. Clear effects caused by specific riparian disturbances were observed in regionally focused studies, but general trends across different types of riparian modifications were not apparent, in part possibly because of important indirect effects. Complementary field and laboratory experiments were undertaken to tease apart the mechanistic drivers of the continental scale field bioassays by addressing the influence of litter, fungal and detritivore diversity. These revealed generally weak and context-dependent effects on decomposition, suggesting high levels of redundancy (and hence potential insurance mechanisms that can mitigate a degree of species loss) within the food web. Reduced species richness consistently increased decomposition variability, if not the absolute rate. Further field studies were aimed at identifying important sources of this variability (e.g. litter quality, temporal variability) to help constrain ranges of predicted decomposition rates in different field situations. Thus, although many details still need to be resolved, litter decomposition holds considerable potential in some circumstances to capture impairment of stream ecosystem functioning. For instance, species traits associated with the body size and metabolic capacity of the consumers were often the main driver at local scales, and these were often translated into important determinants of otherwise apparently contingent effects at larger scales. Key insights gained from conducting continental scale studies included resolving the apparent paradox of inconsistent relationships between nutrients and decomposition rates, as the full complex multidimensional picture emerged from the large-scale dataset, of which only seemingly contradictory fragments had been seen previously. 3F10-AC72-52D0 | Verónica Ferreira info:eu-repo/semantics/publishedVersion
- Published
- 2016
77. Bottom‐up and trait‐mediated effects of resource quality on amphibian parasitism
- Author
-
Stephens, Jeffrey P., primary, Altman, Karie A., additional, Berven, Keith A., additional, Tiegs, Scott D., additional, and Raffel, Thomas R., additional
- Published
- 2016
- Full Text
- View/download PDF
78. Ontogenetic changes in sensitivity to nutrient limitation of tadpole growth
- Author
-
Stephens, Jeffrey P., primary, Stoler, Aaron B., additional, Sckrabulis, Jason P., additional, Fetzer, Aaron J., additional, Berven, Keith A., additional, Tiegs, Scott D., additional, and Raffel, Thomas R., additional
- Published
- 2016
- Full Text
- View/download PDF
79. Enriching Vermicompost Using P-solubilizing and N-fixing Bacteria under Different Temperature Conditions
- Author
-
Alikhani, Hossein Ali, primary, Hemati, Arash, additional, Rashtbari, Mehdi, additional, Tiegs, Scott D., additional, and Etesami, Hassan, additional
- Published
- 2016
- Full Text
- View/download PDF
80. Stream ecosystem functioning in an agricultural landscape : the importance of terrestrial-aquatic linkages
- Author
-
Hladyz, Sally, Åbjörnsson, Kajsa, Chauvet, Eric, Dobson, Michael, Elosegi, Arturo, Ferreira, Verónica, Fleituch, Tadeusz, Gessner, Mark O., Giller, Paul S., Gulis, Vladislav, Hutton, Stephen A., Lacoursiere, Jean O., Lamothe, Sylvain, Lecerf, Antoine, Malmqvist, Björn, McKie, Brendan G., Nistorescu, Marius, Preda, Elena, Riipinen, Miira P., Risnoveanu, Geta, Schindler, Markus, Tiegs, Scott D., Vought, Lena B.-M., Woodward, Guy, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Riparian zone ,Allochthonous subsidies ,Autochthonous production ,Open-canopy streams ,Ecosystèmes ,Aquatic ecosystems ,Grass litter ,Land-use change ,Food webs ,Riparian alteration ,EU Water Framework Directive - Abstract
The loss of native riparian vegetation and its replacement with non-native species or grazing land for agriculture is a worldwide phenomenon, but one that is prevalent in Europe, reflecting the heavily-modified nature of the continent's landscape. The consequences of these riparian alterations for freshwater ecosystems remain largely unknown, largely because bioassessment has traditionally focused on the impacts of organic pollution on community structure. We addressed the need for a broader perspective, which encompasses changes at the catchment scale, by comparing ecosystem processes in woodland reference sites with those with altered riparian zones. We assessed a range of riparian modifications, including clearance for pasture and replacement of woodland with a range of low diversity plantations, in 100 streams to obtain a continental-scale perspective of the major types of alterations across Europe. Subsequently, we focused on pasture streams, as an especially prevalent widespread riparian alteration, by characterising their structural (e.g. invertebrate and fish communities) and functional (e.g. litter decomposition, algal production, herbivory) attributes in a country (Ireland) dominated by this type of landscape modification, via field and laboratory experiments. We found that microbes became increasingly important as agents of decomposition relative to macrofauna (invertebrates) in impacted sites in general and in pasture streams in particular. Resource quality of grass litter (e.g., carbon : nutrient ratios, lignin and cellulose content) was a key driver of decomposition rates in pasture streams. These systems also relied more heavily on autochthonous algal production than was the case in woodland streams, which were more detrital based. These findings suggest that these pasture streams might be fundamentally different from their native, ancestral woodland state, with a shift towards greater reliance on autochthonous-based processes. This could have a destabilizing effect on the dynamics of the food web relative to the slower, detrital-based pathways that dominate in woodland streams.
