308 results on '"Svenning, J-C"'
Search Results
52. Cradles and museums of generic plant diversity across tropical Africa
- Author
-
Dagallier, Lpmj, Janssens, S. B., Dauby, Gilles, Blach-Overgaard, A., Mackinder, B. A., Droissart, Vincent, Svenning, J. C., Sosef, M. S. M., Stevart, T., Harris, D. J., Sonke, B., Wieringa, J. J., Hardy, O. J., and Couvreur, Thomas
- Subjects
endemism ,mountains ,phylogenetic ,protected areas ,CANAPE ,angiosperms ,East Africa ,humanities ,diversity - Abstract
Determining where species diversify (cradles) and persist (museums) over evolutionary time is fundamental to understanding the distribution of biodiversity and for conservation prioritization. Here, we identify cradles and museums of angiosperm generic diversity across tropical Africa, one of the most biodiverse regions on Earth. Regions containing nonrandom concentrations of young (neo-) and old (paleo-) endemic taxa were identified using distribution data of 1719 genera combined with a newly generated time-calibrated mega-phylogenetic tree. We then compared the identified regions with the current network of African protected areas (PAs). At the generic level, phylogenetic diversity and endemism are mainly concentrated in the biogeographically complex region of Eastern Africa. We show that mountainous areas are centres of both neo- and paleo-endemism. By contrast, the Guineo-Congolian lowland rain forest region is characterized by widespread and old lineages. We found that the overlap between centres of phylogenetic endemism and PAs is high (> 85%). We show the vital role played by mountains acting simultaneously as cradles and museums of tropical African plant biodiversity. By contrast, lowland rainforests act mainly as museums for generic diversity. Our study shows that incorporating large-scale taxonomically verified distribution datasets and mega-phylogenies lead to an improved understanding of tropical plant biodiversity evolution.
- Published
- 2019
53. Targeted set-aside:Benefits from reduced nitrogen loading in Danish aquatic environments
- Author
-
Odgaard, Mette Vestergaard, Olesen, Jørgen E, Graversgaard, Morten, Børgesen, Christen Duus, Svenning, J.-C., and Dalgaard, Tommy
- Subjects
Nitrogen leaching ,AGRICULTURE ,Agriculture ,Land rent ,Landscape ,Multi-functionality ,Nitrogen loads ,Spatial variation ,Nitrogen ,Denmark ,FRAMEWORK ,POLLUTION ,Spatial variation of N retention ,Land use ,Multifunctionality ,NITRATE REDUCTION ,LANDSCAPES ,Groundwater ,SCALE ,Water Pollutants, Chemical ,Environmental Monitoring - Abstract
Nitrogen (N) surplus form agricultural production is currently one of the most influential sources of eutrophication in coastal waters. Danish policies implemented to lower coastal N loads has previously been applied at the national scale without acknowledging spatial variation in e.g. N retention soil capacities from source to recipient and synergetic effects from the implemented measures on the surroundings (e.g. nature areas and production value of agricultural areas). With Denmark as study region, our goal was to assess the effect of spatially targeting N measures (using set-aside as an efficient measure) according to different criteria for where to place set-aside, in all cases reaching the N reduction goals set out by the Danish water management plans using only agricultural areas. Three criteria were considered: 1) costal N load (kg N/ha/yr), 2) nature value of the surroundings, and 3) land rent, which is a measure of production value of agricultural fields (DKK/ha/yr), thereby favoring agricultural areas with high N loads, close to nature, and low land rent. These three criteria were then combined resulting in three individual multifunctional scenarios (GreenEnvi - N load dominates, TerreEco - Nature dominates, AgroEcon - land rent dominates). Results show that targeting for coastal N load require 23% of the agricultural area set aside to reach the 90 coastal water catchments N reduction goals, but 36% when targeting for nature, 37% for land rent, and 35% when using no targeting. Hence, there is a clear benefit using targeting over no targeting in sense of less agricultural area lost when targeting for N load. Furthermore, the scenario GreenEnvi takes up 25% of the agricultural area. Simultaneously, this scenario is slightly cheaper and effects a larger nature area than targeting for e.g. N load. Hence, multiple benefits could be achieved if willing to take up marginally more of the agricultural land - 23 to 25%. Another result indicates that it is less costly to target for N load than for land rent. This is interesting as it illustrates a possible decoupling of low costal N loads and low land rent thereby facilitating socio-economic benefits only focusing on areas with high N loads - despite the isolated soil production value.
- Published
- 2019
- Full Text
- View/download PDF
54. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services
- Author
-
Girardello, M. Santangeli, A. Mori, E. Chapman, A. Fattorini, S. Naidoo, R. Bertolino, S. Svenning, J.-C.
- Abstract
Ensuring the persistence of biodiversity and ecosystem services represents a global challenge that need to be addressed with high urgency. Global priority areas can only be identified by means of an integrated prioritization approach that would not only preserve species numbers and ecosystem services, but also the evolutionary and functional components of diversity. In this study we combine global datasets on the distribution of mammals and birds with species traits and phylogenetic data and we identify conservation priorities for taxonomic, functional and phylogenetic diversity, as well as for three ecosystem services, including potential for carbon sequestration, pollination potential and groundwater recharge. We show that, when priority areas are identified based only on individual, e.g. functional diversity, or any combination of the three biodiversity components, these areas do not allow a sufficient protection of the three ecosystem services. However, an integrated approach whereby prioritization is based on all biodiversity components and ecosystem services would allow to identify areas that maximize protection of all ecosystem services with a minimal loss in biodiversity coverage. Our results highlight the need for an integrated conservation planning framework in order to optimally allocate resources and achieve the long-term preservation of the multiple dimensions of biodiversity and ecosystems services. © 2019, The Author(s).
- Published
- 2019
55. Site‐specific modulators control how geophysical and socio‐technical drivers shape land use and land cover
- Author
-
Odgaard, Mette Vestergaard, Dalgaard, Tommy, Bøcher, Peder Klith, and Svenning, J.-C.
- Abstract
Human utilisation of natural resources is the most important direct driver of land cover patterns in the Anthropocene. Here, we present a conceptual framework for how the effects of geophysical drivers (e.g., topography, soil, climate, and hydrology) and socio‐technical drivers (e.g., technology, legal regulation, economy, and culture) on land use and land cover are shaped by site‐specific modulators such as local topography and social and cultural backgrounds of individuals. The framework is demonstrated by examples from the literature, with emphasis on the north‐western European lowland agricultural region. For example, a geophysical driver such as slope of the terrain constrains land use and is thereby an important driver of land covers, for example, forests. This effect of slope can vary depending on site‐specific modulators such as local soil fertility, local topographic heterogeneity, and shifting human population densities. Acknowledging the importance of site‐specific modulators on how geophysical and socio‐technical drivers shape land use and land covers will strengthen research on human–environmental interactions – especially important with the future increase in human populations in a constant changing world.
- Published
- 2018
- Full Text
- View/download PDF
56. A third of the tropical African flora is potentially threatened with extinction
- Author
-
Stévart, T., primary, Dauby, G., additional, Lowry, P. P., additional, Blach-Overgaard, A., additional, Droissart, V., additional, Harris, D. J., additional, Mackinder, B. A., additional, Schatz, G. E., additional, Sonké, B., additional, Sosef, M. S. M., additional, Svenning, J.-C., additional, Wieringa, J. J., additional, and Couvreur, T. L. P., additional
- Published
- 2019
- Full Text
- View/download PDF
57. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
- Author
-
Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Karminov, V., Sist, P., Targhetta, N., Tchebakova, N., Steege, H., Johannsen, V., Iêda, A., Alvarez-Loayza, P., Thomas, R., Bastin, J. -F., Ibanez, T., Tikhonova, E., Umunay, P., Dayanandan, S., Imai, N., Derroire, G., Usoltsev, V. A., Valladares, F., van der Plas, F., Dourdain, A., Van Do, T., Abegg, M., Enquist, B., Vasquez Martinez, R., Verbeeck, H., Joly, C. A., Viana, H., Alves, L. F., Jagodzinski, A. M., Vieira, S., Ngugi, M., de Gasper, A. L., Keppel, G., Obiang, N. L. E., Neldner, V., von Gadow, K., Wang, H. -F., Watson, J., Westerlund, B., Wiser, S., Wittmann, F., Wortel, V., Khan, M. L., Kraxner, F., Jucker, T., Zagt, R., Birigazzi, L., Ortiz-Malavasi, E., Baker, T., Birnbaum, P., Bitariho, R., Kartawinata, K., Niklaus, P., Kennard, D., Laarmann, D., Boeckx, P., Bongers, F., Bouriaud, O., Kim, H. S., Silveira, M., Köhl, M., Brancalion, P. H. S., Brandl, S., Brearley, F. Q., Brienen, R., Lang, M., Broadbent, E., Bruelheide, H., Oleksyn, J., Bussotti, F., Searle, E., Nevenic, R., Kearsley, E., Schmid, B., Kitayama, K., Cazzolla Gatti, R., Zhang, C., Cesar, R., Cesljar, G., Chazdon, R., Chen, H. Y. H., Chisholm, C., Cienciala, E., Park, M., Ontikov, P., Clark, C. J., Eyre, T., Sonké, B., Clark, D., Sheil, D., DeVries, B., Fandohan, A. B., Fayle, T. M., Feldpausch, T. R., Seben, V., Parren, M., Kepfer-Rojas, S., Finér, L., Lewis, S., Fischer, M., Fletcher, C., Pan, Y., Almeyda Zambrano, A., Parada-Gutierrez, A., Fridman, J., Frizzera, L., Gamarra, J. G. P., Parthasarathy, N., Gianelle, D., Pfautsch, S., Glick, H. B., Harris, D., Serra-Diaz, J. M., Hector, A., Zhao, X., Schöngart, J., Hemp, A., Zhu, Z. -X., Paquette, A., Peri, P. L., Zawila-Niedzwiecki, T., Hengeveld, G., Herbohn, J., Herold, M., Hillers, A., Honorio, Coronado, E. N., Huber, M., Hui, C., Slik, F., Salas-Eljatib, C., Cho, H., Lu, H., Araujo-Murakami, A., Korjus, H., Lukina, N., Maitner, B., Shvidenko, A., Zo-Bi, I. C., Singh, J., Malhi, Y., Marcon, E., Marimon, B. S., Souza, A. F., Decuyper, M., Svenning, J. -C., Marimon-Junior, B. H., Marshall, A. R., Martin, E., Routh, D., Martynenko, O., Meave, J. A., Melo-Cruz, O., Coomes, D., Silva-Espejo, J., Ammer, C., Colletta, G., Stereńczak, K., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S. A., Mundhenk, P., Nava-Miranda, M. G., Antón-Fernández, C., Bałazy, R., Peay, K. G., Phillips, O., Neill, D., Cumming, J., Parfenova, E., Piedade, M. T., Piotto, D., Adou Yao, C. Y., Cornejo Valverde, F., Alvarez-Davila, E., Banki, O., Pitman, N. C. A., Polo, I., Poorter, L., Arroyo, L., Kenfack, D., Aymard, G., Poulsen, A. D., Poulsen, J. R., Pretzsch, H., Ramirez Arevalo, F., Barroso, J., Restrepo-Correa, Z., Rodeghiero, M., Corral-Rivas, J. J., Rolim, S., Jaroszewicz, B., Condit, R., Alberti, G., Jung, I., Avitabile, V., Roopsind, A., Bastian, M., Rovero, F., Rutishauser, E., Saikia, P., Saner, P., Schall, P., Schelhaas, M. -J., Djordjevic, I., Crim, P., Schepaschenko, D., Svoboda, M., Killeen, T., Scherer-Lorenzen, M., Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Karminov, V., Sist, P., Targhetta, N., Tchebakova, N., Steege, H., Johannsen, V., Iêda, A., Alvarez-Loayza, P., Thomas, R., Bastin, J. -F., Ibanez, T., Tikhonova, E., Umunay, P., Dayanandan, S., Imai, N., Derroire, G., Usoltsev, V. A., Valladares, F., van der Plas, F., Dourdain, A., Van Do, T., Abegg, M., Enquist, B., Vasquez Martinez, R., Verbeeck, H., Joly, C. A., Viana, H., Alves, L. F., Jagodzinski, A. M., Vieira, S., Ngugi, M., de Gasper, A. L., Keppel, G., Obiang, N. L. E., Neldner, V., von Gadow, K., Wang, H. -F., Watson, J., Westerlund, B., Wiser, S., Wittmann, F., Wortel, V., Khan, M. L., Kraxner, F., Jucker, T., Zagt, R., Birigazzi, L., Ortiz-Malavasi, E., Baker, T., Birnbaum, P., Bitariho, R., Kartawinata, K., Niklaus, P., Kennard, D., Laarmann, D., Boeckx, P., Bongers, F., Bouriaud, O., Kim, H. S., Silveira, M., Köhl, M., Brancalion, P. H. S., Brandl, S., Brearley, F. Q., Brienen, R., Lang, M., Broadbent, E., Bruelheide, H., Oleksyn, J., Bussotti, F., Searle, E., Nevenic, R., Kearsley, E., Schmid, B., Kitayama, K., Cazzolla Gatti, R., Zhang, C., Cesar, R., Cesljar, G., Chazdon, R., Chen, H. Y. H., Chisholm, C., Cienciala, E., Park, M., Ontikov, P., Clark, C. J., Eyre, T., Sonké, B., Clark, D., Sheil, D., DeVries, B., Fandohan, A. B., Fayle, T. M., Feldpausch, T. R., Seben, V., Parren, M., Kepfer-Rojas, S., Finér, L., Lewis, S., Fischer, M., Fletcher, C., Pan, Y., Almeyda Zambrano, A., Parada-Gutierrez, A., Fridman, J., Frizzera, L., Gamarra, J. G. P., Parthasarathy, N., Gianelle, D., Pfautsch, S., Glick, H. B., Harris, D., Serra-Diaz, J. M., Hector, A., Zhao, X., Schöngart, J., Hemp, A., Zhu, Z. -X., Paquette, A., Peri, P. L., Zawila-Niedzwiecki, T., Hengeveld, G., Herbohn, J., Herold, M., Hillers, A., Honorio, Coronado, E. N., Huber, M., Hui, C., Slik, F., Salas-Eljatib, C., Cho, H., Lu, H., Araujo-Murakami, A., Korjus, H., Lukina, N., Maitner, B., Shvidenko, A., Zo-Bi, I. C., Singh, J., Malhi, Y., Marcon, E., Marimon, B. S., Souza, A. F., Decuyper, M., Svenning, J. -C., Marimon-Junior, B. H., Marshall, A. R., Martin, E., Routh, D., Martynenko, O., Meave, J. A., Melo-Cruz, O., Coomes, D., Silva-Espejo, J., Ammer, C., Colletta, G., Stereńczak, K., Mendoza, C., Merow, C., Monteagudo Mendoza, A., Moreno, V., Mukul, S. A., Mundhenk, P., Nava-Miranda, M. G., Antón-Fernández, C., Bałazy, R., Peay, K. G., Phillips, O., Neill, D., Cumming, J., Parfenova, E., Piedade, M. T., Piotto, D., Adou Yao, C. Y., Cornejo Valverde, F., Alvarez-Davila, E., Banki, O., Pitman, N. C. A., Polo, I., Poorter, L., Arroyo, L., Kenfack, D., Aymard, G., Poulsen, A. D., Poulsen, J. R., Pretzsch, H., Ramirez Arevalo, F., Barroso, J., Restrepo-Correa, Z., Rodeghiero, M., Corral-Rivas, J. J., Rolim, S., Jaroszewicz, B., Condit, R., Alberti, G., Jung, I., Avitabile, V., Roopsind, A., Bastian, M., Rovero, F., Rutishauser, E., Saikia, P., Saner, P., Schall, P., Schelhaas, M. -J., Djordjevic, I., Crim, P., Schepaschenko, D., Svoboda, M., Killeen, T., and Scherer-Lorenzen, M.
