90 results on '"Szibor, Marten"'
Search Results
52. SmaRT-PCR: a novel application of competitive PCR for mRNA quantitation
- Author
-
Szibor, Marten and Morawietz, Henning
- Published
- 2001
- Full Text
- View/download PDF
53. Expression of the Alternative Oxidase Influences JNK Signaling and Cell Migration
- Author
-
Andjelković, Ana, Mordas, Amelia, Bruinsma, Lyon, Ketola, Annika, Cannino, Giuseppe, Giordano, Luca, Dhandapani, Praveen K, Szibor, Marten, Dufour, Eric, Jacobs, Howard T, Lääketieteen ja biotieteiden tiedekunta - Faculty of Medicine and Life Sciences, and University of Tampere
- Subjects
Biokemia, solu- ja molekyylibiologia - Biochemistry, cell and molecular biology - Published
- 2018
54. Expression of the alternative oxidase influences jun n-terminal kinase signaling and cell migration
- Author
-
Andjelkovic, Ana, Mordas, Amelia, Bruinsma, Lyon, Ketola, Annika, Cannino, Giuseppe, Giordano, Luca, Dhandapani, Praveen K., Szibor, Marten, Dufour, Eric, Jacobs, Howard T., and Institute of Biotechnology
- Subjects
Systeem en Synthetische Biologie ,HUMAN-PAPILLOMAVIRUS TYPE-16 ,C-JUN ,Alternative oxidase ,DISC EVERSION ,Wound healing ,JNK PATHWAY ,AP-1 ,DROSOPHILA ,Jun N-terminal kinase ,1182 Biochemistry, cell and molecular biology ,Systems and Synthetic Biology ,TRANSCRIPTION FACTOR ,THORAX CLOSURE ,Transcription ,GENE-EXPRESSION ,LIFE-SPAN - Abstract
Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
- Published
- 2018
- Full Text
- View/download PDF
55. Control of mitochondrial superoxide production by reverse electron transport at complex I
- Author
-
Robb, Ellen, Hall, Andrew, Prime, Tracy, Eaton, Simon, Szibor, Marten, Viscomi, Carlo, James, Andrew, Murphy, Michael, Lääketieteen ja biotieteiden tiedekunta - Faculty of Medicine and Life Sciences, and University of Tampere
- Subjects
Biokemia, solu- ja molekyylibiologia - Biochemistry, cell and molecular biology - Published
- 2018
56. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages
- Author
-
Mills, Evanna L, Kelly, Beth, Logan, Angela, Costa, Ana SH, Varma, Mukund, Bryant, Clare E, Tourlomousis, Panagiotis, Däbritz, J Henry M, Gottlieb, Eyal, Latorre, Isabel, Corr, Sinéad C, McManus, Gavin, Ryan, Dylan, Jacobs, Howard T, Szibor, Marten, Xavier, Ramnik J, Braun, Thomas, Frezza, Christian, Murphy, Michael P, O'Neill, Luke A, Bryant, Clare [0000-0002-2924-0038], Tourlomousis, Panagiotis [0000-0002-6152-8066], Frezza, Christian [0000-0002-3293-7397], Murphy, Mike [0000-0003-1115-9618], and Apollo - University of Cambridge Repository
- Subjects
Lipopolysaccharides ,Carbonyl Cyanide m-Chlorophenyl Hydrazone ,immunometabolism ,Citric Acid Cycle ,Succinic Acid ,macrophage ,reverse electron transport ,Oxidative Phosphorylation ,Mitochondrial Proteins ,Mice ,Adenosine Triphosphate ,Animals ,innate immunity ,Plant Proteins ,Inflammation ,Membrane Potential, Mitochondrial ,Sequence Analysis, RNA ,Macrophages ,Macrophage Activation ,succinate ,succinate dehydrogenase ,Hypoxia-Inducible Factor 1, alpha Subunit ,Malonates ,Interleukin-10 ,Mitochondria ,Mice, Inbred C57BL ,toll-like receptors ,Oxidoreductases ,Reactive Oxygen Species ,Transcriptome ,Glycolysis ,Oxidation-Reduction - Abstract
Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state.