- Published
- 2011
81. Stoichiometric implications of a biphasic life cycle
- Author
-
Tiegs, Scott D., primary, Berven, Keith A., additional, Carmack, Douglas J., additional, and Capps, Krista A., additional
- Published
- 2015
- Full Text
- View/download PDF
82. Chapter 4 - Stream Ecosystem Functioning in an Agricultural Landscape: The Importance of Terrestrial–Aquatic Linkages
- Author
-
Hladyz, Sally, Åbjörnsson, Kajsa, Chauvet, Eric, Dobson, Michael, Elosegi, Arturo, Ferreira, Verónica, Fleituch, Tadeusz, Gessner, Mark O., Giller, Paul S., Gulis, Vladislav, Hutton, Stephen A., Lacoursière, Jean O., Lamothe, Sylvain, Lecerf, Antoine, Malmqvist, Björn, McKie, Brendan G., Nistorescu, Marius, Preda, Elena, Riipinen, Miira P., Rîşnoveanu, Geta, Schindler, Markus, Tiegs, Scott D., Vought, Lena B.-M., and Woodward, Guy
- Published
- 2011
- Full Text
- View/download PDF
83. A strategy to assess river restoration success
- Author
-
Woolsey, Sharon, Capelli, Florence, Gonser, Tom, Hoehn, Eduard, Hostmann, Markus, Junker, Berit, Paetzold, Achim, Roulier, Christian, Schweizer, Steffen, Tiegs, Scott D, Tockner, Klement, Weber, Christine, Peter, Armin, University of Zurich, and Peter, Armin
- Subjects
10122 Institute of Geography ,1104 Aquatic Science ,910 Geography & travel - Published
- 2007
- Full Text
- View/download PDF
84. Modelling nutrient transport and transformation by pool-breeding amphibians in forested landscapes using a 21-year dataset
- Author
-
Capps, Krista A., primary, Berven, Keith A., additional, and Tiegs, Scott D., additional
- Published
- 2014
- Full Text
- View/download PDF
85. Erratum to: Litter Decomposition, and Associated Invertebrate Communities, in Wetland Ponds of the Copper River Delta, Alaska (USA)
- Author
-
Tiegs, Scott D., primary, Entrekin, Sally A., additional, Reeves, Gordon H., additional, Kuntzsch, Deyna, additional, and Merritt, Richard W., additional
- Published
- 2013
- Full Text
- View/download PDF
86. Anthropogenic changes to leaf litter input affect the fitness of a larval amphibian
- Author
-
Stephens, Jeffrey P., primary, Berven, Keith A., additional, and Tiegs, Scott D., additional