- Abstract
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial sym, 33Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC, USA. 34Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda. 35Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium. 36Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania. 37Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil. 38Bavarian State Institute of Forestry, Freising, Germany. 39Manchester Metropolitan University, Manchester, UK. 40Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany. 41German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. 42Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy. 43Biological Institute, Tomsk State University, Tomsk, Russia. 44Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia. 45Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA. 46Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia. 47Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada. 48Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China. 49Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland. 50IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic. 51Global Change Research Institute CAS, Brno, Czech Republic. 52Nicholas School of the Environment, Duke University, Durham, NC, USA. 53Department of Biology, University of Missouri-St Loui
- Published
- 2019
58. sPlot:a new tool for global vegetation analyses
- Author
-
Bruelheide, H. (Helge), Dengler, J. (Juergen), Jimenez-Alfaro, B. (Borja), Purschke, O. (Oliver), Hennekens, S. M. (Stephan M.), Chytry, M. (Milan), Pillar, V. D. (Valerio D.), Jansen, F. (Florian), Kattge, J. (Jens), Sandel, B. (Brody), Aubin, I. (Isabelle), Biurrun, I. (Idoia), Field, R. (Richard), Haider, S. (Sylvia), Jandt, U. (Ute), Lenoir, J. (Jonathan), Peet, R. K. (Robert K.), Peyre, G. (Gwendolyn), Sabatini, F. M. (Francesco Maria), Schmidt, M. (Marco), Schrodt, F. (Franziska), Winter, M. (Marten), Acic, S. (Svetlana), Agrillo, E. (Emiliano), Alvarez, M. (Miguel), Ambarli, D. (Didem), Angelini, P. (Pierangela), Apostolova, I. (Iva), Khan, M. A. (Mohammed A. S. Arfin), Arnst, E. (Elise), Attorre, F. (Fabio), Baraloto, C. (Christopher), Beckmann, M. (Michael), Berg, C. (Christian), Bergeron, Y. (Yves), Bergmeier, E. (Erwin), Bjorkman, A. D. (Anne D.), Bondareva, V. (Viktoria), Borchardt, P. (Peter), Botta-Dukat, Z. (Zoltan), Boyle, B. (Brad), Breen, A. (Amy), Brisse, H. (Henry), Byun, C. (Chaeho), Cabido, M. R. (Marcelo R.), Casella, L. (Laura), Cayuela, L. (Luis), Cerny, T. (Tomas), Chepinoga, V. (Victor), Csiky, J. (Janos), Curran, M. (Michael), Custerevska, R. (Renata), Stevanovic, Z. D. (Zora Dajic), De Bie, E. (Els), de Ruffray, P. (Patrice), De Sanctis, M. (Michele), Dimopoulos, P. (Panayotis), Dressler, S. (Stefan), Ejrnaes, R. (Rasmus), El-Sheikh, M. A. (Mohamed Abd El-Rouf Mousa), Enquist, B. (Brian), Ewald, J. (Joerg), Fagundez, J. (Jaime), Finckh, M. (Manfred), Font, X. (Xavier), Forey, E. (Estelle), Fotiadis, G. (Georgios), Garcia-Mijangos, I. (Itziar), de Gasper, A. L. (Andre Luis), Golub, V. (Valentin), Gutierrez, A. G. (Alvaro G.), Hatim, M. Z. (Mohamed Z.), He, T. (Tianhua), Higuchi, P. (Pedro), Holubova, D. (Dana), Hoelzel, N. (Norbert), Homeier, J. (Juergen), Indreica, A. (Adrian), Gursoy, D. I. (Deniz Isik), Jansen, S. (Steven), Janssen, J. (John), Jedrzejek, B. (Birgit), Jirousek, M. (Martin), Juergens, N. (Norbert), Kacki, Z. (Zygmunt), Kavgaci, A. (Ali), Kearsley, E. (Elizabeth), Kessler, M. (Michael), Knollova, I. (Ilona), Kolomiychuk, V. (Vitaliy), Korolyuk, A. (Andrey), Kozhevnikova, M. (Maria), Kozub, L. (Lukasz), Krstonosic, D. (Daniel), Kuehl, H. (Hjalmar), Kuehn, I. (Ingolf), Kuzemko, A. (Anna), Kuzmic, F. (Filip), Landucci, F. (Flavia), Lee, M. T. (Michael T.), Levesley, A. (Aurora), Li, C.-F. (Ching-Feng), Liu, H. (Hongyan), Lopez-Gonzalez, G. (Gabriela), Lysenko, T. (Tatiana), Macanovic, A. (Armin), Mahdavi, P. (Parastoo), Manning, P. (Peter), Marceno, C. (Corrado), Martynenko, V. (Vassiliy), Mencuccini, M. (Maurizio), Minden, V. (Vanessa), Moeslund, J. E. (Jesper Erenskjold), Moretti, M. (Marco), Mueller, J. V. (Jonas V.), Munzinger, J. (Jerome), Niinemets, U. (Ulo), Nobis, M. (Marcin), Noroozi, J. (Jalil), Nowak, A. (Arkadiusz), Onyshchenko, V. (Viktor), Overbeck, G. E. (Gerhard E.), Ozinga, W. A. (Wim A.), Pauchard, A. (Anibal), Pedashenko, H. (Hristo), Penuelas, J. (Josep), Perez-Haase, A. (Aaron), Peterka, T. (Tomas), Petrik, P. (Petr), Phillips, O. L. (Oliver L.), Prokhorov, V. (Vadim), Rasomavicius, V. (Valerijus), Revermann, R. (Rasmus), Rodwell, J. (John), Ruprecht, E. (Eszter), Rusina, S. (Solvita), Samimi, C. (Cyrus), Schaminee, J. H. (Joop H. J.), Schmiedel, U. (Ute), Sibik, J. (Jozef), Silc, U. (Urban), Skvorc, Z. (Zeljko), Smyth, A. (Anita), Sop, T. (Tenekwetche), Sopotlieva, D. (Desislava), Sparrow, B. (Ben), Stancic, Z. (Zvjezdana), Svenning, J.-C. (Jens-Christian), Swacha, G. (Grzegorz), Tang, Z. (Zhiyao), Tsiripidis, I. (Ioannis), Turtureanu, P. D. (Pavel Dan), Ugurlu, E. (Emin), Uogintas, D. (Domas), Valachovic, M. (Milan), Vanselow, K. A. (Kim Andre), Vashenyak, Y. (Yulia), Vassilev, K. (Kiril), Velez-Martin, E. (Eduardo), Venanzoni, R. (Roberto), Vibrans, A. C. (Alexander Christian), Violle, C. (Cyrille), Virtanen, R. (Risto), von Wehrden, H. (Henrik), Wagner, V. (Viktoria), Walker, D. A. (Donald A.), Wana, D. (Desalegn), Weiher, E. (Evan), Wesche, K. (Karsten), Whitfeld, T. (Timothy), Willner, W. (Wolfgang), Wiser, S. (Susan), Wohlgemuth, T. (Thomas), Yamalov, S. (Sergey), Zizka, G. (Georg), Zverev, A. (Andrei), Bruelheide, H. (Helge), Dengler, J. (Juergen), Jimenez-Alfaro, B. (Borja), Purschke, O. (Oliver), Hennekens, S. M. (Stephan M.), Chytry, M. (Milan), Pillar, V. D. (Valerio D.), Jansen, F. (Florian), Kattge, J. (Jens), Sandel, B. (Brody), Aubin, I. (Isabelle), Biurrun, I. (Idoia), Field, R. (Richard), Haider, S. (Sylvia), Jandt, U. (Ute), Lenoir, J. (Jonathan), Peet, R. K. (Robert K.), Peyre, G. (Gwendolyn), Sabatini, F. M. (Francesco Maria), Schmidt, M. (Marco), Schrodt, F. (Franziska), Winter, M. (Marten), Acic, S. (Svetlana), Agrillo, E. (Emiliano), Alvarez, M. (Miguel), Ambarli, D. (Didem), Angelini, P. (Pierangela), Apostolova, I. (Iva), Khan, M. A. (Mohammed A. S. Arfin), Arnst, E. (Elise), Attorre, F. (Fabio), Baraloto, C. (Christopher), Beckmann, M. (Michael), Berg, C. (Christian), Bergeron, Y. (Yves), Bergmeier, E. (Erwin), Bjorkman, A. D. (Anne D.), Bondareva, V. (Viktoria), Borchardt, P. (Peter), Botta-Dukat, Z. (Zoltan), Boyle, B. (Brad), Breen, A. (Amy), Brisse, H. (Henry), Byun, C. (Chaeho), Cabido, M. R. (Marcelo R.), Casella, L. (Laura), Cayuela, L. (Luis), Cerny, T. (Tomas), Chepinoga, V. (Victor), Csiky, J. (Janos), Curran, M. (Michael), Custerevska, R. (Renata), Stevanovic, Z. D. (Zora Dajic), De Bie, E. (Els), de Ruffray, P. (Patrice), De Sanctis, M. (Michele), Dimopoulos, P. (Panayotis), Dressler, S. (Stefan), Ejrnaes, R. (Rasmus), El-Sheikh, M. A. (Mohamed Abd El-Rouf Mousa), Enquist, B. (Brian), Ewald, J. (Joerg), Fagundez, J. (Jaime), Finckh, M. (Manfred), Font, X. (Xavier), Forey, E. (Estelle), Fotiadis, G. (Georgios), Garcia-Mijangos, I. (Itziar), de Gasper, A. L. (Andre Luis), Golub, V. (Valentin), Gutierrez, A. G. (Alvaro G.), Hatim, M. Z. (Mohamed Z.), He, T. (Tianhua), Higuchi, P. (Pedro), Holubova, D. (Dana), Hoelzel, N. (Norbert), Homeier, J. (Juergen), Indreica, A. (Adrian), Gursoy, D. I. (Deniz Isik), Jansen, S. (Steven), Janssen, J. (John), Jedrzejek, B. (Birgit), Jirousek, M. (Martin), Juergens, N. (Norbert), Kacki, Z. (Zygmunt), Kavgaci, A. (Ali), Kearsley, E. (Elizabeth), Kessler, M. (Michael), Knollova, I. (Ilona), Kolomiychuk, V. (Vitaliy), Korolyuk, A. (Andrey), Kozhevnikova, M. (Maria), Kozub, L. (Lukasz), Krstonosic, D. (Daniel), Kuehl, H. (Hjalmar), Kuehn, I. (Ingolf), Kuzemko, A. (Anna), Kuzmic, F. (Filip), Landucci, F. (Flavia), Lee, M. T. (Michael T.), Levesley, A. (Aurora), Li, C.-F. (Ching-Feng), Liu, H. (Hongyan), Lopez-Gonzalez, G. (Gabriela), Lysenko, T. (Tatiana), Macanovic, A. (Armin), Mahdavi, P. (Parastoo), Manning, P. (Peter), Marceno, C. (Corrado), Martynenko, V. (Vassiliy), Mencuccini, M. (Maurizio), Minden, V. (Vanessa), Moeslund, J. E. (Jesper Erenskjold), Moretti, M. (Marco), Mueller, J. V. (Jonas V.), Munzinger, J. (Jerome), Niinemets, U. (Ulo), Nobis, M. (Marcin), Noroozi, J. (Jalil), Nowak, A. (Arkadiusz), Onyshchenko, V. (Viktor), Overbeck, G. E. (Gerhard E.), Ozinga, W. A. (Wim A.), Pauchard, A. (Anibal), Pedashenko, H. (Hristo), Penuelas, J. (Josep), Perez-Haase, A. (Aaron), Peterka, T. (Tomas), Petrik, P. (Petr), Phillips, O. L. (Oliver L.), Prokhorov, V. (Vadim), Rasomavicius, V. (Valerijus), Revermann, R. (Rasmus), Rodwell, J. (John), Ruprecht, E. (Eszter), Rusina, S. (Solvita), Samimi, C. (Cyrus), Schaminee, J. H. (Joop H. J.), Schmiedel, U. (Ute), Sibik, J. (Jozef), Silc, U. (Urban), Skvorc, Z. (Zeljko), Smyth, A. (Anita), Sop, T. (Tenekwetche), Sopotlieva, D. (Desislava), Sparrow, B. (Ben), Stancic, Z. (Zvjezdana), Svenning, J.-C. (Jens-Christian), Swacha, G. (Grzegorz), Tang, Z. (Zhiyao), Tsiripidis, I. (Ioannis), Turtureanu, P. D. (Pavel Dan), Ugurlu, E. (Emin), Uogintas, D. (Domas), Valachovic, M. (Milan), Vanselow, K. A. (Kim Andre), Vashenyak, Y. (Yulia), Vassilev, K. (Kiril), Velez-Martin, E. (Eduardo), Venanzoni, R. (Roberto), Vibrans, A. C. (Alexander Christian), Violle, C. (Cyrille), Virtanen, R. (Risto), von Wehrden, H. (Henrik), Wagner, V. (Viktoria), Walker, D. A. (Donald A.), Wana, D. (Desalegn), Weiher, E. (Evan), Wesche, K. (Karsten), Whitfeld, T. (Timothy), Willner, W. (Wolfgang), Wiser, S. (Susan), Wohlgemuth, T. (Thomas), Yamalov, S. (Sergey), Zizka, G. (Georg), and Zverev, A. (Andrei)
- Abstract
Aims: Vegetation‐plot records provide information on the presence and cover or abundance of plants co‐occurring in the same community. Vegetation‐plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community‐weighted means and variances of traits using gap‐filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community‐weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale.
- Published
- 2019
59. The dimensionality of stability depends on disturbance type
- Author
-
Radchuk, V., De Laender, F., Cabral, J.S., Boulangeat, I., Crawford, M., Bohn, Friedrich, De Raedt, J., Scherer, C., Svenning, J.-C., Thonicke, K., Schurr, F.M., Grimm, Volker, Kramer‐Schadt, S., Radchuk, V., De Laender, F., Cabral, J.S., Boulangeat, I., Crawford, M., Bohn, Friedrich, De Raedt, J., Scherer, C., Svenning, J.-C., Thonicke, K., Schurr, F.M., Grimm, Volker, and Kramer‐Schadt, S.
- Abstract
Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species‐specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi‐dimensional assessments are still to be recommended.
- Published
- 2019
60. Rewilding complex ecosystems
- Author
-
Perino, A., Pereira, H.M., Navarro, L.M., Fernández, N., Bullock, J.M., Ceaușu, S., Cortés-Avizanda, A., van Klink, R., Kuemmerle, T., Lomba, A., Pe'er, Guy, Plieninger, T., Rey Benayas, J.M., Sandom, C.J., Svenning, J.-C., Wheeler, H.C., Perino, A., Pereira, H.M., Navarro, L.M., Fernández, N., Bullock, J.M., Ceaușu, S., Cortés-Avizanda, A., van Klink, R., Kuemmerle, T., Lomba, A., Pe'er, Guy, Plieninger, T., Rey Benayas, J.M., Sandom, C.J., Svenning, J.-C., and Wheeler, H.C.
- Abstract
BACKGROUNDRapid global change is creating fundamental challenges for the persistence of natural ecosystems and their biodiversity. Conservation efforts aimed at the protection of landscapes have had mixed success, and there is an increasing awareness that the long-term protection of biodiversity requires inclusion of flexible restoration along with protection. Rewilding is one such approach that has been both promoted and criticized in recent years. Proponents emphasize the potential of rewilding to tap opportunities for restoration while creating benefits for both ecosystems and societies. Critics discuss the lack of a consistent definition of rewilding and insufficient knowledge about its potential outcomes. Other criticisms arise from the mistaken notion that rewilding actions are planned without considering societal acceptability and benefits. Here, we present a framework for rewilding actions that can serve as a guideline for researchers and managers. The framework is applicable to a variety of rewilding approaches, ranging from passive to trophic rewilding, and aims to promote beneficial interactions between society and nature.ADVANCESThe concept of rewilding has evolved from its initial emphasis on protecting large, connected areas for large carnivore conservation to a process-oriented, dynamic approach. On the basis of concepts from resilience and complexity theory of social-ecological systems, we identify trophic complexity, stochastic disturbances, and dispersal as three critical components of natural ecosystem dynamics. We propose that the restoration of these processes, and their interactions, can lead to increased self-sustainability of ecosystems and should be at the core of rewilding actions. Building on these concepts, we develop a framework to design and evaluate rewilding plans. Alongside ecological restoration goals, our framework emphasizes people’s perceptions and experiences of wildness and the regulating and material contributions from restori
- Published
- 2019
61. Recent global changes have decoupled species richness from specialization patterns in North American birds
- Author
-
Mimet, Anne, Buitenwerf, R., Sandel, B., Svenning, J.-C., Normand, S., Mimet, Anne, Buitenwerf, R., Sandel, B., Svenning, J.-C., and Normand, S.
- Abstract
AimTheory suggests that increasing productivity and climate stability towards the tropics favours specialization, thus contributing to the latitudinal richness gradient. A positive relationship between species richness and specialization should therefore emerge as a fundamental biogeographical pattern. However, land‐use and climate changes disproportionally increase the local extirpation risk for specialists, potentially weakening the relationship between richness and specialization. Here, we quantify empirically the richness–specialization prediction and test how 50 years of climate and land‐use change has affected the richness–specialization relationship. LocationUSA. Time period1966–2015. Major taxa studiedBirds. MethodsWe used the North American Breeding Bird Survey to quantify bird community richness and specialization to habitat and climate. We (a) quantify temporal change in the slope of the richness–specialization relationship, using a generalized mixed model; (b) assess how this change translates spatially, using generalized additive models; and (c) attribute spatio‐temporal change in the richness–specialization relationship to land use, climate and topographic drivers. ResultsWe found evidence for a positive but weak richness–specialization relationship in bird communities that greatly weakened over time. Given that specialization was not the main driver of richness, this relationship did not translate spatially into a linear spatial covariation between richness and specialization. Instead, the spatial covariation in richness and specialization followed a unimodal pattern, the peak of which shifted towards less specialized communities over time. These temporal changes were associated with precipitation change, decreasing temperature stability and land use. Main conclusionsRecent climate and land‐use changes have induced two contrasting types of community responses. In human‐dominated areas, the decoupling of richness and specialization drove a gen
- Published
- 2019
62. Alpha diversity of vascular plants in European forests
- Author
-
Vecera, M., Divíšek, Jan, Lenoir, J., Jiménez Alfaro, Borja, Biurrun, Idoia, Knollová, I., Agrillo, E., Campos, J. A., Čarni, A., Crespo Jiménez, G., Ćuk, M., Dimopoulos, P., Ewald, Jörg, Fernández-González, Federico, Gégout, Jean-Claude, Indreica, A., Jandt, U., Jansen, F., Kącki, Z., Rašomavičius, V., Řezníčková, M., Rodwell, J.S., Schaminée, J.H.J., Šilc, U., Svenning, J.-C., Swacha, G., Vassilev, K., Venanzoni, R., Wohlgemuth, T., Vecera, M., Divíšek, Jan, Lenoir, J., Jiménez Alfaro, Borja, Biurrun, Idoia, Knollová, I., Agrillo, E., Campos, J. A., Čarni, A., Crespo Jiménez, G., Ćuk, M., Dimopoulos, P., Ewald, Jörg, Fernández-González, Federico, Gégout, Jean-Claude, Indreica, A., Jandt, U., Jansen, F., Kącki, Z., Rašomavičius, V., Řezníčková, M., Rodwell, J.S., Schaminée, J.H.J., Šilc, U., Svenning, J.-C., Swacha, G., Vassilev, K., Venanzoni, R., and Wohlgemuth, T.