- Published
- 2017
- Full Text
- View/download PDF
57. Alternative oxidase‐mediated respiration prevents lethal mitochondrial cardiomyopathy
- Author
-
Rajendran, Jayasimman, primary, Purhonen, Janne, additional, Tegelberg, Saara, additional, Smolander, Olli‐Pekka, additional, Mörgelin, Matthias, additional, Rozman, Jan, additional, Gailus‐Durner, Valerie, additional, Fuchs, Helmut, additional, Hrabe de Angelis, Martin, additional, Auvinen, Petri, additional, Mervaala, Eero, additional, Jacobs, Howard T, additional, Szibor, Marten, additional, Fellman, Vineta, additional, and Kallijärvi, Jukka, additional
- Published
- 2018
- Full Text
- View/download PDF
58. Mitochondrial diseases: from mechanisms to therapies
- Author
-
Viscomi, Carlo, primary, Dogan, Anil, additional, Cerutti, Raffaele, additional, Civiletto, Gabriele, additional, Beninca’, Cristiane, additional, Fagiolari, Gigliola, additional, Moggio, Maurizio, additional, Jacobs, Howy, additional, Szibor, Marten, additional, and Zeviani, Massimo, additional
- Published
- 2018
- Full Text
- View/download PDF
59. Bioenergetic consequences of xenotopic expression of Ciona intestinalis alternative oxidase (AOX) in the mouse
- Author
-
Szibor, Marten, primary, Viscomi, Carlo, additional, Dufour, Eric, additional, Dhandapani, Praveen, additional, Fernandez-Vizarra, Erika, additional, Heidler, Juliana, additional, Wittig, Ilka, additional, Zeviani, Massimo, additional, Jacobs, Howard T., additional, Moore, Anthony L., additional, and Gellerich, Frank N., additional
- Published
- 2018
- Full Text
- View/download PDF
60. A novel mouse Cre-driver line targeting Perilipin 2-expressing cells in the neonatal lung
- Author
-
Ntokou, Aglaia, primary, Szibor, Marten, additional, Rodríguez-Castillo, José Alberto, additional, Quantius, Jennifer, additional, Herold, Susanne, additional, El Agha, Elie, additional, Bellusci, Saverio, additional, Salwig, Isabelle, additional, Braun, Thomas, additional, Voswinckel, Robert, additional, Seeger, Werner, additional, Morty, Rory E., additional, and Ahlbrecht, Katrin, additional
- Published
- 2017
- Full Text
- View/download PDF
61. Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
- Author
-
University of Helsinki, Institute of Biotechnology, University of Helsinki, Institute for Molecular Medicine Finland (FIMM), Szibor, Marten, Dhandapani, Praveen K., Dufour, Eric, Holmstrom, Kira M., Zhuang, Yuan, Salwig, Isabelle, Wittig, Ilka, Heidler, Juliana, Gizatullina, Zemfira, Gainutdinov, Timur, Fuchs, Helmut, Gailus-Durner, Valerie, de Angelis, Martin Hrabe, Nandania, Jatin, Velagapudi, Vidya, Wietelmann, Astrid, Rustin, Pierre, Gellerich, Frank N., Jacobs, Howard T., Braun, Thomas, German Mouse Clinic Consortium, University of Helsinki, Institute of Biotechnology, University of Helsinki, Institute for Molecular Medicine Finland (FIMM), Szibor, Marten, Dhandapani, Praveen K., Dufour, Eric, Holmstrom, Kira M., Zhuang, Yuan, Salwig, Isabelle, Wittig, Ilka, Heidler, Juliana, Gizatullina, Zemfira, Gainutdinov, Timur, Fuchs, Helmut, Gailus-Durner, Valerie, de Angelis, Martin Hrabe, Nandania, Jatin, Velagapudi, Vidya, Wietelmann, Astrid, Rustin, Pierre, Gellerich, Frank N., Jacobs, Howard T., Braun, Thomas, and German Mouse Clinic Consortium
- Abstract
Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOX(Rosa26) mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOX(Rosa26) mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo.
- Published
- 2017
62. Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
- Author
-
German Mouse Clinic Consortium, Szibor, Marten, Dhandapani, Praveen K., Dufour, Eric, Holmström, Kira Margareta, Zhuang, Yuan, Salwig, Isabelle, Wittig, Ilka, Heidler, Juliana, Gizatullina, Zemfira, Gainutdinov, Timur, Fuchs, Helmut, Gailus-Durner, Valérie, Hrabé de Angelis, Martin, Nandania, Jatin, Velagapudi, Vidya, Wietelmann, Astrid, Rustin, Pierre, Gellerich, Frank Norbert, Jacobs, Howard T., Braun, Thomas, German Mouse Clinic Consortium, Szibor, Marten, Dhandapani, Praveen K., Dufour, Eric, Holmström, Kira Margareta, Zhuang, Yuan, Salwig, Isabelle, Wittig, Ilka, Heidler, Juliana, Gizatullina, Zemfira, Gainutdinov, Timur, Fuchs, Helmut, Gailus-Durner, Valérie, Hrabé de Angelis, Martin, Nandania, Jatin, Velagapudi, Vidya, Wietelmann, Astrid, Rustin, Pierre, Gellerich, Frank Norbert, Jacobs, Howard T., and Braun, Thomas
- Abstract
Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOXRosa26 mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOXRosa26 mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo.
- Published
- 2017
63. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages
- Author
-
Mills, Evanna L., primary, Kelly, Beth, additional, Logan, Angela, additional, Costa, Ana S.H., additional, Varma, Mukund, additional, Bryant, Clare E., additional, Tourlomousis, Panagiotis, additional, Däbritz, J. Henry M., additional, Gottlieb, Eyal, additional, Latorre, Isabel, additional, Corr, Sinéad C., additional, McManus, Gavin, additional, Ryan, Dylan, additional, Jacobs, Howard T., additional, Szibor, Marten, additional, Xavier, Ramnik J., additional, Braun, Thomas, additional, Frezza, Christian, additional, Murphy, Michael P., additional, and O’Neill, Luke A., additional