- Published
- 2013
- Full Text
- View/download PDF
87. Enriching Vermicompost Using P-solubilizing and N-fixing Bacteria under Different Temperature Conditions.
- Author
-
Alikhani, Hossein Ali, Hemati, Arash, Rashtbari, Mehdi, Tiegs, Scott D., and Etesami, Hassan
- Subjects
NITROGEN-fixing bacteria ,VERMICOMPOSTING ,PHOSPHORUS analysis ,ATMOSPHERIC temperature ,HUMIC acid - Abstract
In the present study we evaluated changes in phosphorus (P), nitrogen (N), and humic acid (HA) contents of vermicompost (VC) in response to temperature increases, and inoculation with N2-fixing and P-solubilizing microbes. Inoculants ofPseudomonasandAzotobacterwere prepared and used to inoculate VC that was kept at 28 and 41 °C. Biological and chemical parameters of the VC were evaluated at 0, 20, 40, and 60 days. As incubation duration increased, bacterial population, N, available P, and HA content increased while organic carbon and pH decreased. These changes were most rapid during the initial 40 days of the experiment, and slowed subsequently. Increasing temperature from 28 to 41 °C reduced bacterial population and the efficiency of these bacteria in improving VC quality. Overall, our results indicate that inoculation of VC with microbes holds promise as a means of increasing the quality of VC, while our increased temperature treatment was less effective. [ABSTRACT FROM PUBLISHER]
- Published
- 2017
- Full Text
- View/download PDF
88. Effects of spawning Pacific salmon on the isotopic composition of biota differ among southeast Alaska streams
- Author
-
REISINGER, ALEXANDER J., primary, CHALONER, DOMINIC T., additional, RÜEGG, JANINE, additional, TIEGS, SCOTT D., additional, and LAMBERTI, GARY A., additional
- Published
- 2013
- Full Text
- View/download PDF
89. Whole-Stream Metabolism Responds to Spawning Pacific Salmon in Their Native and Introduced Ranges
- Author
-
Levi, Peter S., primary, Tank, Jennifer L., additional, Rüegg, Janine, additional, Janetski, David J., additional, Tiegs, Scott D., additional, Chaloner, Dominic T., additional, and Lamberti, Gary A., additional
- Published
- 2012
- Full Text
- View/download PDF
90. Biogeochemical transformation of a nutrient subsidy: salmon, streams, and nitrification
- Author
-
Levi, Peter S., primary, Tank, Jennifer L., additional, Tiegs, Scott D., additional, Chaloner, Dominic T., additional, and Lamberti, Gary A., additional
- Published
- 2012
- Full Text
- View/download PDF
91. Factors governing the distribution and fish-community associations of the round goby in Michigan tributaries of the Laurentian Great Lakes
- Author
-
Campbell, Tim B., primary and Tiegs, Scott D., additional
- Published
- 2012
- Full Text
- View/download PDF
92. Detecting Invasive Round Goby in Wadeable Streams: A Comparison of Gear Types
- Author
-
Nett, Joseph H. G., primary, Campbell, Timothy B., additional, Mandrak, Nicholas E., additional, and Tiegs, Scott D., additional
- Published
- 2012
- Full Text
- View/download PDF
93. Environmental variability and the ecological effects of spawning Pacific salmon on stream biofilm
- Author
-
RÜEGG, JANINE, primary, CHALONER, DOMINIC T., additional, LEVI, PETER S., additional, TANK, JENNIFER L., additional, TIEGS, SCOTT D., additional, and LAMBERTI, GARY A., additional
- Published
- 2011
- Full Text
- View/download PDF
94. Leaf‐litter breakdown in pasture and deciduous woodland streams: a comparison among three European regions
- Author
-
HLADYZ, SALLY, primary, TIEGS, SCOTT D., additional, GESSNER, MARK O., additional, GILLER, PAUL S., additional, RÎŞNOVEANU, GETA, additional, PREDA, ELENA, additional, NISTORESCU, MARIUS, additional, SCHINDLER, MARKUS, additional, and WOODWARD, GUY, additional
- Published
- 2010
- Full Text
- View/download PDF
95. Do non-native earthworms in Southeast Alaska use streams as invasional corridors in watersheds harvested for timber?
- Author
-
Costello, David M., primary, Tiegs, Scott D., additional, and Lamberti, Gary A., additional
- Published
- 2010
- Full Text
- View/download PDF
96. Separating physical disturbance and nutrient enrichment caused by Pacific salmon in stream ecosystems
- Author
-
TIEGS, SCOTT D., primary, CAMPBELL, EMILY Y., additional, LEVI, PETER S., additional, RÜEGG, JANINE, additional, BENBOW, MARK E., additional, CHALONER, DOMINIC T., additional, MERRITT, RICHARD W., additional, TANK, JENNIFER L., additional, and LAMBERTI, GARY A., additional
- Published
- 2009
- Full Text
- View/download PDF
97. A strategy to assess river restoration success
- Author
-
WOOLSEY, SHARON, primary, CAPELLI, FLORENCE, additional, GONSER, TOM, additional, HOEHN, EDUARD, additional, HOSTMANN, MARKUS, additional, JUNKER, BERIT, additional, PAETZOLD, ACHIM, additional, ROULIER, CHRISTIAN, additional, SCHWEIZER, STEFFEN, additional, TIEGS, SCOTT D., additional, TOCKNER, KLEMENT, additional, WEBER, CHRISTINE, additional, and PETER, ARMIN, additional
- Published
- 2007
- Full Text
- View/download PDF
98. Modelling nutrient transport and transformation by pool-breeding amphibians in forested landscapes using a 21-year dataset.