- Abstract
Aim The former continental‐scale studies modelled coarse‐grained plant species‐richness patterns (gamma diversity). Here we aim to refine this information for European forests by (a) modelling the number of vascular plant species that co‐occur in local communities (alpha diversity) within spatial units of 400 m2; and (b) assessing the factors likely determining the observed spatial patterns in alpha diversity. Location Europe roughly within 12°W–30°E and 35–60°N. Taxon Vascular plants. Methods The numbers of co‐occurring vascular plant species were counted in 73,134 georeferenced vegetation plots. Each plot was classified by an expert system into deciduous broadleaf, coniferous or sclerophyllous forest. Random Forest models were used to map and explain spatial patterns in alpha diversity for each forest type separately using 19 environmental, land‐use and historical variables. Results Our models explained from 51.0% to 70.9% of the variation in forest alpha diversity. The modelled alpha‐diversity pattern was dominated by a marked gradient from species‐poor north‐western to species‐rich south‐eastern Europe. The most prominent richness hotspots were identified in the Calcareous Alps and adjacent north‐western Dinarides, the Carpathian foothills in Romania and the Western Carpathians in Slovakia. Energy‐related factors, bedrock types and terrain ruggedness were identified as the main variables underlying the observed richness patterns. Alpha diversity increases especially with temperature seasonality in deciduous broadleaf forests, on limestone bedrock in coniferous forests and in areas with low annual actual evapotranspiration in sclerophyllous forests. Main conclusions We provide the first predictive maps and analyses of environmental factors driving the alpha diversity of vascular plants across European forests. Such information is important for the general understanding of European biodiversity. This study also demonstrates a high potential of vegetation‐plot data
- Published
- 2019
63. sPlot – A new tool for global vegetation analyses
- Author
-
Bruelheide, H., Dengler, J., Jiménez Alfaro, Borja, Purschke, Oliver, Hennekens, S.M., Chytrý, M., Pillar, V.D., Jansen, F., Kattge, Jens, Sandel, B., Aubin, I., Beckmann, M., Berg, Christian, Fagúndez, J., Levesley, A., Bergeron, Y., Bergmeier, E., De Bie, E., Nobis, M., Kuzemko, A., Kącki, Z., Marcenò, Corrado, Byun, C., Işık Gürsoy, D., Li, C.-F., Cabido, M.R., Hatim, M.Z., Moeslund, J.E., Casella, L., Cayuela, Luis, Finckh, Manfred, Petřík, P., Martynenko, V., Kozhevnikova, M., Liu, H., Kavgacı, A., Moretti, M., de Ruffray, P., Jansen, S., Pauchard, A., De Sanctis, M., Dimopoulos, P., He, T., Schmiedel, U., Küzmič, F., Müller, J.V., Kozub, Ł., Pedashenko, H., Lopez-Gonzalez, G., Kearsley, E., Rodwell, J., Font, X., Forey, E., Janssen, J., Biurrun, Idoia, Peñuelas, Josep, Landucci, F., Ruprecht, E., Munzinger, J., Krstonošić, D., Smyth, A., Higuchi, P., Lysenko, T., Kessler, M., Rūsiņa, S., Mencuccini, Maurizio, Sop, T., Pérez-Haase, A., Lee, M.T., Tsiripidis, I., Jedrzejek, B., Niinemets, Ü., Mahdavi, P., Sopotlieva, D., Turtureanu, P. D., Samimi, C., Minden, V., Vélez-Martin, E., Knollová, I., Peterka, T., Noroozi, J., Uğurlu, E., Venanzoni, R., Sparrow, B., Walker, D.A., Kühl, H., Schaminée, J.H.J., Phillips, Olivier L., Peet, R.K., Wana, D., Uogintas, D., Wiser, S., Manning, Peter, Stančić, Z., Arnst, E., Wohlgemuth, T., Vibrans, A.C., Schmidt, M., Nowak, A., Valachovič, M., Field, R., Onyshchenko, V., Svenning, J.-C., Álvarez, M., Overbeck, G.E., Ozinga, Win A., Šibík, J., Breen, A., Schrodt, F., Weiher, E., Haider, S., Violle, Cyrille, Ambarlı, D., Prokhorov, V., Vanselow, K. A., Bjorkman, Anne D., Rašomavičius, V., Revermann, R., Swacha, G., Dajić-Stevanović, Zora, Yamalov, S., Angelini, Pierangela, Wesche, K., Bondareva, V., Jandt, U., Virtanen, R., Černý, T., Šilc, U., Škvorc, Ž., Vashenyak, Y., Winter, M., Borchardt, P., Zizka, G., Chepinoga, V., Apostolova, I., Whitfeld, T., Dressler, S., Tang, Z., Lenoir, J., von Wehrden, H., Csiky, J., Aćić, Svetlana, Ejrnæs, R., Botta-Dukát, Z., Zverev, A., Fotiadis, Georgios, Vassilev, K., Arfin Khan, Mohammed A. S., Peyre, G., El-Sheikh, M.A.E.-R.M., García-Mijangos, I., Curran, Michael, Agrillo, E., Holubová, D., Wagner, V., Boyle, B., Attorre, Fabio, de Gasper, A.L., Hölzel, N., Enquist, B., Jiroušek, M., Willner, W., Custerevska, Renata, Brisse, H., Homeier, J., Jürgens, N., Golub, V., Kolomiychuk, V., Sabatini, Francesco Maria, Ewald, J., Macanović, A., Korolyuk, A., Indreica, A., Kühn, Ingolf, Baraloto, C., Gutierrez, A.G., Bruelheide, H., Dengler, J., Jiménez Alfaro, Borja, Purschke, Oliver, Hennekens, S.M., Chytrý, M., Pillar, V.D., Jansen, F., Kattge, Jens, Sandel, B., Aubin, I., Beckmann, M., Berg, Christian, Fagúndez, J., Levesley, A., Bergeron, Y., Bergmeier, E., De Bie, E., Nobis, M., Kuzemko, A., Kącki, Z., Marcenò, Corrado, Byun, C., Işık Gürsoy, D., Li, C.-F., Cabido, M.R., Hatim, M.Z., Moeslund, J.E., Casella, L., Cayuela, Luis, Finckh, Manfred, Petřík, P., Martynenko, V., Kozhevnikova, M., Liu, H., Kavgacı, A., Moretti, M., de Ruffray, P., Jansen, S., Pauchard, A., De Sanctis, M., Dimopoulos, P., He, T., Schmiedel, U., Küzmič, F., Müller, J.V., Kozub, Ł., Pedashenko, H., Lopez-Gonzalez, G., Kearsley, E., Rodwell, J., Font, X., Forey, E., Janssen, J., Biurrun, Idoia, Peñuelas, Josep, Landucci, F., Ruprecht, E., Munzinger, J., Krstonošić, D., Smyth, A., Higuchi, P., Lysenko, T., Kessler, M., Rūsiņa, S., Mencuccini, Maurizio, Sop, T., Pérez-Haase, A., Lee, M.T., Tsiripidis, I., Jedrzejek, B., Niinemets, Ü., Mahdavi, P., Sopotlieva, D., Turtureanu, P. D., Samimi, C., Minden, V., Vélez-Martin, E., Knollová, I., Peterka, T., Noroozi, J., Uğurlu, E., Venanzoni, R., Sparrow, B., Walker, D.A., Kühl, H., Schaminée, J.H.J., Phillips, Olivier L., Peet, R.K., Wana, D., Uogintas, D., Wiser, S., Manning, Peter, Stančić, Z., Arnst, E., Wohlgemuth, T., Vibrans, A.C., Schmidt, M., Nowak, A., Valachovič, M., Field, R., Onyshchenko, V., Svenning, J.-C., Álvarez, M., Overbeck, G.E., Ozinga, Win A., Šibík, J., Breen, A., Schrodt, F., Weiher, E., Haider, S., Violle, Cyrille, Ambarlı, D., Prokhorov, V., Vanselow, K. A., Bjorkman, Anne D., Rašomavičius, V., Revermann, R., Swacha, G., Dajić-Stevanović, Zora, Yamalov, S., Angelini, Pierangela, Wesche, K., Bondareva, V., Jandt, U., Virtanen, R., Černý, T., Šilc, U., Škvorc, Ž., Vashenyak, Y., Winter, M., Borchardt, P., Zizka, G., Chepinoga, V., Apostolova, I., Whitfeld, T., Dressler, S., Tang, Z., Lenoir, J., von Wehrden, H., Csiky, J., Aćić, Svetlana, Ejrnæs, R., Botta-Dukát, Z., Zverev, A., Fotiadis, Georgios, Vassilev, K., Arfin Khan, Mohammed A. S., Peyre, G., El-Sheikh, M.A.E.-R.M., García-Mijangos, I., Curran, Michael, Agrillo, E., Holubová, D., Wagner, V., Boyle, B., Attorre, Fabio, de Gasper, A.L., Hölzel, N., Enquist, B., Jiroušek, M., Willner, W., Custerevska, Renata, Brisse, H., Homeier, J., Jürgens, N., Golub, V., Kolomiychuk, V., Sabatini, Francesco Maria, Ewald, J., Macanović, A., Korolyuk, A., Indreica, A., Kühn, Ingolf, Baraloto, C., and Gutierrez, A.G.
- Abstract
Aims: Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results: sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions: The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale.
- Published
- 2019
64. Soil fertility and flood regime are correlated with phylogenetic structure of Amazonian palm communities
- Author
-
Muscarella, R., Bacon, C. D., Faurby, Søren, Antonelli, A., Munch Kristiansen, Søren, Svenning, J-C, Balslev, H., Muscarella, R., Bacon, C. D., Faurby, Søren, Antonelli, A., Munch Kristiansen, Søren, Svenning, J-C, and Balslev, H.
- Published
- 2018
65. Global trait:environment relationships of plant communities
- Author
-
Bruelheide, H. (Helge), Dengler, J. (Juergen), Purschke, O. (Oliver), Lenoir, J. (Jonathan), Jimenez-Alfaro, B. (Borja), Hennekens, S. M. (Stephan M.), Botta-Dukat, Z. (Zoltan), Chytry, M. (Milan), Field, R. (Richard), Jansen, F. (Florian), Kattge, J. (Jens), Pillar, V. D. (Valerio D.), Schrodt, F. (Franziska), Mahecha, M. D. (Miguel D.), Peet, R. K. (Robert K.), Sandel, B. (Brody), van Bodegom, P. (Peter), Altman, J. (Jan), Alvarez-Davila, E. (Esteban), Khan, M. A. (Mohammed A. S. Arfin), Attorre, F. (Fabio), Aubin, I. (Isabelle), Baraloto, C. (Christopher), Barroso, J. G. (Jorcely G.), Bauters, M. (Marijn), Bergmeier, E. (Erwin), Biurrun, I. (Idoia), Bjorkman, A. D. (Anne D.), Blonder, B. (Benjamin), Carni, A. (Andraz), Cayuela, L. (Luis), Cerny, T. (Tomas), Cornelissen, J. H. (J. Hans C.), Craven, D. (Dylan), Dainese, M. (Matteo), Derroire, G. (Geraldine), De Sanctis, M. (Michele), Diaz, S. (Sandra), Dolezal, J. (Jiri), Farfan-Rios, W. (William), Feldpausch, T. R. (Ted R.), Fenton, N. J. (Nicole J.), Garnier, E. (Eric), Guerin, G. R. (Greg R.), Gutierrez, A. G. (Alvaro G.), Haider, S. (Sylvia), Hattab, T. (Tarek), Henry, G. (Greg), Herault, B. (Bruno), Higuchi, P. (Pedro), Hoelzel, N. (Norbert), Homeier, J. (Juergen), Jentsch, A. (Anke), Juergens, N. (Norbert), Kacki, Z. (Zygmunt), Karger, D. N. (Dirk N.), Kessler, M. (Michael), Kleyer, M. (Michael), Knollova, I. (Ilona), Korolyuk, A. Y. (Andrey Y.), Kuehn, I. (Ingolf), Laughlin, D. C. (Daniel C.), Lens, F. (Frederic), Loos, J. (Jacqueline), Louault, F. (Frederique), Lyubenova, M. I. (Mariyana, I), Malhi, Y. (Yadvinder), Marceno, C. (Corrado), Mencuccini, M. (Maurizio), Mueller, J. V. (Jonas, V), Munzinger, J. (Jerome), Myers-Smith, I. H. (Isla H.), Neill, D. A. (David A.), Niinemets, U. (Ulo), Orwin, K. H. (Kate H.), Ozinga, W. A. (Wim A.), Penuelas, J. (Josep), Perez-Haase, A. (Aaron), Petrik, P. (Petr), Phillips, O. L. (Oliver L.), Partel, M. (Meelis), Reich, P. B. (Peter B.), Roemermann, C. (Christine), Rodrigues, A. V. (Arthur, V), Sabatini, F. M. (Francesco Maria), Sardans, J. (Jordi), Schmidt, M. (Marco), Seidler, G. (Gunnar), Silva Espejo, J. E. (Javier Eduardo), Silveira, M. (Marcos), Smyth, A. (Anita), Sporbert, M. (Maria), Svenning, J.-C. (Jens-Christian), Tang, Z. (Zhiyao), Thomas, R. (Raquel), Tsiripidis, I. (Ioannis), Vassilev, K. (Kiril), Violle, C. (Cyrille), Virtanen, R. (Risto), Weiher, E. (Evan), Welk, E. (Erik), Wesche, K. (Karsten), Winter, M. (Marten), Wirth, C. (Christian), Jandt, U. (Ute), Bruelheide, H. (Helge), Dengler, J. (Juergen), Purschke, O. (Oliver), Lenoir, J. (Jonathan), Jimenez-Alfaro, B. (Borja), Hennekens, S. M. (Stephan M.), Botta-Dukat, Z. (Zoltan), Chytry, M. (Milan), Field, R. (Richard), Jansen, F. (Florian), Kattge, J. (Jens), Pillar, V. D. (Valerio D.), Schrodt, F. (Franziska), Mahecha, M. D. (Miguel D.), Peet, R. K. (Robert K.), Sandel, B. (Brody), van Bodegom, P. (Peter), Altman, J. (Jan), Alvarez-Davila, E. (Esteban), Khan, M. A. (Mohammed A. S. Arfin), Attorre, F. (Fabio), Aubin, I. (Isabelle), Baraloto, C. (Christopher), Barroso, J. G. (Jorcely G.), Bauters, M. (Marijn), Bergmeier, E. (Erwin), Biurrun, I. (Idoia), Bjorkman, A. D. (Anne D.), Blonder, B. (Benjamin), Carni, A. (Andraz), Cayuela, L. (Luis), Cerny, T. (Tomas), Cornelissen, J. H. (J. Hans C.), Craven, D. (Dylan), Dainese, M. (Matteo), Derroire, G. (Geraldine), De Sanctis, M. (Michele), Diaz, S. (Sandra), Dolezal, J. (Jiri), Farfan-Rios, W. (William), Feldpausch, T. R. (Ted R.), Fenton, N. J. (Nicole J.), Garnier, E. (Eric), Guerin, G. R. (Greg R.), Gutierrez, A. G. (Alvaro G.), Haider, S. (Sylvia), Hattab, T. (Tarek), Henry, G. (Greg), Herault, B. (Bruno), Higuchi, P. (Pedro), Hoelzel, N. (Norbert), Homeier, J. (Juergen), Jentsch, A. (Anke), Juergens, N. (Norbert), Kacki, Z. (Zygmunt), Karger, D. N. (Dirk N.), Kessler, M. (Michael), Kleyer, M. (Michael), Knollova, I. (Ilona), Korolyuk, A. Y. (Andrey Y.), Kuehn, I. (Ingolf), Laughlin, D. C. (Daniel C.), Lens, F. (Frederic), Loos, J. (Jacqueline), Louault, F. (Frederique), Lyubenova, M. I. (Mariyana, I), Malhi, Y. (Yadvinder), Marceno, C. (Corrado), Mencuccini, M. (Maurizio), Mueller, J. V. (Jonas, V), Munzinger, J. (Jerome), Myers-Smith, I. H. (Isla H.), Neill, D. A. (David A.), Niinemets, U. (Ulo), Orwin, K. H. (Kate H.), Ozinga, W. A. (Wim A.), Penuelas, J. (Josep), Perez-Haase, A. (Aaron), Petrik, P. (Petr), Phillips, O. L. (Oliver L.), Partel, M. (Meelis), Reich, P. B. (Peter B.), Roemermann, C. (Christine), Rodrigues, A. V. (Arthur, V), Sabatini, F. M. (Francesco Maria), Sardans, J. (Jordi), Schmidt, M. (Marco), Seidler, G. (Gunnar), Silva Espejo, J. E. (Javier Eduardo), Silveira, M. (Marcos), Smyth, A. (Anita), Sporbert, M. (Maria), Svenning, J.-C. (Jens-Christian), Tang, Z. (Zhiyao), Thomas, R. (Raquel), Tsiripidis, I. (Ioannis), Vassilev, K. (Kiril), Violle, C. (Cyrille), Virtanen, R. (Risto), Weiher, E. (Evan), Welk, E. (Erik), Wesche, K. (Karsten), Winter, M. (Marten), Wirth, C. (Christian), and Jandt, U. (Ute)
- Abstract
Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.