- Published
- 2016
- Full Text
- View/download PDF
64. Murine lung lipofibroblast lineage tracing
- Author
-
Ntokou, Aglaia, primary, Szibor, Marten, additional, Seeger, Werner, additional, Morty, Rory, additional, and Ahlbrecht, Katrin, additional
- Published
- 2016
- Full Text
- View/download PDF
65. Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
- Author
-
Szibor, Marten, primary, Dhandapani, Praveen K., additional, Dufour, Eric, additional, Holmström, Kira M., additional, Zhuang, Yuan, additional, Salwig, Isabelle, additional, Wittig, Ilka, additional, Heidler, Juliana, additional, Gizatullina, Zemfira, additional, Gainutdinov, Timur, additional, Consortium, German Mouse Clinic, additional, Fuchs, Helmut, additional, Gailus-Durner, Valérie, additional, de Angelis, Martin Hrabě, additional, Nandania, Jatin, additional, Velagapudi, Vidya, additional, Wietelmann, Astrid, additional, Rustin, Pierre, additional, Gellerich, Frank N., additional, Jacobs, Howard T., additional, and Braun, Thomas, additional
- Published
- 2016
- Full Text
- View/download PDF
66. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies
- Author
-
Andjelković, Ana, primary, Oliveira, Marcos T., additional, Cannino, Giuseppe, additional, Yalgin, Cagri, additional, Dhandapani, Praveen K., additional, Dufour, Eric, additional, Rustin, Pierre, additional, Szibor, Marten, additional, and Jacobs, Howard T., additional
- Published
- 2015
- Full Text
- View/download PDF
67. Characterization of the platelet-derived growth factor receptor-α-positive cell lineage during murine late lung development
- Author
-
Ntokou, Aglaia, primary, Klein, Friederike, additional, Dontireddy, Daria, additional, Becker, Sven, additional, Bellusci, Saverio, additional, Richardson, William D., additional, Szibor, Marten, additional, Braun, Thomas, additional, Morty, Rory E., additional, Seeger, Werner, additional, Voswinckel, Robert, additional, and Ahlbrecht, Katrin, additional
- Published
- 2015
- Full Text
- View/download PDF
68. Mitochondria as a Target for Future Diabetes Treatments
- Author
-
Thimm, Franziska, primary and Szibor, Marten, additional
- Published
- 2015
- Full Text
- View/download PDF
69. Bronchoalveolar Sublineage Specification of Pluripotent Stem Cells: Effect of Dexamethasone Plus cAMP-Elevating Agents and Keratinocyte Growth Factor
- Author
-
Katsirntaki, Katherina, primary, Mauritz, Christina, additional, Olmer, Ruth, additional, Schmeckebier, Sabrina, additional, Sgodda, Malte, additional, Puppe, Verena, additional, Eggenschwiler, Reto, additional, Duerr, Julia, additional, Schubert, Susanne C., additional, Schmiedl, Andreas, additional, Ochs, Matthias, additional, Cantz, Tobias, additional, Salwig, Isabelle, additional, Szibor, Marten, additional, Braun, Thomas, additional, Rathert, Christian, additional, Martens, Andreas, additional, Mall, Marcus A., additional, and Martin, Ulrich, additional
- Published
- 2015
- Full Text
- View/download PDF
70. NOA1, a novel ClpXP substrate, takes an unexpected nuclear detour prior to mitochondrial import.
- Author
-
Al-Furoukh, Natalie, Kardon, Julia R, Krüger, Marcus, Szibor, Marten, Baker, Tania A, Braun, Thomas, Al-Furoukh, Natalie, Kardon, Julia R, Krüger, Marcus, Szibor, Marten, Baker, Tania A, and Braun, Thomas
- Abstract
The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochondrial targeting sequence (MTS) or the C-terminal RNA binding domain of NOA1 impaired mitochondrial import. Absence of the MTS resulted in accumulation of NOA1 in the nucleus and increased caspase-dependent apoptosis. We also found that export of NOA1 from the nucleus requires a leptomycin-B sensitive, Crm1-dependent nuclear export signal (NES). Finally, we show that NOA1 is a new substrate of the mitochondrial matrix protease complex ClpXP. Our results uncovered an unexpected, mandatory detour of NOA1 through the nucleolus before uptake into mitochondria. We propose that nucleo-mitochondrial translocation of proteins is more widespread than previously anticipated providing additional means to control protein bioavailability as well as cellular communication between both compartments.
- Published
- 2014
- Full Text
- View/download PDF
71. NOA1, a Novel ClpXP Substrate, Takes an Unexpected Nuclear Detour Prior to Mitochondrial Import
- Author
-
Massachusetts Institute of Technology. Department of Biology, Kardon, Julia Ruth, Baker, Tania, Al-Furoukh, Natalie, Krüger, Marcus, Szibor, Marten, Braun, Thomas, Kardon, Julia R., Massachusetts Institute of Technology. Department of Biology, Kardon, Julia Ruth, Baker, Tania, Al-Furoukh, Natalie, Krüger, Marcus, Szibor, Marten, Braun, Thomas, and Kardon, Julia R.