- Author
-
Capps, Krista A., Berven, Keith A., and Tiegs, Scott D.
- Subjects
AMPHIBIAN reproduction ,NUTRIENT cycles ,ENERGY transfer ,AQUATIC habitats ,WOOD frog ,ANIMAL migration - Abstract
Migrations of animals can transfer energy and nutrients through and among terrestrial and aquatic habitats. Pool-breeding amphibians, such as the wood frog ( Lithobates sylvaticus), make annual breeding migrations to ephemeral wetlands in forest habitats in the eastern and midwestern United States and Canada., To model the influence of wood frogs on nutrient transport and transformation through time, we coupled long-term population monitoring data (1985-2005) from a wood frog population with estimates of the elemental composition of wood frog egg masses and emerging juveniles., Over the 21-year study period, 8.8 kg carbon (C), 2.0 kg nitrogen (N) and 0.20 kg phosphorus (P) were transported from the terrestrial to the aquatic habitat and approximately 21 kg C, 5.5 kg N and 1.2 kg P were exported to the surrounding terrestrial habitat by wood frogs., During the study period, the average net flux of C, N and P was from aquatic to terrestrial habitats, but the magnitude and direction of the net flux was element dependent. Thus, the net flux of C, N and P did not always flow in the same direction., Predicting long-term trends in nutrient and energy flux by organisms with biphasic life cycles should rely on long-term population data to account for temporal variability. This is especially true for organisms that are sensitive to long-term shifts in temperature and precipitation patterns, such as amphibians that breed in ephemeral pools. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
99. Reply to comment by Jackson and Martin on 'Does timber harvest influence the dynamics of marine-derived nutrients in Southeast Alaska streams?'1.
- Author
-
Levi, Peter S., Tank, Jennifer L., Tiegs, Scott D., Rüegg, Janine, Chaloner, Dominic T., Lamberti, Gary A., and Richardson, John
- Subjects
FISH nutrition ,SALMON ,RIVERS ,STATISTICAL sampling ,LOGGING ,GEOMORPHOLOGY - Abstract
Copyright of Canadian Journal of Fisheries & Aquatic Sciences is the property of Canadian Science Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2012
- Full Text
- View/download PDF
100. Environmental variability and the ecological effects of spawning Pacific salmon on stream biofilm.
- Author
-
RÜEGG, JANINE, CHALONER, DOMINIC T., LEVI, PETER S., TANK, JENNIFER L., TIEGS, SCOTT D., and LAMBERTI, GARY A.
- Subjects
SPAWNING ,PACIFIC salmon fisheries ,BIOFILMS ,ECOLOGICAL heterogeneity ,CONFIDENCE intervals ,BIOTIC communities ,FRESHWATER biology - Abstract
Summary 1. Variation in resource subsidies can create or reinforce heterogeneity in recipient ecosystems. Related activities of organisms delivering resource subsidies, such as ecosystem engineering by Pacific salmon spawners ( Oncorhynchus spp.), also alter heterogeneity. We studied whether heterogeneity in stream environmental conditions and spawner abundances were reflected in the net ecological effects of salmon (i.e. enrichment by resource subsidies and disturbance by ecosystem engineering) on benthic biofilm. 2. We sampled seven Southeast Alaska streams over 3 years, both before and during the salmon run. In each stream and year, stream environmental characteristics and their influence on responses of benthic biofilm [mean and coefficient of variation of chlorophyll a (chl a), ash-free dry mass (AFDM) and autotrophic index (AFDM:chl a)] to spawners were assessed. 3. Streams and periods before and during the salmon run were distinct based on their environmental characteristics. The responses of most biofilm metrics to spawners were stream- and year-specific, suggesting that the ecological effect of spawners ranged from net enrichment to net disturbance depending on the stream or year studied. The environmental context, especially temperature, large wood, and sediment size, explained >50% of biofilm variability during the run, but <30% over the entire study, suggesting that salmon can alter environmental constraints. 4. Precision of biofilm estimates improved by increasing either the number of streams or the number of years sampled (i.e. spatial or temporal replication). However, combining data from different North Pacific Rim ecoregions inflated the confidence interval as compared with a single ecoregion, indicating the importance of regional environmental contexts for net salmon effects. 5. Our results suggest that biofilm responses to salmon can vary greatly, even within a single ecoregion, and that environmental conditions can modify net salmon effects. Consequently, generalisations about biofilm responses across the native range of salmon may be challenging. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.