- Published
- 2018
66. Global trait–environment relationships of plant communities
- Author
-
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez‐Alfaro, B., Hennekens, S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F., Kattge, J., Pillar, V.D., Schrodt, F., Mahecha, M.D., Peet, R.K., Sandel, B., van Bodegom, P., Altman, J., Alvarez-Dávila, E., Khan, M.A.S.A., Attorre, F., Aubin, I., Baraloto, C., Barroso, J.G., Bauters, M., Bergmeier, E., Biurrun, I., Bjorkman, A.D., Blonder, B., Čarni, A., Cayuela, L., Černý, T., Cornelissen, J.H.C., Craven, Dylan, Dainese, M., Derroire, G., De Sanctis, M., Díaz, S., Doležal, J., Farfan-Rios, W., Feldpausch, T.R., Fenton, N.J., Garnier, E., Guerin, G.R., Gutiérrez, A.G., Haider, S., Hattab, T., Henry, G., Hérault, B., Higuchi, P., Hölzel, N., Homeier, J., Jentsch, A., Jürgens, N., Kącki, Z., Karger, D.N., Kessler, M., Kleyer, M., Knollová, I., Korolyuk, A.Y., Kühn, Ingolf, Laughlin, D.C., Lens, F., Loos, J., Louault, F., Lyubenova, M.I., Malhi, Y., Marcenò, C., Mencuccini, M., Müller, J.V., Munzinger, J., Myers-Smith, I.H., Neill, D.A., Niinemets, Ü., Orwin, K.H., Ozinga, W.A., Penuelas, J., Pérez-Haase, A., Petřík, P., Phillips, O.L., Pärtel, M., Reich, P.B., Römermann, C., Rodrigues, A.V., Sabatini, F.M., Sardans, J., Schmidt, M., Seidler, G., Silva Espejo, J.E., Silveira, M., Smyth, A., Sporbert, M., Svenning, J.-C., Tang, Z., Thomas, R., Tsiripidis, I., Vassilev, K., Violle, C., Virtanen, Risto, Weiher, E., Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez‐Alfaro, B., Hennekens, S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F., Kattge, J., Pillar, V.D., Schrodt, F., Mahecha, M.D., Peet, R.K., Sandel, B., van Bodegom, P., Altman, J., Alvarez-Dávila, E., Khan, M.A.S.A., Attorre, F., Aubin, I., Baraloto, C., Barroso, J.G., Bauters, M., Bergmeier, E., Biurrun, I., Bjorkman, A.D., Blonder, B., Čarni, A., Cayuela, L., Černý, T., Cornelissen, J.H.C., Craven, Dylan, Dainese, M., Derroire, G., De Sanctis, M., Díaz, S., Doležal, J., Farfan-Rios, W., Feldpausch, T.R., Fenton, N.J., Garnier, E., Guerin, G.R., Gutiérrez, A.G., Haider, S., Hattab, T., Henry, G., Hérault, B., Higuchi, P., Hölzel, N., Homeier, J., Jentsch, A., Jürgens, N., Kącki, Z., Karger, D.N., Kessler, M., Kleyer, M., Knollová, I., Korolyuk, A.Y., Kühn, Ingolf, Laughlin, D.C., Lens, F., Loos, J., Louault, F., Lyubenova, M.I., Malhi, Y., Marcenò, C., Mencuccini, M., Müller, J.V., Munzinger, J., Myers-Smith, I.H., Neill, D.A., Niinemets, Ü., Orwin, K.H., Ozinga, W.A., Penuelas, J., Pérez-Haase, A., Petřík, P., Phillips, O.L., Pärtel, M., Reich, P.B., Römermann, C., Rodrigues, A.V., Sabatini, F.M., Sardans, J., Schmidt, M., Seidler, G., Silva Espejo, J.E., Silveira, M., Smyth, A., Sporbert, M., Svenning, J.-C., Tang, Z., Thomas, R., Tsiripidis, I., Vassilev, K., Violle, C., Virtanen, Risto, and Weiher, E.
- Abstract
Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.
- Published
- 2018
67. Measuring rewilding progress
- Author
-
Torres, A., Fernández, N., zu Ermgassen, S., Helmer, W., Revilla, E., Saavedra, D., Perino, A., Mimet, Anne, Rey-Benayas, J.M., Selva, N., Schepers, F., Svenning, J.-C., Pereira, H.M., Torres, A., Fernández, N., zu Ermgassen, S., Helmer, W., Revilla, E., Saavedra, D., Perino, A., Mimet, Anne, Rey-Benayas, J.M., Selva, N., Schepers, F., Svenning, J.-C., and Pereira, H.M.
- Abstract
Rewilding is emerging as a promising restoration strategy to enhance the conservation status of biodiversity and promote self-regulating ecosystems while re-engaging people with nature. Overcoming the challenges in monitoring and reporting rewilding projects would improve its practical implementation and maximize its conservation and restoration outcomes. Here, we present a novel approach for measuring and monitoring progress in rewilding that focuses on the ecological attributes of rewilding. We devised a bi-dimensional framework for assessing the recovery of processes and their natural dynamics through (i) decreasing human forcing on ecological processes and (ii) increasing ecological integrity of ecosystems. The rewilding assessment framework incorporates the reduction of material inputs and outputs associated with human management, as well as the restoration of natural stochasticity and disturbance regimes, landscape connectivity and trophic complexity. Furthermore, we provide a list of potential activities for increasing the ecological integrity after reviewing the evidence for the effectiveness of common restoration actions. For illustration purposes, we apply the framework to three flagship restoration projects in the Netherlands, Switzerland and Argentina. This approach has the potential to broaden the scope of rewilding projects, facilitate sound decision-making and connect the science and practice of rewilding.
- Published
- 2018
68. Accelerated increase in plant species richness on mountain summits is linked to warming
- Author
-
Steinbauer, M.J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjorkman, A.D., Breiner, F.T., Burg, S., Czortek, P., Dawes, M.A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V.A., Fernández-Arberas, O., Fossheim, K.F., Gómez-García, D., Georges, D., Grindrud, E.T., Haider, S., Haugum, S.V., Henriksen, H., Herreros, M.J., Jaroszewicz, B., Jaroszynska, F., Kanka, R., Kapfer, J., Klanderud, K., Kühn, Ingolf, Lamprecht, A., Matteodo, M., Morra di Cella, U., Normand, S., Odland, A., Olsen, S.L., Palacio, S., Petey, M., Piscová, V., Sedlakova, B., Steinbauer, K., Stöckli, V., Svenning, J.-C., Teppa, G., Theurillat, J.-P., Vittoz, P., Woodin, S.J., Zimmermann, N.E., Wipf, S., Steinbauer, M.J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjorkman, A.D., Breiner, F.T., Burg, S., Czortek, P., Dawes, M.A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V.A., Fernández-Arberas, O., Fossheim, K.F., Gómez-García, D., Georges, D., Grindrud, E.T., Haider, S., Haugum, S.V., Henriksen, H., Herreros, M.J., Jaroszewicz, B., Jaroszynska, F., Kanka, R., Kapfer, J., Klanderud, K., Kühn, Ingolf, Lamprecht, A., Matteodo, M., Morra di Cella, U., Normand, S., Odland, A., Olsen, S.L., Palacio, S., Petey, M., Piscová, V., Sedlakova, B., Steinbauer, K., Stöckli, V., Svenning, J.-C., Teppa, G., Theurillat, J.-P., Vittoz, P., Woodin, S.J., Zimmermann, N.E., and Wipf, S.
- Abstract
Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century1,2,3,4,5,6,7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch6. While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying8, 9, it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.
- Published
- 2018
69. The database of the Predicts (Projecting responses of ecological diversity in changing terrestrial systems) project
- Author
-
Hudson, LN, Newbold, T, Contu, S, Hill, SLL, Lysenko, I, De Palma, A, Phillips, HRP, Alhusseini, TI, Bedford, FE, Bennett, DJ, Booth, H, Burton, VJ, Chng, CWT, Choimes, A, Correia, DLP, Day, J, Echeverría-Londoño, S, Emerson, SR, Gao, D, Garon, M, Harrison, MLK, Ingram, DJ, Jung, M, Kemp, V, Kirkpatrick, L, Martin, CD, Pan, Y, Pask-Hale, GD, Pynegar, EL, Robinson, AN, Sanchez-Ortiz, K, Senior, RA, Simmons, BI, White, HJ, Zhang, H, Aben, J, Abrahamczyk, S, Adum, GB, Aguilar-Barquero, V, Aizen, MA, Albertos, B, Alcala, EL, del Mar Alguacil, M, Alignier, A, Ancrenaz, M, Andersen, AN, Arbeláez-Cortés, E, Armbrecht, I, Arroyo-Rodríguez, V, Aumann, T, Axmacher, JC, Azhar, B, Azpiroz, AB, Baeten, L, Bakayoko, A, Báldi, A, Banks, JE, Baral, SK, Barlow, J, Barratt, BIP, Barrico, L, Bartolommei, P, Barton, DM, Basset, Y, Batáry, P, Bates, AJ, Baur, B, Bayne, EM, Beja, P, Benedick, S, Berg, Å, Bernard, H, Berry, NJ, Bhatt, D, Bicknell, JE, Bihn, JH, Blake, RJ, Bobo, KS, Bóçon, R, Boekhout, T, Böhning-Gaese, K, Bonham, KJ, Borges, PAV, Borges, SH, Boutin, C, Bouyer, J, Bragagnolo, C, Brandt, JS, Brearley, FQ, Brito, I, Bros, V, Brunet, J, Buczkowski, G, Buddle, CM, Bugter, R, Buscardo, E, Buse, J, Cabra-García, J, Cáceres, NC, Cagle, NL, Calviño-Cancela, M, Cameron, SA, Cancello, EM, Caparrós, R, Cardoso, P, Carpenter, D, Carrijo, TF, Carvalho, AL, Cassano, CR, Castro, H, Castro-Luna, AA, Rolando, CB, Cerezo, A, Chapman, KA, Chauvat, M, Christensen, M, Clarke, FM, Cleary, DFR, Colombo, G, Connop, SP, Craig, MD, Cruz-López, L, Cunningham, SA, D'Aniello, B, D'Cruze, N, da Silva, PG, Dallimer, M, Danquah, E, Darvill, B, Dauber, J, Davis, ALV, Dawson, J, de Sassi, C, de Thoisy, B, Deheuvels, O, Dejean, A, Devineau, J-L, Diekötter, T, Dolia, JV, Domínguez, E, Dominguez-Haydar, Y, Dorn, S, Draper, I, Dreber, N, Dumont, B, Dures, SG, Dynesius, M, Edenius, L, Eggleton, P, Eigenbrod, F, Elek, Z, Entling, MH, Esler, KJ, de Lima, RF, Faruk, A, Farwig, N, Fayle, TM, Felicioli, A, Felton, AM, Fensham, RJ, Fernandez, IC, Ferreira, CC, Ficetola, GF, Fiera, C, Filgueiras, BKC, Fırıncıoğlu, HK, Flaspohler, D, Floren, A, Fonte, SJ, Fournier, A, Fowler, RE, Franzén, M, Fraser, LH, Fredriksson, GM, Freire, GB, Frizzo, TLM, Fukuda, D, Furlani, D, Gaigher, R, Ganzhorn, JU, García, KP, Garcia-R, JC, Garden, JG, Garilleti, R, Ge, B-M, Gendreau-Berthiaume, B, Gerard, PJ, Gheler-Costa, C, Gilbert, B, Giordani, P, Giordano, S, Golodets, C, Gomes, LGL, Gould, RK, Goulson, D, Gove, AD, Granjon, L, Grass, I, Gray, CL, Grogan, J, Gu, W, Guardiola, M, Gunawardene, NR, Gutierrez, AG, Gutiérrez-Lamus, DL, Haarmeyer, DH, Hanley, ME, Hanson, T, Hashim, NR, Hassan, SN, Hatfield, RG, Hawes, JE, Hayward, MW, Hébert, C, Helden, AJ, Henden, J-A, Henschel, P, Hernández, L, Herrera, JP, Herrmann, F, Herzog, F, Higuera-Diaz, D, Hilje, B, Höfer, H, Hoffmann, A, Horgan, FG, Hornung, E, Horváth, R, Hylander, K, Isaacs-Cubides, P, Ishida, H, Ishitani, M, Jacobs, CT, Jaramillo, VJ, Jauker, B, Hernández, FJ, Johnson, MF, Jolli, V, Jonsell, M, Juliani, SN, Jung, TS, Kapoor, V, Kappes, H, Kati, V, Katovai, E, Kellner, K, Kessler, M, Kirby, KR, Kittle, AM, Knight, ME, Knop, E, Kohler, F, Koivula, M, Kolb, A, Kone, M, Kőrösi, Á, Krauss, J, Kumar, A, Kumar, R, Kurz, DJ, Kutt, AS, Lachat, T, Lantschner, V, Lara, F, Lasky, JR, Latta, SC, Laurance, WF, Lavelle, P, Le Féon, V, LeBuhn, G, Légaré, J-P, Lehouck, V, Lencinas, MV, Lentini, PE, Letcher, SG, Li, Q, Litchwark, SA, Littlewood, NA, Liu, Y, Lo-Man-Hung, N, López-Quintero, CA, Louhaichi, M, Lövei, GL, Lucas-Borja, ME, Luja, VH, Luskin, MS, MacSwiney G, MC, Maeto, K, Magura, T, Mallari, NA, Malone, LA, Malonza, PK, Malumbres-Olarte, J, Mandujano, S, Måren, IE, Marin-Spiotta, E, Marsh, CJ, Marshall, EJP, Martínez, E, Martínez Pastur, G, Moreno Mateos, D, Mayfield, MM, Mazimpaka, V, McCarthy, JL, McCarthy, KP, McFrederick, QS, McNamara, S, Medina, NG, Medina, R, Mena, JL, Mico, E, Mikusinski, G, Milder, JC, Miller, JR, Miranda-Esquivel, DR, Moir, ML, Morales, CL, Muchane, MN, Muchane, M, Mudri-Stojnic, S, Munira, AN, Muoñz-Alonso, A, Munyekenye, BF, Naidoo, R, Naithani, A, Nakagawa, M, Nakamura, A, Nakashima, Y, Naoe, S, Nates-Parra, G, Navarrete Gutierrez, DA, Navarro-Iriarte, L, Ndang'ang'a, PK, Neuschulz, EL, Ngai, JT, Nicolas, V, Nilsson, SG, Noreika, N, Norfolk, O, Noriega, JA, Norton, DA, Nöske, NM, Nowakowski, AJ, Numa, C, O'Dea, N, O'Farrell, PJ, Oduro, W, Oertli, S, Ofori-Boateng, C, Oke, CO, Oostra, V, Osgathorpe, LM, Otavo, SE, Page, NV, Paritsis, J, Parra-H, A, Parry, L, Pe'er, G, Pearman, PB, Pelegrin, N, Pélissier, R, Peres, CA, Peri, PL, Persson, AS, Petanidou, T, Peters, MK, Pethiyagoda, RS, Phalan, B, Philips, TK, Pillsbury, FC, Pincheira-Ulbrich, J, Pineda, E, Pino, J, Pizarro-Araya, J, Plumptre, AJ, Poggio, SL, Politi, N, Pons, P, Poveda, K, Power, EF, Presley, SJ, Proença, V, Quaranta, M, Quintero, C, Rader, R, Ramesh, BR, Ramirez-Pinilla, MP, Ranganathan, J, Rasmussen, C, Redpath-Downing, NA, Reid, JL, Reis, YT, Rey Benayas, JM, Rey-Velasco, JC, Reynolds, C, Ribeiro, DB, Richards, MH, Richardson, BA, Richardson, MJ, Ríos, RM, Robinson, R, Robles, CA, Römbke, J, Romero-Duque, LP, Rös, M, Rosselli, L, Rossiter, SJ, Roth, DS, Roulston, TH, Rousseau, L, Rubio, AV, Ruel, J-C, Sadler, JP, Sáfián, S, Saldaña-Vázquez, RA, Sam, K, Samnegård, U, Santana, J, Santos, X, Savage, J, Schellhorn, NA, Schilthuizen, M, Schmiedel, U, Schmitt, CB, Schon, NL, Schüepp, C, Schumann, K, Schweiger, O, Scott, DM, Scott, KA, Sedlock, JL, Seefeldt, SS, Shahabuddin, G, Shannon, G, Sheil, D, Sheldon, FH, Shochat, E, Siebert, SJ, Silva, FAB, Simonetti, JA, Slade, EM, Smith, J, Smith-Pardo, AH, Sodhi, NS, Somarriba, EJ, Sosa, RA, Soto Quiroga, G, St-Laurent, M-H, Starzomski, BM, Stefanescu, C, Steffan-Dewenter, I, Stouffer, PC, Stout, JC, Strauch, AM, Struebig, MJ, Su, Z, Suarez-Rubio, M, Sugiura, S, Summerville, KS, Sung, Y-H, Sutrisno, H, Svenning, J-C, Teder, T, Threlfall, CG, Tiitsaar, A, Todd, JH, Tonietto, RK, Torre, I, Tóthmérész, B, Tscharntke, T, Turner, EC, Tylianakis, JM, Uehara-Prado, M, Urbina-Cardona, N, Vallan, D, Vanbergen, AJ, Vasconcelos, HL, Vassilev, K, Verboven, HAF, Verdasca, MJ, Verdú, JR, Vergara, CH, Vergara, PM, Verhulst, J, Virgilio, M, Vu, LV, Waite, EM, Walker, TR, Wang, H-F, Wang, Y, Watling, JI, Weller, B, Wells, K, Westphal, C, Wiafe, ED, Williams, CD, Willig, MR, Woinarski, JCZ, Wolf, JHD, Wolters, V, Woodcock, BA, Wu, J, Wunderle, JM, Yamaura, Y, Yoshikura, S, Yu, DW, Zaitsev, AS, Zeidler, J, Zou, F, Collen, B, Ewers, RM, Mace, GM, Purves, DW, Scharlemann, JPW, Purvis, A, The Natural History Museum [London] (NHM), United Nations Environment Programme World Conservation Monitoring Centre, Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment, Research, University College of London [London] (UCL), Department of Life Sciences [Trieste], Università degli studi di Trieste, Imperial College London, Department of Zoology, Auburn University (AU), Frankfurt Zoological Society, Science and Solutions for a Changing Planet DTP and the Department of Life Sciences, Centre d’étude de la forêt, Université Laval, School of Life Sciences, University of Sussex, School of Biological Sciences [London], Queen Mary University of London (QMUL), School of Biological and Ecological Sciences, University of Stirling, School of Biological Sciences [Egham), Royal Holloway [University of London] (RHUL), School of Environment, Natural Resources and Geography, Bangor University, University College London (UCL), School of Biological Sciences [Clayton], Monash University [Clayton], Institute of Biological and Environmental Sciences, (SFIRC), Evolutionary Ecology Group, University of Antwerp (UA), Nees Institute for Plant Biodiversity, Rheinische Friedrich-Wilhelms-Universität Bonn, Wildlife and Range Management Department, Faculty of Renewable Natural Resources, College of Agriculture and Natural Resources (CANR), Kwame Nkrumah University of Science and Technology (KNUST), Save the frogs!, Escuela de Biología, Universidad Nacional de Costa Rica, Instituto Nacional de Investigaciones en Biodiversidad y Medioambiente [Bariloche] (INIBIOMA-CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Departamento de Botánica, Facultad de Farmacia, Universidad de Valencia, Marine Laboratory, Silliman University-Angelo King Center for Research and Environmental Management, Silliman University, Department of Soil and Water Conservation, Centro de Edafologia y Biologia Aplicada del Segura, SAD Paysage (SAD Paysage), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Dynamiques Forestières dans l'Espace Rural (DYNAFOR), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure Agronomique de Toulouse-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Animal, Santé, Territoires, Risques et Ecosystèmes (UMR ASTRE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherches sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA), Centre de Biologie pour la Gestion des Populations (UMR CBGP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Abeilles et Environnement (AE), Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU), Patrimoines locaux, Environnement et Globalisation (PALOC), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU), Università degli studi di Trieste = University of Trieste, Université Laval [Québec] (ULaval), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse (ENSAT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), The Royal Society, Natural Environment Research Council (NERC), Kwame Nkrumah University of Science and Technology [GHANA] (KNUST), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de la Recherche Agronomique (INRA)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Westerdijk Fungal Biodiversity Institute, Westerdijk Fungal Biodiversity Institute - Yeast Research, Hudson, Lawrence N [0000-0003-4072-7469], Choimes, Argyrios [0000-0002-9849-1500], Jung, Martin [0000-0002-7569-1390], Apollo - University of Cambridge Repository, Hudson, Lawrence N, Newbold, Tim, Contu, Sara, Hill, Samantha L. L., Lysenko, Igor, De Palma, Adriana, Phillips, Helen R. P., Alhusseini, Tamera I., Bedford, Felicity E., Bennett, Dominic J., Booth, Hollie, Burton, Victoria J., Chng, Charlotte W. T., Choimes, Argyrio, Correia, David L. P., Day, Julie, Echeverría Londoño, Susy, Emerson, Susan R., Gao, Di, Garon, Morgan, Harrison, Michelle L. K., Ingram, Daniel J., Jung, Martin, Kemp, Victoria, Kirkpatrick, Lucinda, Martin, Callum D., Pan, Yuan, Pask Hale, Gwilym D., Pynegar, Edwin L., Robinson, Alexandra N., Sanchez Ortiz, Katia, Senior, Rebecca A., Simmons, Benno I., White, Hannah J., Zhang, Hanbin, Aben, Job, Abrahamczyk, Stefan, Adum, Gilbert B., Aguilar Barquero, Virginia, Aizen, Marcelo A., Albertos, Belén, Alcala, E. L., del Mar Alguacil, Maria, Alignier, Audrey, Ancrenaz, Marc, Andersen, Alan N., Arbeláez Cortés, Enrique, Armbrecht, Inge, Arroyo Rodríguez, Víctor, Aumann, Tom, Axmacher, Jan C., Azhar, Badrul, Azpiroz, Adrián B., Baeten, Lander, Bakayoko, Adama, Báldi, Andrá, Banks, John E., Baral, Sharad K., Barlow, Jo, Barratt, Barbara I. P., Barrico, Lurde, Bartolommei, Paola, Barton, Diane M., Basset, Yve, Batáry, Péter, Bates, Adam J., Baur, Bruno, Bayne, Erin M., Beja, Pedro, Benedick, Suzan, Berg, Åke, Bernard, Henry, Berry, Nicholas J., Bhatt, Dinesh, Bicknell, Jake E., Bihn, Jochen H., Blake, Robin J., Bobo, Kadiri S., Bóçon, Roberto, Boekhout, Teun, Böhning Gaese, Katrin, Bonham, Kevin J., Borges, Paulo A. V., Borges, Sérgio H., Boutin, Céline, Bouyer, Jérémy, Bragagnolo, Cibele, Brandt, Jodi S., Brearley, Francis Q., Brito, Isabel, Bros, Vicenç, Brunet, Jörg, Buczkowski, Grzegorz, Buddle, Christopher M., Bugter, Rob, Buscardo, Erika, Buse, Jörn, Cabra García, Jimmy, Cáceres, Nilton C., Cagle, Nicolette L., Calviño Cancela, María, Cameron, Sydney A., Cancello, Eliana M., Caparrós, Rut, Cardoso, Pedro, Carpenter, Dan, Carrijo, Tiago F., Carvalho, Anelena L., Cassano, Camila R., Castro, Helena, Castro Luna, Alejandro A., Rolando, Cerda B., Cerezo, Alexi, Chapman, Kim Alan, Chauvat, Matthieu, Christensen, Morten, Clarke, Francis M., Cleary, Daniel F. R., Colombo, Giorgio, Connop, Stuart P., Craig, Michael D., Cruz López, Leopoldo, Cunningham, Saul A., D'Aniello, Biagio, D'Cruze, Neil, da Silva, Pedro Giovâni, Dallimer, Martin, Danquah, Emmanuel, Darvill, Ben, Dauber, Jen, Davis, Adrian L. V., Dawson, Jeff, de Sassi, Claudio, de Thoisy, Benoit, Deheuvels, Olivier, Dejean, Alain, Devineau, Jean Loui, Diekötter, Tim, Dolia, Jignasu V., Domínguez, Erwin, Dominguez Haydar, Yamileth, Dorn, Silvia, Draper, Isabel, Dreber, Niel, Dumont, Bertrand, Dures, Simon G., Dynesius, Mat, Edenius, Lar, Eggleton, Paul, Eigenbrod, Felix, Elek, Zoltán, Entling, Martin H., Esler, Karen J., de Lima, Ricardo F., Faruk, Aisyah, Farwig, Nina, Fayle, Tom M., Felicioli, Antonio, Felton, Annika M., Fensham, Roderick J., Fernandez, Ignacio C., Ferreira, Catarina C., Ficetola, Gentile F., Fiera, Cristina, Filgueiras, Bruno K. C., Fırıncıoğlu, Hüseyin K., Flaspohler, David, Floren, Andrea, Fonte, Steven J., Fournier, Anne, Fowler, Robert E., Franzén, Marku, Fraser, Lauchlan H., Fredriksson, Gabriella M., Freire, Geraldo B., Frizzo, Tiago L. M., Fukuda, Daisuke, Furlani, Dario, Gaigher, René, Ganzhorn, Jörg U., García, Karla P., Garcia R, Juan C., Garden, Jenni G., Garilleti, Ricardo, Ge, Bao Ming, Gendreau Berthiaume, Benoit, Gerard, Philippa J., Gheler Costa, Carla, Gilbert, Benjamin, Giordani, Paolo, Giordano, Simonetta, Golodets, Carly, Gomes, Laurens G. L., Gould, Rachelle K., Goulson, Dave, Gove, Aaron D., Granjon, Laurent, Grass, Ingo, Gray, Claudia L., Grogan, Jame, Gu, Weibin, Guardiola, Moisè, Gunawardene, Nihara R., Gutierrez, Alvaro G., Gutiérrez Lamus, Doris L., Haarmeyer, Daniela H., Hanley, Mick E., Hanson, Thor, Hashim, Nor R., Hassan, Shombe N., Hatfield, Richard G., Hawes, Joseph E., Hayward, Matt W., Hébert, Christian, Helden, Alvin J., Henden, John André, Henschel, Philipp, Hernández, Lionel, Herrera, James P., Herrmann, Farina, Herzog, Felix, Higuera Diaz, Diego, Hilje, Branko, Höfer, Hubert, Hoffmann, Anke, Horgan, Finbarr G., Hornung, Elisabeth, Horváth, Roland, Hylander, Kristoffer, Isaacs Cubides, Paola, Ishida, Hiroaki, Ishitani, Masahiro, Jacobs, Carmen T., Jaramillo, Víctor J., Jauker, Birgit, Hernández, F. Jiménez, Johnson, McKenzie F., Jolli, Virat, Jonsell, Mat, Juliani, S. Nur, Jung, Thomas S., Kapoor, Vena, Kappes, Heike, Kati, Vassiliki, Katovai, Eric, Kellner, Klau, Kessler, Michael, Kirby, Kathryn R., Kittle, Andrew M., Knight, Mairi E., Knop, Eva, Kohler, Florian, Koivula, Matti, Kolb, Annette, Kone, Mouhamadou, Kőrösi, Ádám, Krauss, Jochen, Kumar, Ajith, Kumar, Raman, Kurz, David J., Kutt, Alex S., Lachat, Thibault, Lantschner, Victoria, Lara, Francisco, Lasky, Jesse R., Latta, Steven C., Laurance, William F., Lavelle, Patrick, Le Féon, Violette, Lebuhn, Gretchen, Légaré, Jean Philippe, Lehouck, Valérie, Lencinas, María V., Lentini, Pia E., Letcher, Susan G., Li, Qi, Litchwark, Simon A., Littlewood, Nick A., Liu, Yunhui, Lo Man Hung, Nancy, López Quintero, Carlos A., Louhaichi, Mounir, Lövei, Gabor L., Lucas Borja, Manuel Esteban, Luja, Victor H., Luskin, Matthew S., MacSwiney G, M. Cristina, Maeto, Kaoru, Magura, Tibor, Mallari, Neil Aldrin, Malone, Louise A., Malonza, Patrick K., Malumbres Olarte, Jagoba, Mandujano, Salvador, Måren, Inger E., Marin Spiotta, Erika, Marsh, Charles J., Marshall, E. J. P., Martínez, Eliana, Martínez Pastur, Guillermo, Moreno Mateos, David, Mayfield, Margaret M., Mazimpaka, Vicente, Mccarthy, Jennifer L., Mccarthy, Kyle P., Mcfrederick, Quinn S., Mcnamara, Sean, Medina, Nagore G., Medina, Rafael, Mena, Jose L., Mico, Estefania, Mikusinski, Grzegorz, Milder, Jeffrey C., Miller, James R., Miranda Esquivel, Daniel R., Moir, Melinda L., Morales, Carolina L., Muchane, Mary N., Muchane, Muchai, Mudri Stojnic, Sonja, Munira, A. Nur, Muoñz Alonso, Antonio, Munyekenye, B. F., Naidoo, Robin, Naithani, A., Nakagawa, Michiko, Nakamura, Akihiro, Nakashima, Yoshihiro, Naoe, Shoji, Nates Parra, Guiomar, Navarrete Gutierrez, Dario A., Navarro Iriarte, Lui, Ndang'Ang'A, Paul K., Neuschulz, Eike L., Ngai, Jacqueline T., Nicolas, Violaine, Nilsson, Sven G., Noreika, Norberta, Norfolk, Olivia, Noriega, Jorge Ari, Norton, David A., Nöske, Nicole M., Nowakowski, A. Justin, Numa, Catherine, O'Dea, Niall, O'Farrell, Patrick J., Oduro, William, Oertli, Sabine, Ofori Boateng, Caleb, Oke, Christopher Omamoke, Oostra, Vicencio, Osgathorpe, Lynne M., Otavo, Samuel Eduardo, Page, Navendu V., Paritsis, Juan, Parra H, Alejandro, Parry, Luke, Pe'Er, Guy, Pearman, Peter B., Pelegrin, Nicolá, Pélissier, Raphaël, Peres, Carlos A., Peri, Pablo L., Persson, Anna S., Petanidou, Theodora, Peters, Marcell K., Pethiyagoda, Rohan S., Phalan, Ben, Philips, T. Keith, Pillsbury, Finn C., Pincheira Ulbrich, Jimmy, Pineda, Eduardo, Pino, Joan, Pizarro Araya, Jaime, Plumptre, A. J., Poggio, Santiago L., Politi, Natalia, Pons, Pere, Poveda, Katja, Power, Eileen F., Presley, Steven J., Proença, Vânia, Quaranta, Marino, Quintero, Carolina, Rader, Romina, Ramesh, B. R., Ramirez Pinilla, Martha P., Ranganathan, Jai, Rasmussen, Clau, Redpath Downing, Nicola A., Reid, J. Leighton, Reis, Yana T., Rey Benayas, José M., Rey Velasco, Juan Carlo, Reynolds, Chevonne, Ribeiro, Danilo Bandini, Richards, Miriam H., Richardson, Barbara A., Richardson, Michael J., Ríos, Rodrigo Macip, Robinson, Richard, Robles, Carolina A., Römbke, Jörg, Romero Duque, Luz Piedad, Rös, Matthia, Rosselli, Loreta, Rossiter, Stephen J., Roth, Dana S., Roulston, T'ai H., Rousseau, Laurent, Rubio, André V., Ruel, Jean Claude, Sadler, Jonathan P., Sáfián, Szabolc, Saldaña Vázquez, Romeo A., Sam, Katerina, Samnegård, Ulrika, Santana, Joana, Santos, Xavier, Savage, Jade, Schellhorn, Nancy A., Schilthuizen, Menno, Schmiedel, Ute, Schmitt, Christine B., Schon, Nicole L., Schüepp, Christof, Schumann, Katharina, Schweiger, Oliver, Scott, Dawn M., Scott, Kenneth A., Sedlock, Jodi L., Seefeldt, Steven S., Shahabuddin, Ghazala, Shannon, Graeme, Sheil, Dougla, Sheldon, Frederick H., Shochat, Eyal, Siebert, Stefan J., Silva, Fernando A. B., Simonetti, Javier A., Slade, Eleanor M., Smith, Jo, Smith Pardo, Allan H., Sodhi, Navjot S., Somarriba, Eduardo J., Sosa, Ramón A., Soto Quiroga, Grimaldo, St Laurent, Martin Hugue, Starzomski, Brian M., Stefanescu, Constanti, Steffan Dewenter, Ingolf, Stouffer, Philip C., Stout, Jane C., Strauch, Ayron M., Struebig, Matthew J., Su, Zhimin, Suarez Rubio, Marcela, Sugiura, Shinji, Summerville, Keith S., Sung, Yik Hei, Sutrisno, Hari, Svenning, Jens Christian, Teder, Tiit, Threlfall, Caragh G., Tiitsaar, Anu, Todd, Jacqui H., Tonietto, Rebecca K., Torre, Ignasi, Tóthmérész, Béla, Tscharntke, Teja, Turner, Edgar C., Tylianakis, Jason M., Uehara Prado, Marcio, Urbina Cardona, Nicola, Vallan, Deni, Vanbergen, Adam J., Vasconcelos, Heraldo L., Vassilev, Kiril, Verboven, Hans A. F., Verdasca, Maria João, Verdú, José R., Vergara, Carlos H., Vergara, Pablo M., Verhulst, Jort, Virgilio, Massimiliano, Vu, Lien Van, Waite, Edward M., Walker, Tony R., Wang, Hua Feng, Wang, Yanping, Watling, James I., Weller, Britta, Wells, Konstan, Westphal, Catrin, Wiafe, Edward D., Williams, Christopher D., Willig, Michael R., Woinarski, John C. Z., Wolf, Jan H. D., Wolters, Volkmar, Woodcock, Ben A., Wu, Jihua, Wunderle, Joseph M., Yamaura, Yuichi, Yoshikura, Satoko, Yu, Douglas W., Zaitsev, Andrey S., Zeidler, Juliane, Zou, Fasheng, Collen, Ben, Ewers, Rob M., Mace, Georgina M., Purves, Drew W., Scharlemann, Jörn P. W., Purvis, Andy, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Natural History Museum, 3Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment, Research, University College London ( UCL ), Department of Life Sciences, Universita di Trieste, Auburn University, Queen Mary University of London ( QMUL ), Royal Holloway [University of London] ( RHUL ), ( SFIRC ), University of Antwerp ( UA ), University of Bonn (Rheinische Friedrich-Wilhelms), Kwame Nkrumah University of Science and Technology ( KNUST ), Universidad de Costa Rica, Laboratorio Ecotono-CRUB, Universidad Nacional del Comahue, SAD Paysage ( SAD Paysage ), Institut National de la Recherche Agronomique ( INRA ) -AGROCAMPUS OUEST, Dynamiques Forestières dans l'Espace Rural ( DYNAFOR ), Institut National Polytechnique [Toulouse] ( INP ) -Institut National de la Recherche Agronomique ( INRA ) -Ecole Nationale Supérieure Agronomique de Toulouse, Contrôle des maladies animales exotiques et émergentes [Montpellier] ( CMAEE ), Institut National de la Recherche Agronomique ( INRA ) -Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR15, Unité Mixte de Recherches sur les Herbivores ( UMR 1213 Herbivores ), VetAgro Sup ( VAS ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique ( INRA ), Centre de Biologie pour la Gestion des Populations ( CBGP ), Centre de Coopération Internationale en Recherche Agronomique pour le Développement ( CIRAD ) -Centre international d'études supérieures en sciences agronomiques ( Montpellier SupAgro ) -Institut national de la recherche agronomique [Montpellier] ( INRA Montpellier ) -Université de Montpellier ( UM ) -Institut de Recherche pour le Développement ( IRD [France-Sud] ) -Institut national d’études supérieures agronomiques de Montpellier ( Montpellier SupAgro ), Abeilles et Environnement ( AE ), and Institut National de la Recherche Agronomique ( INRA ) -Université d'Avignon et des Pays de Vaucluse ( UAPV )
- Subjects
VDP::Mathematics and natural science: 400::Zoology and botany: 480::Ecology: 488 ,Biodiversité et Ecologie ,data sharing ,habitat ,Biológiai tudományok ,Q1 ,BIRD SPECIES RICHNESS ,TROPICAL DRY FOREST ,VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Økologi: 488 ,MEXICAN COFFEE PLANTATIONS ,Természettudományok ,Data and Information ,Milieux et Changements globaux ,LOWLAND ,ComputingMilieux_MISCELLANEOUS ,Original Research ,Ecology ,global biodiversity modeling ,global change ,habitat destruction ,land use ,Ecology, Evolution, Behavior and Systematics ,Nature and Landscape Conservation ,LAND-USE CHANGE ,[ SDE.MCG ] Environmental Sciences/Global Changes ,Chemistry ,Earth and Related Environmental Sciences ,Evolution ,[SDE.MCG]Environmental Sciences/Global Changes ,INTENSIVELY MANAGED FARMLAND ,Ingénierie de l'environnement ,CARABID BEETLE ASSEMBLAGES ,FRUIT-FEEDING BUTTERFLIES ,Ecology and Environment ,Biodiversity and Ecology ,keywords: data sharing ,Behavior and Systematics ,Biology ,Ekologi ,[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology ,QL ,DIPTEROCARP FOREST ,QH ,PLANT COMMUNITY COMPOSITION ,Geovetenskap och miljövetenskap ,Biology and Life Sciences ,destruction ,Ecology, Evolution, Behavior and Systematic ,URBAN-RURAL GRADIENT ,Earth and Environmental Sciences ,Environnement et Société ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology - Abstract
Source at https://doi.org/10.1002/ece3.2579. The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
- Published
- 2017
- Full Text