- Abstract
The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochondrial targeting sequence (MTS) or the C-terminal RNA binding domain of NOA1 impaired mitochondrial import. Absence of the MTS resulted in accumulation of NOA1 in the nucleus and increased caspase-dependent apoptosis. We also found that export of NOA1 from the nucleus requires a leptomycin-B sensitive, Crm1-dependent nuclear export signal (NES). Finally, we show that NOA1 is a new substrate of the mitochondrial matrix protease complex ClpXP. Our results uncovered an unexpected, mandatory detour of NOA1 through the nucleolus before uptake into mitochondria. We propose that nucleo-mitochondrial translocation of proteins is more widespread than previously anticipated providing additional means to control protein bioavailability as well as cellular communication between both compartments., Max Planck Society for the Advancement of Science
- Published
- 2014
72. NOA1, a Novel ClpXP Substrate, Takes an Unexpected Nuclear Detour Prior to Mitochondrial Import
- Author
-
Al-Furoukh, Natalie, primary, Kardon, Julia R., additional, Krüger, Marcus, additional, Szibor, Marten, additional, Baker, Tania A., additional, and Braun, Thomas, additional
- Published
- 2014
- Full Text
- View/download PDF
73. Remodeling and dedifferentiation of adult cardiomyocytes during disease and regeneration
- Author
-
Szibor, Marten, primary, Pöling, Jochen, additional, Warnecke, Henning, additional, Kubin, Thomas, additional, and Braun, Thomas, additional
- Published
- 2013
- Full Text
- View/download PDF
74. The Janus face of OSM-mediated cardiomyocyte dedifferentiation during cardiac repair and disease
- Author
-
Pöling, Jochen, primary, Gajawada, Praveen, additional, Lörchner, Holger, additional, Polyakowa, Viktoria, additional, Szibor, Marten, additional, Böttger, Thomas, additional, Warnecke, Henning, additional, Kubin, Thomas, additional, and Braun, Thomas, additional
- Published
- 2012
- Full Text
- View/download PDF
75. Broad AOX expression in a genetically tractable mouse model does not disturb normal physiology
- Author
-
Szibor, Marten, Dhandapani, Praveen K., Dufour, Eric, Holmström, Kira M., Zhuang, Yuan, Salwig, Isabelle, Wittig, Ilka, Heidler, Juliana, Gizatullina, Zemfira, Gainutdinov, Timur, Fuchs, Helmut, Gailus-Durner, Valérie, de Angelis, Martin Hrabě, Nandania, Jatin, Velagapudi, Vidya, Wietelmann, Astrid, Rustin, Pierre, Gellerich, Frank N., Jacobs, Howard T., and Braun, Thomas
- Abstract
Plants and many lower organisms, but not mammals, express alternative oxidases (AOXs) that branch the mitochondrial respiratory chain, transferring electrons directly from ubiquinol to oxygen without proton pumping. Thus, they maintain electron flow under conditions when the classical respiratory chain is impaired, limiting excess production of oxygen radicals and supporting redox and metabolic homeostasis. AOX from Ciona intestinalis has been used to study and mitigate mitochondrial impairments in mammalian cell lines, Drosophila disease models and, most recently, in the mouse, where multiple lentivector-AOX transgenes conferred substantial expression in specific tissues. Here, we describe a genetically tractable mouse model in which Ciona AOX has been targeted to the Rosa26 locus for ubiquitous expression. The AOXRosa26 mouse exhibited only subtle phenotypic effects on respiratory complex formation, oxygen consumption or the global metabolome, and showed an essentially normal physiology. AOX conferred robust resistance to inhibitors of the respiratory chain in organello; moreover, animals exposed to a systemically applied LD50 dose of cyanide did not succumb. The AOXRosa26 mouse is a useful tool to investigate respiratory control mechanisms and to decipher mitochondrial disease aetiology in vivo.
- Published
- 2017
- Full Text
- View/download PDF
76. Abstract 9673: Mesenchymal Stem Cells Modulate Inflammatory Responses in Murine Heart by Inhibition of the TNF System
- Author
-
Martire, Alessandra, primary, Belema Bedada, Fikru, additional, Uchida, Shizuka, additional, Poeling, Joechen, additional, Wietelmann, Astrid, additional, Krueger, Markus, additional, Kubin, Thomas, additional, Szibor, Marten, additional, Warnecke, Henning, additional, and Braun, Thomas, additional
- Published
- 2011
- Full Text
- View/download PDF
77. Induction of Smooth Muscle Cell Migration During Arteriogenesis Is Mediated by Rap2
- Author
-
Pöling, Jochen, primary, Szibor, Marten, additional, Schimanski, Silvia, additional, Ingelmann, Marie-Elisabeth, additional, Rees, Wolfgang, additional, Gajawada, Praveen, additional, Kochfar, Zaber, additional, Lörchner, Holger, additional, Salwig, Isabelle, additional, Shin, Jae-Young, additional, Wiebe, Karsten, additional, Kubin, Thomas, additional, Warnecke, Henning, additional, and Braun, Thomas, additional
- Published
- 2011
- Full Text
- View/download PDF
78. Characterization of the platelet-derived growth factor receptor-positive cell lineage during murine late lung development.
- Author
-
Ntokou, Aglaia, Klein, Friederike, Dontireddy, Daria, Becker, Sven, Bellusci, Saverio, Richardson, William D., Szibor, Marten, Braun, Thomas, Morty, Rory E., Seeger, Werner, Voswincke, Robert, and Ahlbrecht, Katrin
- Subjects
CYTOKINES ,LUNGS ,HUMAN growth hormone ,ANIMAL morphology ,GROWTH factors - Abstract
A reduced number of alveoli is the structural hallmark of diseases of the neonatal and adult lung, where alveoli either fail to develop (as in bronchopulmonary dysplasia), or are progressively destroyed (as in chronic obstructive pulmonary disease). To correct the loss of alveolar septa through therapeutic regeneration, the mechanisms of septa formation must first be understood. The present study characterized platelet-derived growth factor receptor-positive (PDGFRα
+ ) cell populations during late lung development in mice. PDGFRα+ cells (detected using a PDGFRαGFP reporter line) were noted around the proximal airways during the pseudoglandular stage. In the canalicular stage, PDGFRα+ cells appeared in the more distal mesenchyme, and labeled α-smooth muscle actin-positive tip cells in the secondary crests and lipofibroblasts in the primary septa during alveolarization. Some PDGFRα+ cells appeared in the mesenchyme of the adult lung. Over the course of late lung development, PDGFRα+ cells consistently expressed collagen I, and transiently expressed markers of mesenchymal stem cells. With the use of both, a constitutive and a conditional PDGFRαCre line, it was observed that PDGFRα+ cells generated alveolar myofibroblasts including tip cells of the secondary crests, and lipofibroblasts. These lineages were committed before secondary septation. The present study provides new insights into the time-dependent commitment of the PDGFRα+ cell lineage to lipofibroblasts and myofibroblasts during late lung development that is needed to better understand the cellular contribution to the process of alveolarization. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
79. Serial Competitive RT-PCR Using Multiple Standards
- Author
-
Szibor, Marten, primary and Morawietz, Henning, additional
- Published
- 2002
- Full Text
- View/download PDF
80. Increased expression of endothelin-converting enzyme-1 in failing human myocardium
- Author
-
MORAWIETZ, Henning, primary, GOETTSCH, Winfried, additional, SZIBOR, Marten, additional, BARTON, Matthias, additional, SHAW, Sidney, additional, HAKIM, Kavous, additional, ZERKOWSKI, Hans-Reinhard, additional, and HOLTZ, Juergen, additional
- Published
- 2002
- Full Text
- View/download PDF
81. Redox Control of Mitochondrial Functions
- Author
-
Szibor, Marten, primary, Richter, Christoph, additional, and Ghafourifar, Pedram, additional
- Published
- 2001
- Full Text
- View/download PDF
82. Deloading of the Left Ventricle by Ventricular Assist Device Normalizes Increased Expression of Endothelin ET A Receptors But Not Endothelin-Converting Enzyme-1 in Patients With End-Stage Heart Failure
- Author
-
Morawietz, Henning, primary, Szibor, Marten, additional, Goettsch, Winfried, additional, Bartling, Babett, additional, Barton, Matthias, additional, Shaw, Sidney, additional, Koerfer, Reiner, additional, Zerkowski, Hans-Reinhard, additional, and Holtz, Juergen, additional
- Published
- 2000
- Full Text
- View/download PDF
83. Regulation of the endothelin system by shear stress in human endothelial cells
- Author
-
Morawietz, Henning, primary, Talanow, Roland, additional, Szibor, Marten, additional, Rueckschloss, Uwe, additional, Schubert, Andreas, additional, Bartling, Babett, additional, Darmer, Dorothea, additional, and Holtz, Juergen, additional
- Published
- 2000
- Full Text
- View/download PDF
84. Reply to Rutter et al.: The roles of cytosolic and intramitochondrial Ca2+ and the mitochondrial Ca2+- uniporter (MCU) in the stimulation of mammalian oxidative phosphorylation.
- Author
-
Gellerich, Frank N., Szibor, Marten, Gizatullina, Zemfira, Lessmann, Volkmar, Schwarzer, Michael, Doenst, Torsten, Vielhaber, Stefan, and Kunz, Wolfram S.
- Subjects
- *
OXIDATIVE phosphorylation , *BIOCHEMISTRY , *MITOCHONDRIA formation , *MOLECULAR biology , *CALCIUM ions - Published
- 2020
- Full Text
- View/download PDF
85. Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy
- Author
-
Dogan, Sukru Anil, Cerutti, Raffaele, Benincá, Cristiane, Brea-Calvo, Gloria, Jacobs, Howard Trevor, Zeviani, Massimo, Szibor, Marten, and Viscomi, Carlo
- Subjects
satellite cells ,Male ,Mice, Knockout ,autophagy ,antioxidant ,mitochondrial biogenesis ,Organelle Biogenesis ,Mitochondrial Myopathies ,ROS ,stress responses ,3. Good health ,Mice, Inbred C57BL ,Mitochondrial Proteins ,alternative oxidase ,mitochondrial disease ,Mice ,Animals ,Female ,redox signaling ,Muscle, Skeletal ,Oxidoreductases ,Reactive Oxygen Species ,Oxidation-Reduction ,Plant Proteins ,Signal Transduction - Abstract
Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.
86. Expressing alternative oxidase (AOX) in mice : a valuable tool to study mitochondrial respiratory chain defects
- Author
-
Dhandapani, Praveen Kumar, University of Helsinki, Faculty of Medicine, Doctoral Programme in Biomedicin, Helsingin yliopisto, lääketieteellinen tiedekunta, Biolääketieteellinen tohtoriohjelma, Helsingfors universitet, medicinska fakulteten, Doktorandprogrammet i biomedicin, Moore, Anthony, Jacobs, Howard, and Szibor, Marten
- Subjects
physiology - Abstract
Mitochondria are vital cellular organelles that produce the majority of the energy required by cells and are therefore represented as "the power house of the cell". Cellular energy, in the form of adenosine triphosphate (ATP), is generated through oxidative phosphorylation (OXPHOS), which is energized by the redox reactions of the electron transport chain (ETC) in mitochondria. Mitochondria are essential for maintaining metabolic homeostasis, fatty-acid metabolism, nucleotide synthesis and cellular redox balance, in addition to producing ATP. Given the multitude of mitochondrial functions, failure of any of them can lead to mitochondrial dysfunction that can have drastic consequences. It can lead to cell loss, organ failure and even death. Mitochondrial disorders are commonly associated with debilitating childhood onset diseases with no known cure. Current therapeutic approaches are largey symptomatic, such as dietary modification for diabetes, anti-convulsant drugs to control seizures, physical exercise for hypotonia, pacemaker implants for cardiac rhythm abnormalities and cochlear implants for sensorineural deafness. However, these are not a permanent solution or cure for severe disorders caused by genetic mutations or irreversible physical damage. Cardiomyopathy, failure of the heart muscle, is one of the most common symptoms of mitochondrial disorders, while cardiomyopathies almost always are associated with mitochondrial dysfunction. In severe forms of cardiomyopathy, the ultimate treatment option of heart transplantation is invasive and carries high risk, and the waiting list for a functional healthy heart is increasingly outstripping availability. I have investigated the use of a mitochondrial enzyme, the alternative oxidase (AOX), which is found in plants and lower eukaryotes, as well as in primitive metazoans but not in mammals as a new approach to better understand the underlying molecular