- View/download PDF
70. Biogeographic, environmental and anthropogenic determinants of global patterns in taxonomic and trait turnover in birds
- Author
-
Barnagaud, J.-Y., Kissling, W.D., Tsirogiannis, C., Fisikopoulos, V., Villéger, S., Sekercioglu, C.H., Svenning, J.-C., and Theoretical and Computational Ecology (IBED, FNWI)
- Abstract
Aim:To assess contemporary and historical determinants of taxonomic and ecological trait turnover in birds worldwide. We tested whether taxonomic and trait turnover (1) are structured by regional bioclimatic conditions, (2) increase in relationship with topographic heterogeneity and environmental turnover and change according to current and historical environmental conditions, and (3) decrease with human impact. Major Taxa: Birds Location: Global Methods: We used computationally efficient algorithms to map the taxonomic and trait turnover of 8,040 terrestrial bird assemblages worldwide, based on a grid with 110 km × 110 km resolution overlaid on the extent-of-occurrence maps of 7,964 bird species, and nine ecological traits reflecting six key aspects of bird ecology (diet, habitat use, thermal preference, migration, dispersal and body size). We used quantile regression and model selection to quantify the influence of biomes, environment (temperature, precipitation, altitudinal range, net primary productivity, Quaternary temperature and precipitation change) and human impact (human influence index) on bird turnover. Results: Bird taxonomic and trait turnover were highest in the north African deserts and boreal biomes. In the tropics, taxonomic turnover tended to be higher, but trait turnover was lower than in other biomes. Taxonomic and trait turnover exhibited markedly different or even opposing relationships with climatic and topographic gradients, but at their upper quantiles both types of turnover decreased with increasing human influence. Main conclusions: The influence of regional, environmental and anthropogenic factors differ between bird taxonomic and trait turnover, consistent with an imprint of niche conservatism, environmental filtering and topographic barriers on bird regional assemblages. Human influence on these patterns is pervasive and demonstrates global biotic homogenization at a macroecological scale.
- Published
- 2017
71. Impacts of large herbivores on the spinescence and abundance of palms in the Brazilian Pantanal
- Author
-
Göldel, B., Araujo, A.C., Kissling, W.D., Svenning, J.-C., and Computational Geo-Ecology (IBED, FNWI)
- Abstract
South America harboured a rich megafauna for millions of years, but most of it was lost during the latest Pleistocene and early Holocene. However, human-introduced livestock is a potential partial ecological replacement, with livestock having been present in many areas of the Brazilian Pantanal for > 200 years. We tested the impact of cattle on spinescence and abundance of four common palm species (three armed: Acrocomia aculeata, Bactris glaucescens, Copernicia alba; one unarmed: Attalea phalerata), comparing areas with cattle to areas free of cattle for 30 years. We measured spine length and density on leaves and stems and the abundances of different life stages. In all armed species, leaf spine length and density increased with cattle presence, suggesting strong responses to megafauna herbivory by increasing investment in anti-herbivory defence. Weaker non-significant trends were observed for stem spinescence, perhaps reflecting a lower susceptibility of stems to herbivore damage. In three of four species, the abundances of seedlings and juveniles (but not adults) were reduced in areas with cattle. We conclude that armed palm species have most probably retained an adaptive capacity to respond to megafauna herbivory and trampling despite the extinction of native megafauna. Nevertheless, livestock at high densities can still have negative impacts on palm recruitment.
- Published
- 2016
72. Separating environmental and geographical determinants of phylogenetic community structure in Amazonian palms (Arecaceae)
- Author
-
Eiserhardt, Wolf L., Svenning, J.-C., Borchsenius, Finn, Kristiansen, Thea, and Balslev, Henrik
- Published
- 2012
- Full Text
- View/download PDF
73. Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage
- Author
-
Kissling, W. Daniel, Baker, William J., Balslev, Henrik, Barfod, Anders S., Borchsenius, Finn, Dransfield, John, Govaerts, Rafaël, and Svenning, J.-C.
- Published
- 2011
- Full Text
- View/download PDF
74. Learning from the past to prepare for the future: felids face continued threat from declining prey
- Author
-
Sandom, C. J., primary, Faurby, S., additional, Svenning, J.-C., additional, Burnham, D., additional, Dickman, A., additional, Hinks, A. E., additional, Macdonald, E. A., additional, Ripple, W. J., additional, Williams, J., additional, and Macdonald, D. W., additional
- Published
- 2017
- Full Text
- View/download PDF
75. Spatial autocorrelation leads to over optimistic assessments of predictive accuracy in orthophoto-based habitat mapping
- Author
-
Juel, Anders, Groom, Geoffrey Brian, Svenning, J.-C., and Ejrnæs, Rasmus
- Published
- 2015
- Full Text
- View/download PDF
76. Relative importance of the land-use composition and intensity for the bird community composition in anthropogenic landscapes
- Author
-
Pellissier, V., Mimet, Anne, Fontaine, C., Svenning, J.-C., Couvet, D., Pellissier, V., Mimet, Anne, Fontaine, C., Svenning, J.-C., and Couvet, D.
- Abstract
Humans are changing the biosphere by exerting pressure on land via different land uses with variable intensities. Quantifying the relative importance of the land-use composition and intensity for communities may provide valuable insights for understanding community dynamics in human-dominated landscapes. Here, we evaluate the relative importance of the land-use composition versus land-use intensity on the bird community structure in the highly human-dominated region surrounding Paris, France. The land-use composition was calculated from a land cover map, whereas the land-use intensity (reverse intensity) was represented by the primary productivity remaining after human appropriation (NPPremaining), which was estimated using remote sensing imagery. We used variance partitioning to evaluate the relative importance of the land-use composition versus intensity for explaining bird community species richness, total abundance, trophic levels, and habitat specialization in urban, farmland, and woodland habitats. The land-use composition and intensity affected specialization and richness more than trophic levels and abundance. The importance of the land-use intensity was slightly higher than that of the composition for richness, specialization, and trophic levels in farmland and urban areas, while the land-use composition was a stronger predictor of abundance. The intensity contributed more to the community indices in anthropogenic habitats (farmland and urban areas) than to those in woodlands. Richness, trophic levels, and specialization in woodlands tended to increase with the NPPremaining value. The heterogeneity of land uses and intensity levels in the landscape consistently promoted species richness but reduced habitat specialization and trophic levels. This study demonstrates the complementarity of NPPremaining to the land-use composition for understanding community structure in anthropogenic landscapes. Our results show, for the first time, that the productivity remai
- Published
- 2017
77. Origin of the latitudinal richness gradient
- Author
-
Engemann, Kristine, Sandel, Brody Steven, Enquist, Brian J., and Svenning, J.-C.
- Subjects
Biogeography ,latitudinal richness pattern ,food and beverages ,environmental niche ,Species richness ,Phylogenetic diversity - Abstract
Spatial variation in richness patterns must be due to variation in rates of speciation, extinction, immigration and emigration. Hotspots of diversity can occur either because they are hotspots of speciation (cradles) or cold spots of extinction (museums) – two major hypotheses that make contrasting predictions for the phylogenetic structure of communities. We test these hypotheses by comparing centers of species richness and phylogenetic clustering for vascular plants in the New World. Range maps for 88,417 plant species were extracted from the Botanical Information and Ecology Network (BIEN) database and combined with the BIEN mega phylogeny of >80,000 species. We calculated the Phylogenetic Diversity Index (PDI) and Net Relatedness Index (NRI) for each cell in a 100×100 km grid using a new computationally efficient algorithm. Species richness patterns were compared to patterns of PDI and NRI. We found that, for all vascular plants, high species richness is associated with high phylogenetic clustering, supporting a “cradle” model of biodiversity hotspots. However, there is marked variation across plant families, which may be explained by variation in lifespans and growth forms.
- Published
- 2015
78. Limited sampling hampers 'big data' estimation of species richness in a tropical biodiversity hotspot:Sampling Hampers Species Richness Estimation
- Author
-
Engemann, Kristine, Enquist, Brian J., Sandel, Brody Steven, Boyle, Brad, Jørgensen, Peter M., Morueta-Holme, Naia, Peet, Robert K., Violle, Cyrille, and Svenning, J.-C.
- Subjects
Richness ,Resampling ,Sampling effort ,Rarefaction ,Ecuador ,Estimation - Abstract
Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with “big data” collections.
- Published
- 2015
- Full Text
- View/download PDF
79. Late Cenozoic climate and the phylogenetic structure of regional conifer floras worldwide
- Author
-
Eiserhardt, W.L., Borchsenius, F., Sandel, B., Kissling, W.D., Svenning, J.-C., and Experimental Plant Systematics (IBED, FNWI)
- Abstract
Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non-random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. Location Global. Methods We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3-11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. Results Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. Main conclusions The climate-NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity.
- Published
- 2015
80. Geographic variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World
- Author
-
Göldel, B., Kissling, W.D., Svenning, J.-C., and Experimental Plant Systematics (IBED, FNWI)
- Subjects
food and beverages - Abstract
Functional traits play a key role in driving biodiversity effects on ecosystem functioning. Here, we examine the geographical distributions of three key functional traits in New World palms (Arecaceae), an ecologically important plant group, and their relationships with current climate, soil and glacial-interglacial climate change. We combined range maps for the New World (N = 541 palm species) with data on traits (leaf size, stem height and fruit size), representing the leaf-height-seed plant strategy scheme of Westoby, to estimate median trait values for palm species assemblages in 110 × 110-km grid cells. Spatial and non-spatial multi-predictor regressions were used with the Akaike Information Criterion to identify minimum adequate models. Present-day seasonality in temperature and precipitation played a major role in explaining geographical variation of all traits. Mean annual temperature and annual precipitation were additionally important for median leaf size. Glacial-interglacial temperature change was the most important predictor for median fruit size. Large-scale soil gradients played only a minor role overall. These results suggest that current climate (larger median trait values with increasing seasonality) and glacial-interglacial temperature change (larger median fruit size with increasing Quaternary temperature anomaly) are important drivers for functional trait distributions of New World palms.
- Published
- 2015
81. Mennesket udryddede alle de store dyr på Jorden
- Author
-
Svenning, J.-C. and Faurby, Søren
- Subjects
megafauna ,extinction - Published
- 2014
82. Palm Functional Traits: which traits matter and how do we measure them?
- Author
-
Eiserhardt, Wolf L., Balslev, Henrik, Barfod, Anders S., Borchsenius, Finn, Göldel, Bastian, Sandel, Brody Steven, and Svenning, J.-C.
- Abstract
In recent years, consideration of functional traits (i.e. traits that determine the role of an organism in ecosystem processes such as carbon, water and nutrient cycling) has fundamentally advanced our understanding of the mechanisms that structure biodiversity and ecosystem function, as well as our ability to predict the consequences of environmental change. At the same time, palms have emerged as a model group for tropical forest community ecology, macroecology and biogeography. However, the functional ecology of palms is relatively little explored, which is unfortunate given the important role of palms in tropical forest ecosystems. We review data availability for palms for four traits that are commonly used in functional plant ecology: specific leaf area (SLA), wood density, seed size, and maximum height. We suggest that palm functional ecology is impeded by some of the standard functional traits being difficult to measure (e.g. SLA) or interpret (e.g. wood density). We show that an SLA measure can be easily obtained from dried specimens, and discuss the problems and opportunities of this approach compared to whole-leaf SLA measurements. Measuring SLA from herbarium samples may allow capturing leaf economics across large parts of the palm family with reasonable amounts of time and money. In recent years, consideration of functional traits (i.e. traits that determine the role of an organism in ecosystem processes such as carbon, water and nutrient cycling) has fundamentally advanced our understanding of the mechanisms that structure biodiversity and ecosystem function, as well as our ability to predict the consequences of environmental change. At the same time, palms have emerged as a model group for tropical forest community ecology, macroecology and biogeography. However, the functional ecology of palms is relatively little explored, which is unfortunate given the important role of palms in tropical forest ecosystems. We review data availability for palms for four traits that are commonly used in functional plant ecology: specific leaf area (SLA), wood density, seed size, and maximum height. We suggest that palm functional ecology is impeded by some of the standard functional traits being difficult to measure (e.g. SLA) or interpret (e.g. wood density). We show that an SLA measure can be easily obtained from dried specimens, and discuss the problems and opportunities of this approach compared to whole-leaf SLA measurements. Measuring SLA from herbarium samples may allow capturing leaf economics across large parts of the palm family with reasonable amounts of time and money.