mechanisms of diseases involving mitochondrial dysfunction. On a broader perspective, this would also aid in the development of a possible treatment for diseases associated with mitochondrial dysfunction. If catalytically engaged, AOX branches the mitochondrial ETC by oxidizing ubiquinol, which accumulates in the reduced form if the cytochrome pathway is impaired. By doing so it reduces oxygen directly to water, which is typically carried out by cytochrome oxidase, and thus maintains redox balance by recycling NADH and FADH2, two by-products of the Krebs cycle and upstream metabolism. Focusing on different types of cardiomyopathy, my strategy has been to introduce the AOX gene from the tunicate Ciona intestinalis, a close relative of vertebrates, into mouse models of disease, using genomic manipulation. I have studied and characterized two transgenic mouse models expressing C. intestinalis AOX. The first was designed to express AOX constitutively and ubiquitously. I verified this at the RNA and protein level revealing high-level expression in all tissues tested, including the heart, with the exception of the adult brain. The mice did not show any observable phenotype, making them nearly indistinguishable from their wild-type littermates under non-stressed conditions. Heart function, as measured by ejection fraction and left ventricular mass, treadmill performance and grip strength were all normal in one-year-old AOX-expressing mice. Weight was indistinguishable from that of wild-type littermates on chow or high-fat diet; although on ketogenic diet AOX-expressing mice showed a slightly mitigated weight gain, at least when caged in same-sex groups. A second AOX transgenic line was characterized, in which AOX expression was designed to be activatable by Cre-loxP-mediated removal of a STOP cassette (SNAP coding sequence, pA signal) located downstream of a CAG promoter and upstream of the AOX coding sequence. After verification of the transgenic insertion by PCR and Southern blotting, test activation by breeding to mice ubiquitously expressing Cre recombinase under the control of a β-actin promoter resulted in successful activation, based on ubiquitous expression of AOX and concomitant loss of SNAP expression. This allowed me to test the tissue-specificity of AOX-mediated modification of pathological phenotypes in mouse models of cardiomyopathy. Two different mouse models of cardiomyopathy were investigated. In the first, inflammatory cardiomyopathy was induced by overexpressing monocyte chemo-attractant protein 1 (MCP1) in the cardiomyocytes, which leads to loss of cardiac function commencing during early adulthood (12 weeks of age). Previously published data showed mitochondrial structural damage, decrease in ATP levels; and suggested induced oxidative stress as a pathological mechanism. Although the majority of oxidative stress in the cardiomyocytes of Mcp1 mice is induced by the infiltrating monocytes, via NADPH oxidase pathway, the contribution of mitochondria to the production of reactive oxygen species (ROS) is not well understood. I hypothesized that mitochondrial ROS production, especially via a defective or overloaded cytochrome pathway in the mitochondrial respiratory chain, might play a key role in the underlying molecular mechanisms. Therefore we wanted to test whether AOX could mitigate it, as it has been shown to alleviate oxidative stress under conditions where the cytochrome pathway is dysfunctional. I found that expressing AOX in this model preserved cardiac ejection fraction at 12 weeks of age but not at later time points. At the molecular level, I determined that mitochondrial complex I-linked respiration was severely affected in Mcp1-overexpressing mice irrespective of AOX expression. However, AOX preserved complex II mediated respiration. In theory, this should maintain mitochondrial redox homeostasis and limit oxidative stress and damage within mitochondria, but at the expense of ATP production and mitochondrial-ROS signaling. Ultrastructural analysis revealed mitochondrial damage in the cardiac tissue of 12 week-old Mcp1-overexpressing mice, which was alleviated by AOX expression. Despite this, AOX had no effect on the survival of Mcp1-overexpressing mice, whilst cardiomyocyte-specific AOX expression actually resulted in earlier death than Mcp1 alone. Autophagic markers were mildly elevated in all cases, and metabolic changes consistent with OXPHOS dysfunction were essentially unaffected by AOX expression in the Mcp1 mouse model. Overall, I conclude that AOX is insufficient to block lethal damage to mitochondria and/or other cellular components in this inflammatory cardiomyopathy model, despite transient beneficial effects. Previously, West et al (2011) and Mills et al (2016) reported on the significance of mitochondrial ROS in inducing macrophage activity in a LPS-induced inflammatory mouse model. Additionally, Mills et al (2016) also showed AOX expression prevented LPS-induced lethality in mice, where succinate-dependent ROS production in the ETC was reported to be the underlying cause for the observed severe phenotype. However, since AOX was unable to prevent lethality in Mcp1 mice, it is indicative that the ROS production in this inflammatory model might not be dependent on the ETC. The second model I studied was of Cox-deficient mitochondrial cardiomyopathy, induced by cardiomyocyte-specific knockout of Cox10, an essential enzyme of heme a biosynthesis. Cox10 knockout in the heart was lethal within the first days or weeks of life, and concomitant AOX expression had hardly any effect on this. Mice with heterozygous knockout of Cox10 survived for months but eventually succumbed to heart failure. However, this phenotype was produced by the cardiomyocyte-specific Cre expression alone, and was again exacerbated by AOX activation, despite transient improvements in cardiac performance in young mice. In conclusion, AOX can serve as a valuable tool to study disease mechanisms where mitochondrial dysfunction is proposed to play a key role in the pathophysiology. Although AOX did not rescue the disease models I studied, it did shed light on underlying molecular mechanisms. Considering the fact that AOX showed a partial, if transient, functional rescue in both of the heart failure models investigated, it might yet be relevant as a potential therapeutic option. Further research is necessary to fully understand the therapeutic potential of AOX, either by itself or in combination with other treatments that address different pathological processes, as well as the apparently negative effects of AOX itself during disease progression. Mitokondriot ovat elintärkeitä soluorganelleja, jotka tuottavat suurimman osan solujen tarvitsemasta energiasta ja ovat välttämättömiä ylläpitämään useita aineenvaihduntareittejä. Siten mitokondrioiden toimintahäiriöt voivat usein johtaa solujen menetykseen, elinten vajaatoimintaan ja jopa kuolemaan. Mitokondriaaliset sairaudet liittyvät yleensä vakaviin lapsuuden aikaisiin sairauksiin, joille ei ole tunnettuja parannuskeinoja. Kardiomyopatia, sydänlihaksen vajaatoiminta, on yksi yleisimmistä mitokondriohäiriöiden oireista, ja se on yksi suurimmista kuolinsyistä maailmassa. Ymmärtääkseni paremmin sellaisten sairauksien taustalla olevia molekyylimekanismeja, joihin liittyy mitokondrioiden toimintahäiriöitä, etenkin hengityskompleksien III ja / tai IV aiheuttamia toimintahäiriöitä, olen tutkinut mitokondriaalista entsyymiä, vaihtoehtoista oksidaasia (AOX), joka löytyy kasveista ja alemmista eukaryooteista, mutta ei nisäkkäistä. Katalyyttisesti aktivoituneena AOX haaroittaa mitokondriaalisen hengitysketjun ohittaen hengityskompleksit III ja IV ja redusoiden hapen suoraan vedeksi, minkä tyypillisesti suorittaa hengityskompleksi IV. Keskityin tutkimaan AOX-ilmentymisen vaikutusta erityyppisissä kardiomyopatioissa. Tätä varten strategiani on ollut siirtää AOX-geeni Ciona intestinalis -vaippaeläimestä kardiomyopatiahiirimalleihin geenimanipulaatiolla. Olen tutkinut ja karakterisoinut kahta siirtogeenistä hiirimallia, jotka ekspressoivat C. intestinalis AOX-geeniä. Ensimmäinen malli oli suunniteltu ekspressoimaan AOX:ia jatkuvasti ja kaikkialla, ja toinen AOX-siirtogeeninen linja suunniteltiin aktivoitavaksi tietyissä kudoksissa Cre-loxP-välitteisellä geenimanipulaatiolla. Molemmissa hiirimalleissa AOX-ekspressio varmistettiin RNA- ja proteiinitasoilla. Hiirillä ei ollut havaittavaa fenotyyppiä, mikä teki niiden erottamisen villityyppistä poikuetovereistaan lähes mahdottomaksi stressittömissä olosuhteissa. Ensimmäisessä mallissa normaali tai korkearasvainen ruokavalio ei erottanut siirtogeenisiä eläimiä villityyppisistä eläimistä, tosin ketogeenisellä ruokavaliolla AOX:ia ekspressoivat hiiret osoittivat hieman lievempää painonnousua kuin villityyppiset eläimet, ainakin ollessaan samaa sukupuolta olevien joukossa. Kahta erilaista kardiomyopatiahiirimallia tutkittiin. Ensimmäisessä indusoitiin tulehduksellinen kardiomyopatia MCP1 (monocyte chemo-attractant protein 1) yliekspression avulla sydänlihassoluissa, mikä johtaa sydämen toiminnan menettämiseen, joka alkaa varhaisessa aikuisiässä (12 viikon ikäisenä). Aikaisempien julkaisujen tutkimustulokset ovat osoittaneet mitokondrioiden rakennevaurioita, ATP-tasojen laskua, ja viittaavat indusoituun oksidatiiviseen stressiin patologisena mekanismina. Hypoteesin mukaan mitokondriaalisten reaktiivisten happiradikaalien (ROS) tuotannolla voisi olla avainrooli taustalla olevissa molekyylimekanismeissa. Siksi halusin testata, voisiko AOX lieventää sitä, koska sen on osoitettu lievittävän oksidatiivista stressiä olosuhteissa, joissa hengityskomplekseissa III ja / tai IV on toimintahäiriöitä. Havaitsin, että AOX:n ilmentäminen tässä mallissa säilytti sydämen ejektiofraktion 12 viikon iässä, mutta ei myöhemmin. Molekyylitasolla määrittelin, että mitokondriaalisen kompleksin I-linkittynyt hengitys vaikutti voimakkaasti MCP1:tä yliekspressoivissa hiirissä riippumatta AOX-ekspressiosta. AOX kuitenkin säilytti kompleksin II välittämän hengityksen. Teoriassa tämän pitäisi ylläpitää mitokondrioiden redox-homeostaasia ja rajoittaa oksidatiivista stressiä ja vaurioita mitokondrioissa, mutta ATP-tuotannon ja mitokondrion ROS-signaloinnin kustannuksella. Tästä huolimatta AOX:lla ei ollut vaikutusta MCP1:tä yliekspressoivien hiirten selviytymiseen, kun taas sydänsolujen spesifinen AOX-ekspressio johti tosiasiallisesti aikaisempaan kuolemaan kuin pelkkä MCP1. Kaiken kaikkiaan päättelen, että AOX ei riitä estämään mitokondrioiden ja/tai muiden solukomponenttien tappavia vaurioita tässä tulehduksellisessa kardiomyopatian mallissa, huolimatta ohimenevistä hyödyllisistä vaikutuksista. Nämä havainnot osoittavat, että ROS-tuotanto tässä tulehduksellisessa mallissa ei ehkä ole riippuvainen ETC:stä. Toinen tutkimani malli oli Cox-vajaatoimintainen mitokondriaalinen kardiomyopatia, jonka aiheuttaa kardiomyosyyttispesifinen Cox10:n puute, hemibiosynteesin välttämätön entsyymi. Cox10:n geenin poisto sydämestä oli tappavaa elämän ensimmäisinä päivinä tai viikkoina, ja samanaikaisella AOX-ekspressiolla ei ollut juuri mitään vaikutusta tähän. Hiiret, joilla oli heterotsygoottinen Cox10-geenin poisto, selvisivät kuukausia, mutta lopulta menehtyivät sydämen vajaatoimintaan. Tämä fenotyyppi tuotettiin kuitenkin pelkästään kardiomyosyyttispesifisellä Cre-ilmentymällä, ja AOX-aktivaatio pahensi sitä uudelleen, huolimatta sydämen suorituskyvyn ohimenevistä parannuksista nuorilla hiirillä. Yhteenvetona voidaan todeta, että AOX voi toimia arvokkaana välineenä tutkittaessa sairauden mekanismeja, joissa mitokondrioiden toimintahäiriöiden uskotaan olevan avainasemassa patofysiologiassa. Vaikka AOX ei toiminut pelastuskeinona tutkimissani sairausmalleissa, se valotti taustalla olevia molekyylimekanismeja. Kun otetaan huomioon, että AOX osoitti olevansa osittainen, joskin ohimenevä, toiminnallinen pelastuskeino molemmissa tutkituissa sydämen vajaatoimintamalleissa, se saattaa vielä tulevaisuudessa olla potentiaalinen terapeuttinen vaihtoehto. Jatkotutkimukset ovat välttämättömiä, jotta voidaan täysin ymmärtää AOX:n terapeuttinen potentiaali, joko itsenäisesti tai yhdessä muiden patologisiin prosesseihin kohdistuvien hoitomenetelmien kanssa, mutta yhtä lailla myös AOX:n nähtävästi negatiiviset vaikutukset sairauden etenemisen aikana.