- Published
- 2014
83. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
- Author
-
Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips, H.R.P., Alhusseini, T.I., Bedford, F.E., Bennett, D.J., Booth, H., Burton, V.J., Chng, C.W.T., Choimes, A., Correia, D.L.P., Day, J., Echeverría-Londoño, S., Emerson, S.R., Gao, D., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp, V., Kirkpatrick, L., Martin, C.D., Pan, Y., Pask-Hale, G.D., Pynegar, E.L., Robinson, A.N., Sanchez-Ortiz, K., Senior, R.A., Simmons, B.I., White, H.J., Zhang, H., Aben, J., Abrahamczyk, S., Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Albertos, B., Alcala, E.L., del Mar Alguacil, M., Alignier, A., Ancrenaz, M., Andersen, A.N., Arbeláez-Cortés, E., Armbrecht, I., Arroyo-Rodríguez, V., Aumann, T., Axmacher, J.C., Azhar, B., Azpiroz, A.B., Baeten, L., Bakayoko, A., Báldi, A., Banks, J.E., Baral, S.K., Barlow, J., Barratt, B.I.P., Barrico, L., Bartolommei, P., Barton, D.M., Basset, Y., Batáry, P., Bates, A.J., Baur, B., Bayne, E.M., Beja, P., Benedick, S., Berg, A., Bernard, H., Berry, N.J., Bhatt, D., Bicknell, J.E., Bihn, J.H., Blake, R.J., Bobo, K.S., Bóçon, R., Boekhout, T., Böhning-Gaese, K., Bonham, K.J., Borges, P.A.V., Borges, S.H., Boutin, C., Bouyer, J., Bragagnolo, C., Brandt, J.S., Brearley, F.Q., Brito, I., Bros, V., Brunet, J., Buczkowski, G., Buddle, C.M., Bugter, R., Buscardo, E., Buse, J., Cabra-García, J., Cáceres, N.C., Cagle, N.L., Calviño-Cancela, M., Cameron, S.A., Cancello, E.M., Caparrós, R., Cardoso, P., Carpenter, D., Carrijo, T.F., Carvalho, A.L., Cassano, C.R., Castro, H., Castro-Luna, A.A., Rolando, C.B., Cerezo, A., Chapman, K.A., Chauvat, M., Christensen, M., Clarke, F.M., Cleary, D.F.R., Colombo, G., Connop, S.P., Craig, M.D., Cruz-López, L., Cunningham, S.A., D'Aniello, B., D'Cruze, N., da Silva, P.G., Dallimer, M., Danquah, E.Y., Darvill, B., Dauber, J., Davis, A.L.V., Dawson, J., de Sassi, C., de Thoisy, B., Deheuvels, O., Dejean, A., Devineau, J.-L., Diekötter, T., Dolia, J.V., Domínguez, E., Dominguez-Haydar, Y., Dorn, S., Draper, I., Dreber, N., Dumont, B., Dures, S.G., Dynesius, M., Edenius, L., Eggleton, P., Eigenbrod, F., Elek, Z., Entling, M.H., Esler, K.J., de Lima, R.F., Faruk, A., Farwig, N., Fayle, T.M., Felicioli, A., Felton, A.M., Fensham, R.J., Fernandez, I.C., Ferreira, C.C., Ficetola, G.F., Fiera, C., Filgueiras, B.K.C., Fırıncıoğlu, H.K., Flaspohler, D., Floren, A., Fonte, S.J., Fournier, A., Fowler, R.E., Franzén, M., Fraser, L.H., Fredriksson, G.M., Freire, G.B., Frizzo, T.L.M., Fukuda, D., Furlani, D., Gaigher, R., Ganzhorn, J.U., García, K.P., Garcia-R, J.C., Garden, J.G., Garilleti, R., Ge, B.-M., Gendreau-Berthiaume, B., Gerard, P.J., Gheler-Costa, C., Gilbert, B., Giordani, P., Giordano, S., Golodets, C., Gomes, L.G.L., Gould, R.K., Goulson, D., Gove, A.D., Granjon, L., Grass, I., Gray, C.L., Grogan, J., Gu, W., Guardiola, M., Gunawardene, N.R., Gutierrez, A.G., Gutiérrez-Lamus, D.L., Haarmeyer, D.H., Hanley, M.E., Hanson, T., Hashim, N.R., Hassan, S.N., Hatfield, R.G., Hawes, J.E., Hayward, M.W., Hébert, C., Helden, A.J., Henden, J.-A., Henschel, P., Hernández, L., Herrera, J.P., Herrmann, F., Herzog, F., Higuera-Diaz, D., Hilje, B., Hofer, H., Hoffmann, A., Horgan, F.G., Hornung, E., Horváth, R., Hylander, K., Isaacs-Cubides, P., Ishida, H., Ishitani, M., Jacobs, C.T., Jaramillo, V.J., Jauker, B., Hernández, F.J., Johnson, M.F., Jolli, V., Jonsell, M., Juliani, S.N., Jung, T.S., Kapoor, V., Kappes, H., Kati, V., Katovai, E., Kellner, K., Kessler, M., Kirby, K.R., Kittle, A.M., Knight, M.E., Knop, E., Köhler, F., Koivula, M., Kolb, A., Kone, M., Kőrösi, Á., Krauss, J., Kumar, A., Kumar, R., Kurz, D.J., Kutt, A.S., Lachat, T., Lantschner, V., Lara, F., Lasky, J.R., Latta, S.C., Laurance, W.F., Lavelle, P., Le Féon, V., LeBuhn, G., Légaré, J.-P., Lehouck, V., Lencinas, M.V., Lentini, P.E., Letcher, S.G., Li, Q., Litchwark, S.A., Littlewood, N.A., Liu, Y., Lo-Man-Hung, N., López-Quintero, C.A., Louhaichi, M., Lövei, G.L., Lucas-Borja, M.E., Luja, V.H., Luskin, M.S., MacSwiney G, M.C., Maeto, K., Magura, T., Mallari, N.A., Malone, L.A., Malonza, P.K., Malumbres-Olarte, J., Mandujano, S., Måren, I.E., Marin-Spiotta, E., Marsh, C.J., Marshall, E.J.P., Martínez, E., Martínez Pastur, G., Moreno Mateos, D., Mayfield, M.M., Mazimpaka, V., McCarthy, J.L., McCarthy, K.P., McFrederick, Q.S., McNamara, S., Medina, N.G., Medina, R., Mena, J.L., Mico, E., Mikusinski, G., Milder, J.C., Miller, J.R., Miranda-Esquivel, D.R., Moir, M.L., Morales, C.L., Muchane, M.N., Muchane, M., Mudri-Stojnic, S., Munira, A.N., Muoñz-Alonso, A., Munyekenye, B.F., Naidoo, R., Naithani, A., Nakagawa, M., Nakamura, A., Nakashima, Y., Naoe, S., Nates-Parra, G., Navarrete Gutierrez, D.A., Navarro-Iriarte, L., Ndang'ang'a, P.K., Neuschulz, E.L., Ngai, J.T., Nicolas, V., Nilsson, S.G., Noreika, N., Norfolk, O., Noriega, J.A., Norton, D.A., Nöske, N.M., Nowakowski, A.J., Numa, C., O'Dea, N., O'Farrell, P.J., Oduro, W., Oertli, S., Ofori-Boateng, C., Oke, C.O., Oostra, V., Osgathorpe, L.M., Otavo, S.E., Page, N.V., Paritsis, J., Parra-H, A., Parry, L., Pe'er, G., Pearman, P.B., Pelegrin, N., Pélissier, R., Peres, C.A., Peri, P.L., Persson, A.S., Petanidou, T., Peters, M.K., Pethiyagoda, R.S., Phalan, B., Philips, T.K., Pillsbury, F.C., Pincheira-Ulbrich, J., Pineda, E., Pino, J., Pizarro-Araya, J., Plumptre, A. J., Poggio, S.L., Politi, N., Pons, P., Poveda, K., Power, E.F., Presley, S.J., Proença, V., Quaranta, M., Quintero, C., Rader, R., Ramesh, B.R., Ramirez-Pinilla, M.P., Ranganathan, J., Rasmussen, C., Redpath-Downing, N.A., Reid, J.L., Reis, Y.T., Rey Benayas, J.M., Rey-Velasco, J.C., Reynolds, C., Ribeiro, D.B., Richards, M.H., Richardson, B.A., Richardson, M.J., Ríos, R.M., Robinson, R., Robles, C.A., Römbke, J., Romero-Duque, L.P., Rös, M., Rosselli, L., Rossiter, S.J., Roth, D.S., Roulston, T.H., Rousseau, L., Rubio, A.V., Ruel, J.-C., Sadler, J.P., Sáfián, S., Saldaña-Vázquez, R.A., Sam, K., Samnegård, U., Santana, J., Santos, X., Savage, J., Schellhorn, N.A., Schilthuizen, M., Schmiedel, U., Schmitt, C.B., Schon, N.L., Schüepp, C., Schumann, K., Schweiger, O., Scott, D.M., Scott, K.A., Sedlock, J.L., Seefeldt, S.S., Shahabuddin, G., Shannon, G., Sheil, D., Sheldon, F.H., Shochat, E., Siebert, S.J., Silva, F.A.B., Simonetti, J.A., Slade, E.M., Smith, J., Smith-Pardo, A.H., Sodhi, N.S., Somarriba, E.J., Sosa, R.A., Soto Quiroga, G., St-Laurent, M.-H., Starzomski, B.M., Stefanescu, C., Steffan-Dewenter, I., Stouffer, P.C., Stout, J.C., Strauch, A.M., Struebig, M.J., Su, Z., Suarez-Rubio, M., Sugiura, S., Summerville, K.S., Sung, Y.-H., Sutrisno, H., Svenning, J.-C., Teder, T., Threlfall, C.G., Tiitsaar, A., Todd, J.H., Tonietto, R.K., Torre, I., Tóthmérész, B., Tscharntke, T., Turner, E.C., Tylianakis, J.M., Uehara-Prado, M., Urbina-Cardona, N., Vallan, D., Vanbergen, A.J., Vasconcelos, H.L., Vassilev, K., Verboven, H.A.F., Verdasca, M.J., Verdú, J.R., Vergara, C.H., Vergara, P.M., Verhulst, J., Virgilio, M., Vu, L.V., Waite, E.M., Walker, T.R., Wang, H.-F., Wang, Y., Watling, J.I., Weller, B., Wells, K., Westphal, C., Wiafe, E.D., Williams, C.D., Willig, M.R., Woinarski, J.C.Z., Wolf, J.H.D., Wolters, V., Woodcock, B.A., Wu, J., Wunderle, J.M., Yamaura, Y., Yoshikura, S., Yu, D.W., Zaitsev, A.S., Zeidler, J., Zou, F., Collen, B., Ewers, R.M., Mace, G.M., Purves, D.W., Scharlemann, J.P.W., Purvis, A., Hudson, L.N., Newbold, T., Contu, S., Hill, S.L.L., Lysenko, I., De Palma, A., Phillips, H.R.P., Alhusseini, T.I., Bedford, F.E., Bennett, D.J., Booth, H., Burton, V.J., Chng, C.W.T., Choimes, A., Correia, D.L.P., Day, J., Echeverría-Londoño, S., Emerson, S.R., Gao, D., Garon, M., Harrison, M.L.K., Ingram, D.J., Jung, M., Kemp, V., Kirkpatrick, L., Martin, C.D., Pan, Y., Pask-Hale, G.D., Pynegar, E.L., Robinson, A.N., Sanchez-Ortiz, K., Senior, R.A., Simmons, B.I., White, H.J., Zhang, H., Aben, J., Abrahamczyk, S., Adum, G.B., Aguilar-Barquero, V., Aizen, M.A., Albertos, B., Alcala, E.L., del Mar Alguacil, M., Alignier, A., Ancrenaz, M., Andersen, A.N., Arbeláez-Cortés, E., Armbrecht, I., Arroyo-Rodríguez, V., Aumann, T., Axmacher, J.C., Azhar, B., Azpiroz, A.B., Baeten, L., Bakayoko, A., Báldi, A., Banks, J.E., Baral, S.K., Barlow, J., Barratt, B.I.P., Barrico, L., Bartolommei, P., Barton, D.M., Basset, Y., Batáry, P., Bates, A.J., Baur, B., Bayne, E.M., Beja, P., Benedick, S., Berg, A., Bernard, H., Berry, N.J., Bhatt, D., Bicknell, J.E., Bihn, J.H., Blake, R.J., Bobo, K.S., Bóçon, R., Boekhout, T., Böhning-Gaese, K., Bonham, K.J., Borges, P.A.V., Borges, S.H., Boutin, C., Bouyer, J., Bragagnolo, C., Brandt, J.S., Brearley, F.Q., Brito, I., Bros, V., Brunet, J., Buczkowski, G., Buddle, C.M., Bugter, R., Buscardo, E., Buse, J., Cabra-García, J., Cáceres, N.C., Cagle, N.L., Calviño-Cancela, M., Cameron, S.A., Cancello, E.M., Caparrós, R., Cardoso, P., Carpenter, D., Carrijo, T.F., Carvalho, A.L., Cassano, C.R., Castro, H., Castro-Luna, A.A., Rolando, C.B., Cerezo, A., Chapman, K.A., Chauvat, M., Christensen, M., Clarke, F.M., Cleary, D.F.R., Colombo, G., Connop, S.P., Craig, M.D., Cruz-López, L., Cunningham, S.A., D'Aniello, B., D'Cruze, N., da Silva, P.G., Dallimer, M., Danquah, E.Y., Darvill, B., Dauber, J., Davis, A.L.V., Dawson, J., de Sassi, C., de Thoisy, B., Deheuvels, O., Dejean, A., Devineau, J.-L., Diekötter, T., Dolia, J.V., Domínguez, E., Dominguez-Haydar, Y., Dorn, S., Draper, I., Dreber, N., Dumont, B., Dures, S.G., Dynesius, M., Edenius, L., Eggleton, P., Eigenbrod, F., Elek, Z., Entling, M.H., Esler, K.J., de Lima, R.F., Faruk, A., Farwig, N., Fayle, T.M., Felicioli, A., Felton, A.M., Fensham, R.J., Fernandez, I.C., Ferreira, C.C., Ficetola, G.F., Fiera, C., Filgueiras, B.K.C., Fırıncıoğlu, H.K., Flaspohler, D., Floren, A., Fonte, S.J., Fournier, A., Fowler, R.E., Franzén, M., Fraser, L.H., Fredriksson, G.M., Freire, G.B., Frizzo, T.L.M., Fukuda, D., Furlani, D., Gaigher, R., Ganzhorn, J.U., García, K.P., Garcia-R, J.C., Garden, J.G., Garilleti, R., Ge, B.-M., Gendreau-Berthiaume, B., Gerard, P.J., Gheler-Costa, C., Gilbert, B., Giordani, P., Giordano, S., Golodets, C., Gomes, L.G.L., Gould, R.K., Goulson, D., Gove, A.D., Granjon, L., Grass, I., Gray, C.L., Grogan, J., Gu, W., Guardiola, M., Gunawardene, N.R., Gutierrez, A.G., Gutiérrez-Lamus, D.L., Haarmeyer, D.H., Hanley, M.E., Hanson, T., Hashim, N.R., Hassan, S.N., Hatfield, R.G., Hawes, J.E., Hayward, M.W., Hébert, C., Helden, A.J., Henden, J.-A., Henschel, P., Hernández, L., Herrera, J.P., Herrmann, F., Herzog, F., Higuera-Diaz, D., Hilje, B., Hofer, H., Hoffmann, A., Horgan, F.G., Hornung, E., Horváth, R., Hylander, K., Isaacs-Cubides, P., Ishida, H., Ishitani, M., Jacobs, C.T., Jaramillo, V.J., Jauker, B., Hernández, F.J., Johnson, M.F., Jolli, V., Jonsell, M., Juliani, S.N., Jung, T.S., Kapoor, V., Kappes, H., Kati, V., Katovai, E., Kellner, K., Kessler, M., Kirby, K.R., Kittle, A.M., Knight, M.E., Knop, E., Köhler, F., Koivula, M., Kolb, A., Kone, M., Kőrösi, Á., Krauss, J., Kumar, A., Kumar, R., Kurz, D.J., Kutt, A.S., Lachat, T., Lantschner, V., Lara, F., Lasky, J.R., Latta, S.C., Laurance, W.F., Lavelle, P., Le Féon, V., LeBuhn, G., Légaré, J.-P., Lehouck, V., Lencinas, M.V., Lentini, P.E., Letcher, S.G., Li, Q., Litchwark, S.A., Littlewood, N.A., Liu, Y., Lo-Man-Hung, N., López-Quintero, C.A., Louhaichi, M., Lövei, G.L., Lucas-Borja, M.E., Luja, V.H., Luskin, M.S., MacSwiney G, M.C., Maeto, K., Magura, T., Mallari, N.A., Malone, L.A., Malonza, P.K., Malumbres-Olarte, J., Mandujano, S., Måren, I.E., Marin-Spiotta, E., Marsh, C.J., Marshall, E.J.P., Martínez, E., Martínez Pastur, G., Moreno Mateos, D., Mayfield, M.M., Mazimpaka, V., McCarthy, J.L., McCarthy, K.P., McFrederick, Q.S., McNamara, S., Medina, N.G., Medina, R., Mena, J.L., Mico, E., Mikusinski, G., Milder, J.C., Miller, J.R., Miranda-Esquivel, D.R., Moir, M.L., Morales, C.L., Muchane, M.N., Muchane, M., Mudri-Stojnic, S., Munira, A.N., Muoñz-Alonso, A., Munyekenye, B.F., Naidoo, R., Naithani, A., Nakagawa, M., Nakamura, A., Nakashima, Y., Naoe, S., Nates-Parra, G., Navarrete Gutierrez, D.A., Navarro-Iriarte, L., Ndang'ang'a, P.K., Neuschulz, E.L., Ngai, J.T., Nicolas, V., Nilsson, S.G., Noreika, N., Norfolk, O., Noriega, J.A., Norton, D.A., Nöske, N.M., Nowakowski, A.J., Numa, C., O'Dea, N., O'Farrell, P.J., Oduro, W., Oertli, S., Ofori-Boateng, C., Oke, C.O., Oostra, V., Osgathorpe, L.M., Otavo, S.E., Page, N.V., Paritsis, J., Parra-H, A., Parry, L., Pe'er, G., Pearman, P.B., Pelegrin, N., Pélissier, R., Peres, C.A., Peri, P.L., Persson, A.S., Petanidou, T., Peters, M.K., Pethiyagoda, R.S., Phalan, B., Philips, T.K., Pillsbury, F.C., Pincheira-Ulbrich, J., Pineda, E., Pino, J., Pizarro-Araya, J., Plumptre, A. J., Poggio, S.L., Politi, N., Pons, P., Poveda, K., Power, E.F., Presley, S.J., Proença, V., Quaranta, M., Quintero, C., Rader, R., Ramesh, B.R., Ramirez-Pinilla, M.P., Ranganathan, J., Rasmussen, C., Redpath-Downing, N.A., Reid, J.L., Reis, Y.T., Rey Benayas, J.M., Rey-Velasco, J.C., Reynolds, C., Ribeiro, D.B., Richards, M.H., Richardson, B.A., Richardson, M.J., Ríos, R.M., Robinson, R., Robles, C.A., Römbke, J., Romero-Duque, L.P., Rös, M., Rosselli, L., Rossiter, S.J., Roth, D.S., Roulston, T.H., Rousseau, L., Rubio, A.V., Ruel, J.-C., Sadler, J.P., Sáfián, S., Saldaña-Vázquez, R.A., Sam, K., Samnegård, U., Santana, J., Santos, X., Savage, J., Schellhorn, N.A., Schilthuizen, M., Schmiedel, U., Schmitt, C.B., Schon, N.L., Schüepp, C., Schumann, K., Schweiger, O., Scott, D.M., Scott, K.A., Sedlock, J.L., Seefeldt, S.S., Shahabuddin, G., Shannon, G., Sheil, D., Sheldon, F.H., Shochat, E., Siebert, S.J., Silva, F.A.B., Simonetti, J.A., Slade, E.M., Smith, J., Smith-Pardo, A.H., Sodhi, N.S., Somarriba, E.J., Sosa, R.A., Soto Quiroga, G., St-Laurent, M.-H., Starzomski, B.M., Stefanescu, C., Steffan-Dewenter, I., Stouffer, P.C., Stout, J.C., Strauch, A.M., Struebig, M.J., Su, Z., Suarez-Rubio, M., Sugiura, S., Summerville, K.S., Sung, Y.-H., Sutrisno, H., Svenning, J.-C., Teder, T., Threlfall, C.G., Tiitsaar, A., Todd, J.H., Tonietto, R.K., Torre, I., Tóthmérész, B., Tscharntke, T., Turner, E.C., Tylianakis, J.M., Uehara-Prado, M., Urbina-Cardona, N., Vallan, D., Vanbergen, A.J., Vasconcelos, H.L., Vassilev, K., Verboven, H.A.F., Verdasca, M.J., Verdú, J.R., Vergara, C.H., Vergara, P.M., Verhulst, J., Virgilio, M., Vu, L.V., Waite, E.M., Walker, T.R., Wang, H.-F., Wang, Y., Watling, J.I., Weller, B., Wells, K., Westphal, C., Wiafe, E.D., Williams, C.D., Willig, M.R., Woinarski, J.C.Z., Wolf, J.H.D., Wolters, V., Woodcock, B.A., Wu, J., Wunderle, J.M., Yamaura, Y., Yoshikura, S., Yu, D.W., Zaitsev, A.S., Zeidler, J., Zou, F., Collen, B., Ewers, R.M., Mace, G.M., Purves, D.W., Scharlemann, J.P.W., and Purvis, A.
- Abstract
The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
- Published
- 2016
84. Delineating probabilistic species pools in ecology and biogeography
- Author
-
Karger, D.N., Cord, Anna, Kessler, M., Kreft, H., Kühn, Ingolf, Pompe, Sven, Sandel, B., Cabral, J.S., Smith, A.B., Svenning, J.-C., Tuomisto, H., Weigelt, P., Wesche, K., Karger, D.N., Cord, Anna, Kessler, M., Kreft, H., Kühn, Ingolf, Pompe, Sven, Sandel, B., Cabral, J.S., Smith, A.B., Svenning, J.-C., Tuomisto, H., Weigelt, P., and Wesche, K.
- Abstract
AimTo provide a mechanistic and probabilistic framework for defining the species pool based on species-specific probabilities of dispersal, environmental suitability and biotic interactions within a specific temporal extent, and to show how probabilistic species pools can help disentangle the geographical structure of different community assembly processes.InnovationProbabilistic species pools provide an improved species pool definition based on probabilities in conjunction with the associated species list, which explicitly recognize the indeterminate nature of species pool membership for a given focal unit of interest and better capture real-world complexity. Probabilistic species pools provide a quantitative assessment of how dispersal, environmental or biotic factors influence estimates of species pool composition and size for a given temporal extent.ConclusionsBased on one simulated and two empirical examples we demonstrate that probabilistic species pools allow us to disentangle the geographical variation in dispersal, environmental and biotic assembly processes for species assemblages in focal units. We also show that probabilistic species pools are fully compatible with traditional definitions of species pools and are applicable over a wide range of spatial and temporal extents. Additionally they are robust to missing data and provide a quantified and transparent approach to estimating the size and composition of species pools in a mechanistic way, providing a valuable tool for studies from community ecology to macroecology.
- Published
- 2016
85. Unifying European Biodiversity Informatics (BioUnify)
- Author
-
Koureas, D, Hardisty, A, Vos, R, Agosti, D, Arvanitidis, C, Bogatencov, P, Buttigieg, PL, de Jong, Y, Horvath, F, Gkoutos, G, Groom, Q, Kliment, T, Kõljalg, U, Manakos, I, Marcer, A, Marhold, K, Morse, D, Mergen, P, Penev, L, Pettersson, L, Svenning, J-C, van de Putte, A, Smith, V, Koureas, D, Hardisty, A, Vos, R, Agosti, D, Arvanitidis, C, Bogatencov, P, Buttigieg, PL, de Jong, Y, Horvath, F, Gkoutos, G, Groom, Q, Kliment, T, Kõljalg, U, Manakos, I, Marcer, A, Marhold, K, Morse, D, Mergen, P, Penev, L, Pettersson, L, Svenning, J-C, van de Putte, A, and Smith, V
- Published
- 2016
86. Realising the potential of herbarium records for conservation biology
- Author
-
Greve, M., primary, Lykke, A.M., additional, Fagg, C.W., additional, Gereau, R.E., additional, Lewis, G.P., additional, Marchant, R., additional, Marshall, A.R., additional, Ndayishimiye, J., additional, Bogaert, J., additional, and Svenning, J.-C., additional
- Published
- 2016
- Full Text
- View/download PDF
87. The difference between trivial and scientific names: There were never any true cheetahs in North America
- Author
-
Faurby, S., primary, Werdelin, L., additional, and Svenning, J. C., additional
- Published
- 2016
- Full Text
- View/download PDF
88. Seasonality drives global-scale diversity patterns in waterfowl (Anseriformes) via temporal niche exploitation
- Author
-
Dalby, Lars, McGill, Brian J, Fox, Anthony David, and Svenning, J.-C.
- Published
- 2014
- Full Text
- View/download PDF
89. Refugia within refugia - patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula
- Author
-
Rodenas, Pedro Abellan and Svenning, J.-C.
- Published
- 2014
- Full Text
- View/download PDF
90. Exploring the determinants of phylogenetic diversity and assemblage structure in conifers across temporal, spatial, and taxonomic scales
- Author
-
Eiserhardt, Wolf L., Borchsenius, Finn, Sandel, Brody Steven, and Svenning, J.-C.
- Abstract
Composition, diversity, structure and function of modern plant communities are strongly related to the current environment, but they may also depend on past eco-evolutionary dynamics. For example, climate change can exert a strong influence on lineage diversification and niche evolution, and thus have long-lasting effects on species pools and local assemblages. Integrating such long-term dynamics with short-term ecological processes in a common analytical framework is a major challenge of integrative biodiversity science. Phylogenetically informed diversity measures and palaeo-environmental models are important elements in this framework. Here, we integrate both types of data in order to explore the determinants of forest tree diversity using the conifers as a model group. Conifers are an old, diverse (ca. 650 spp. in 6 families) and widespread group of woody plants of high ecological and economic importance. They are better studied than most other globally distributed groups of forest trees, allowing integrative studies with high phylogenetic and spatial resolution. We analyse phylogenetic diversity, assemblage structure, and diversification rates for regional conifer assemblages throughout the natural range of the group (269 TDWG3 “botanical countries”) to infer the effects of current and past climate . To explore the effects of taxonomic and spatial scale, we deconstruct the overall pattern into families and perform a fine-scale analysis for one particular lineage (the genus Pinus, 111 spp.). In particular, we address the hypothesis that long-term palaeo-climatic stability has a major effect on forest tree assemblages, requiring us to interpret and analyse the diversity and function of modern forest ecosystems on much larger timescales than is usually done. Together, those analyses will allow an integrated view of the ecological and evolutionary processes underlying the diversity and structure of conifer assemblages worldwide . Composition, diversity, structure and function of modern plant communities are strongly related to the current environment, but they may also depend on past eco-evolutionary dynamics. For example, climate change can exert a strong influence on lineage diversification and niche evolution, and thus have long-lasting effects on species pools and local assemblages. Integrating such long-term dynamics with short-term ecological processes in a common analytical framework is a major challenge of integrative biodiversity science. Phylogenetically informed diversity measures and palaeo-environmental models are important elements in this framework. Here, we integrate both types of data in order to explore the determinants of forest tree diversity using the conifers as a model group. Conifers are an old, diverse (ca. 650 spp. in 6 families) and widespread group of woody plants of high ecological and economic importance. They are better studied than most other globally distributed groups of forest trees, allowing integrative studies with high phylogenetic and spatial resolution. We analyse phylogenetic diversity, assemblage structure, and diversification rates for regional conifer assemblages throughout the natural range of the group (269 TDWG3 “botanical countries”) to infer the effects of current and past climate . To explore the effects of taxonomic and spatial scale, we deconstruct the overall pattern into families and perform a fine-scale analysis for one particular lineage (the genus Pinus, 111 spp.). In particular, we address the hypothesis that long-term palaeo-climatic stability has a major effect on forest tree assemblages, requiring us to interpret and analyse the diversity and function of modern forest ecosystems on much larger timescales than is usually done. Together, those analyses will allow an integrated view of the ecological and evolutionary processes underlying the diversity and structure of conifer assemblages worldwide .
- Published
- 2013
91. Tree cover changes in- and outside protected areas in China
- Author
-
Nüchel, Jonas, Bøcher, Peder Klith, and Svenning, J.-C.
- Subjects
China ,sense organs ,Biodiversity ,Conservation ,skin and connective tissue diseases ,Protected areas - Abstract
Protected areas (PAs) are one of the main tools in the global conservation of biodiversity and ecosystems. This is also the case for China. However, only few studies have investigated protected areas´ efficiency in maintaining ecosystems and biodiversity. One way to investigate this is to look at tree cover changes inside the PAs and on the surrounding areas. Using MODIS Vegetation Continuous Fields we mapped tree-cover changes between 2000-2010 in- and outside PAs in China. The PAs were extracted from the World Database on Protected Areas. Our aim were to investigated the following four questions; 1) Have there been any tree cover changes inside the PAs? 2) Are any such tree cover changes inside the PAs less than in the surrounding areas (areas within 10 km from a given PA)? 3) Do tree cover changes inside and outside PAs increase with increasing general human pressures in a region? 4) Does the efficiency of the PAs depend on general human pressures in the region? We used a paired t-test to investigate if there was a significant change in tree cover between the protected areas and the 10-km zones surrounding them. There were both negative and positive tree cover changes inside the PAs, but they did not differ significantly from the tree cover change in the buffer zones. The average mean tree cover change for the PAs was 2.69 % and for the buffer zones was it 2.73 %. In addition, we link tree cover changes to the Human Influence Index and tested if there were a correlation between tree cover change and general human pressure. We did not find a significant correlation between tree cover change inside and outside PAs with increasing general human pressures. The lack of correlation could be due to the huge reforestation China has carried out the last years, mainly to stop desertification. In a further study will we investigate if there is a correlation between tree cover change and other variables, e.g. elevation and slope, inside and outside the PAs and also if HII correlates with overall tree cover change in China.Keywords: biodiversity, biogeography, conservation, China, protected areas
- Published
- 2013
92. Correlation of plant growth form, diversity and climate
- Author
-
Engemann, Kristine, Dobrin, Barbara, Morueta-Holme, Naia, Enquist, Brian, and Svenning, J.-C.
- Subjects
biodiversity, biogeography, climate change, habit, boosted regression trees - Published
- 2013
93. Latitudinal and Elevational Range Shifts under Contemporary Climate Change
- Author
-
Lenoir, Jonathan, Svenning, J.-C., and Levin, Simon A.
- Published
- 2013
- Full Text
- View/download PDF
94. Ecosystem service bundles in Denmark:the effects of different management scales
- Author
-
Turner, Katrine Grace, Bøcher, Peder Klith, Kjeldsen, Chris, Svenning, J.-C., and Dalgaard, Tommy
- Published
- 2013
95. Global Biogeography and Diversification History of Palms
- Author
-
Baker, William J., Eiserhardt, Wolf L., Kissling, W. Daniel, Svenning, J.-C., and Couvreur, Thomas L.P.
- Abstract
Recent biogeographic and ecoinformatic studies of palms provide a global context for the spatio-temporal evolution of palms and the tropical rain forests that they inhabit. Palms display high rain forest niche conservatism, with >90% of species occurring in this biome. The global distribution of clades and species richness is highly structured, suggestive of complex, differentiated patterns of evolutionary drivers. Macroecological studies show that palm species richness is globally contingent on climatic variables typical of the humid tropics, while island palm floras are also influenced by area and habitat heterogeneity variables. Incorporation of phylogenetic evidence reveals strong imprints of in situ diversification in the Neotropics and on islands, of biotic interchange, and of forest loss in Africa. We inferred an origin for palms in the mid-Cretaceous of Laurasia, which is significant for our understanding of rain forests because fossil evidence for this biome prior to the Palaeocene is weak. Lineage diversification in palms has proceeded in a constant manner from 100 Ma at least until the Miocene, conforming to the museum model of diversification. Since the Miocene, diversification rates of species-rich lineages have increased, consistent with ecoinformatic evidence for the role of in situ radiations on islands and the Neotropics identified above. Species-level phylogenetic studies and ecoinformatic analyses of the impact of past climate change, geological processes and sea level change on palm diversity are now required to add essential detail to the broad global picture given here.
- Published
- 2013
96. Spatial Patterns of Palm Diversity from a Phylogenetic Perspective
- Author
-
Eiserhardt, Wolf L., Svenning, J.-C., Kissling, W. Daniel, Borchsenius, Finn, Barfod, Anders S., and Balslev, Henrik
- Abstract
With ~2,500 species and a Pantropical distribution, the palm family (Arecaceae) has emerged as an important model taxon for studies of tropical plant diversity. In a recent review we showed that palm species distributions, species composition, and species richness depend on ecological factors at various spatial scales, but there are also strong indications of historical legacies. The influence of contemporary environments notwithstanding, diversity patterns can be shaped over tens of millions of years by the processes of speciation, extinction, niche evolution, and long-term dispersal limitation. Robust and well-resolved phylogenetic trees, in combination with comprehensive distributional and trait data, can provide important insights into the long-term causes of spatial biodiversity patterns. Palms lend themselves to such research not least due to an exceptionally good data basis, and several studies using a variety of approaches have recently shown that the distribution of palm diversity is strongly influenced by the phylogenetic history of the family. Here, we provide an overview of evidence for evolutionary imprints on palm diversity patterns (sensu lato), including our own studies where we applied ecoinformatics to study phylogenetic diversity and assemblage structure. It appears that evolutionary processes are important for palm diversity patterns across spatial scales ranging from local communities to biogeographic realms, with the influence of individual processes being scale dependent. We suggest that a further integration of phylogenetic, biogeographic, macroevolutionary and ecoinformatics approaches is needed to better quantify the spatial and temporal scaling of evolutionary processes underlying palm diversity dynamics.
- Published
- 2013
97. Near-ground temperature variability and its predictability in Denmark
- Author
-
Jones, Mirkka, Moeslund, Jesper Erenskjold, Alexander, Cici, Bøcher, Peder Klith, and Svenning, J.-C.
- Published
- 2013
98. Rewilding
- Author
-
Sandom, Christopher James, Donlan, C.J., Svenning, J.-C., Hansen, Dennis, MacDonald, David W., and Willis, Katherine J.
- Subjects
rewilding - Published
- 2013
99. Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents
- Author
-
Eiserhardt, W. L., Svenning, J. C., Baker, W. J., Couvreur, Thomas, and Balslev, H.
- Abstract
The turnover of phylogenetic clades across space is a fundamental biodiversity pattern that may depend on long-term evolutionary processes, and that has downstream effects on other aspects of diversity including species richness and community structure. Limited niche evolution and limited dispersal are two major processes causing spatial restriction, and thus turnover, of clades. We studied the determinants of clade turnover within the World's richest floristic kingdom, the Neotropics, using the palm family (Arecaceae) as a model. We show that continental-scale clade turnover is driven by a combination of limited niche evolution - with respect to temperature and soil tolerances - and limited dispersal. These findings are consistent with strong dispersal barriers within the Neotropics, and the observation that some palm lineages are most diverse in certain biomes or climates. The importance of such deep-time effects suggest that palms might be slow to adapt or disperse in response to anthropogenic climate change.
- Published
- 2013
100. Continental-scale variability in browser diversity is a major driver of diversity patterns in acacias across Africa
- Author
-
Greve, M., Lykke, A.M., Fagg, C.W., Bogaert, J., Friis, I., Marchant, R., Marshall, A.R., Ndayishimiye, J., Sandel, B.S., Sandom, C., Schmidt, M., Timberlake, J.R., Wieringa, J.J., Zizka, G., and Svenning, J.-C.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.