- Published
- 2020
87. Cytochrome c oxidase dependent respiration is essential for T cell activation, proliferation and memory formation.
- Author
-
Tarasenko TN, Warren E, Fuchs A, Singh B, Marin J, Szibor M, and McGuire PJ
- Abstract
T cell activation, proliferation, and differentiation are fundamentally driven by shifts in cellular metabolism, with mitochondria playing a central role. Cytochrome c oxidase (COX, complex IV) is a key player in this process, as its activity is crucial for apoptosis, mtDNA maintenance, mitochondrial transcription, and mitochondrial respiration (MR), all of which influence T cell fate and function. Despite its known roles, the specific functions of COX required for T cell activity in vivo remain unclear. To isolate the role of MR in T cell function, we reintroduced this capability in COX-deficient T cells using an alternative oxidase (AOX) from Ciona intestinalis . Our findings demonstrate that MR is vital for maintaining metabolic balance during T cell activation by alleviating electron pressure from metabolic reprogramming and preserving redox homeostasis. We further showed that AOX mitigates apoptosis, prevents metabolic disruptions in glycolysis and the tricarboxylic acid cycle, and improves mtDNA maintenance and transcription, indicating that these disturbances are secondary to impaired MR in the absence of COX. Most importantly, the introduction of AOX restored robust effector and memory T cell generation and function in COX-deficient cells. These results highlight the essential role of COX-dependent MR in ensuring cellular health and underscore its pivotal role in T cell proliferation and differentiation., Competing Interests: Competing interests: MSZ is a co-founder of a start-up company founded to develop therapeutics based on AOX. Additional Declarations: There is NO Competing Interest.
- Published
- 2024
- Full Text
- View/download PDF
88. Hyperbaric oxygen treatment reveals spatiotemporal OXPHOS plasticity in the porcine heart.
- Author
-
Heidler J, Cabrera-Orefice A, Wittig I, Heyne E, Tomczak JN, Petersen B, Henze D, Pohjoismäki JLO, and Szibor M
- Abstract
Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F
1 FO -ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1 FO -ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart., (© The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences.)- Published
- 2024
- Full Text
- View/download PDF
89. Reply to Rutter et al. : The roles of cytosolic and intramitochondrial Ca 2+ and the mitochondrial Ca 2+ -uniporter (MCU) in the stimulation of mammalian oxidative phosphorylation.
- Author
-
Gellerich FN, Szibor M, Gizatullina Z, Lessmann V, Schwarzer M, Doenst T, Vielhaber S, and Kunz WS
- Subjects
- Animals, Calcium Channels metabolism, Mitochondria metabolism, Pyruvic Acid metabolism, Calcium metabolism, Oxidative Phosphorylation
- Abstract
Competing Interests: Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
- Published
- 2020
- Full Text
- View/download PDF
90. Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia.
- Author
-
Szibor M, Schreckenberg R, Gizatullina Z, Dufour E, Wiesnet M, Dhandapani PK, Debska-Vielhaber G, Heidler J, Wittig I, Nyman TA, Gärtner U, Hall AR, Pell V, Viscomi C, Krieg T, Murphy MP, Braun T, Gellerich FN, Schlüter KD, and Jacobs HT
- Subjects
- Animals, Biocatalysis, Electron Transport, Extracellular Matrix metabolism, Male, Mice, Mitochondria, Heart metabolism, Mitochondrial Proteins metabolism, Myocardial Contraction, Myocardial Ischemia complications, Myocardial Ischemia genetics, Myocardial Reperfusion Injury complications, Myocardial Reperfusion Injury genetics, Myocardial Reperfusion Injury pathology, Myocardial Reperfusion Injury physiopathology, Myocardium pathology, Myocardium ultrastructure, Oxidoreductases metabolism, Plant Proteins metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Myocardial Ischemia metabolism, Myocardial Ischemia physiopathology, Signal Transduction, Ventricular Remodeling
- Abstract
Cardiac ischaemia-reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re-perfused post-ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post-anoxic heart mitochondria. However, post-ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up-regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro-fibrotic and pro-apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label-free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC-derived signals during cardiac adaptive remodelling and identified ROS as a possible effector., (© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.