910 results on '"Sugden, P H"'
Search Results
52. Activation of the Small GTP-binding Protein Ras in the Heart by Hypertrophic Agonists
- Author
-
Sugden, P. H. and Clerk, A.
- Published
- 2000
- Full Text
- View/download PDF
53. Pro-inflammatory Cytokines Stimulate Mitogen-activated Protein Kinase Subfamilies, Increase Phosphorylation of c-Jun and ATF2 and Upregulate c-Jun Protein in Neonatal Rat Ventricular Myocytes
- Author
-
Clerk, Angela, Harrison, Joanne G, Long, Carlin S, and Sugden, Peter H
- Abstract
A. Clerk, J. G. Harrison, C. S. Long and P. H. Sugden. Pro-inflammatory Cytokines Stimulate Mitogen-activated Protein Kinase Subfamilies, Increase Phosphorylation of c-Jun and ATF2 and Upregulate c-Jun Protein in Neonatal Rat Ventricular Myocytes. Journal of Molecular and Cellular Cardiology(1999) 31, 2087–2099. Pro-inflammatory cytokines may be important in the pathophysiological responses of the heart. We investigated the activation of the three mitogen-activated protein kinase (MAPK) subfamilies [c-Jun N-terminal kinases (JNKs), p38-MAPKs and extracellularly-responsive kinases (ERKs)] by interleukin-1 β(IL-1 β) or tumour necrosis factorα(TNF α) in primary cultures of myocytes isolated from neonatal rat ventricles. Both cytokines stimulated a rapid (maximal within 10 min) increase in JNK activity. Although activation of JNKs by IL-1 βwas transient returning to control values within 1 h, the response to TNF αwas sustained. IL-1 βand TNFαalso stimulated p38-MAPK phosphorylation, but the response to IL-1 βwas consistently greater than TNFα. Both cytokines activated ERKs, but to a lesser degree than that induced by phorbol esters. The transcription factors, c-Jun and ATF2, are phosphorylated by the MAPKs and are implicated in the upregulation of c-Jun. IL-1 βand TNF αstimulated the phosphorylation of c-Jun and ATF2. However, IL-1 βinduced a greater increase in c-Jun protein. Inhibitors of protein kinase C (PKC) (Ro318220, GF109203X) and the ERK cascade (PD98059) attenuated the increase in c-Jun induced by IL-1 β, but LY294002 (an inhibitor of phosphatidylinositol 3′ kinase) and SB203580 (an inhibitor of p38-MAPK, which also inhibits certain JNK isoforms) had no effect. These data illustrate that some of the pathological effects of IL-1 βand TNF αmay be mediated through the MAPK cascades, and that the ERK cascade, rather than JNKs or p38-MAPKs, are implicated in the upregulation of c-Jun by IL-1 β.
- Published
- 1999
- Full Text
- View/download PDF
54. Regulation of Ras.GTP loading and Ras-Raf association in neonatal rat ventricular myocytes by G protein-coupled receptor agonists and phorbol ester. Activation of the extracellular signal-regulated kinase cascade by phorbol ester is mediated by Ras.
- Author
-
Chiloeches, A, Paterson, H F, Marais, R, Clerk, A, Marshall, C J, and Sugden, P H
- Abstract
The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.
- Published
- 1999
55. Activation of c-Jun N-Terminal Kinases and p38-Mitogen-activated Protein Kinases in Human Heart Failure Secondary to Ischaemic Heart Disease
- Author
-
Cook, Stuart A., Sugden, Peter H., and Clerk, Angela
- Abstract
Three well-characterized mitogen-activated protein kinase (MAPK) subfamilies are expressed in rodent and rabbit hearts, and are activated by pathophysiological stimuli. We have determined and compared the expression and activation of these MAPKs in donor and failing human hearts. The amount and activation of MAPKs was assessed in samples from the left ventricles of 4 unused donor hearts and 12 explanted hearts from patients with heart failure secondary to ischaemic heart disease. Total MAPKs or dually phosphorylated (activated) MAPKs were detected by Western blotting and MAPK activities were measured by in gel kinase assays. As in rat heart, c-Jun N-terminal kinases (JNKs) were detected in human hearts as bands corresponding to 46 and 54 kDa; p38-MAPK(s) was detected as a band corresponding to approximately 40 kDa, and extracellularly regulated kinases, ERK1 and ERK2, were detected as 44- and 42-kDa bands respectively. The total amounts of 54 kDa JNK, p38-MAPK and ERK2 were similar in all samples, although 46-kDa JNK was reduced in the failing hearts. However, the mean activities of JNKs and p38-MAPK(s) were significantly higher in failing heart samples than in those from donor hearts (P<0.05). There was no significant difference in phosphorylated (activated) ERKs between the two groups. In conclusion, JNKs, p38-MAPK(s) and ERKs are expressed in the human heart and the activities of JNKs and p38-MAPK(s) were increased in heart failure secondary to ischaemic heart disease. These data indicate that JNKs and p38-MAPKs may be important in human cardiac pathology.
- Published
- 1999
- Full Text
- View/download PDF
56. Some Considerations Regarding the Use of the Delta Lev-L-Sentry Low Level Alarm System
- Author
-
Walton, Howard G., Sugden, Ernest H., White, Judith A., Walton, Howard G., Sugden, Ernest H., and White, Judith A.
- Abstract
The possibility of infusing an air embolus during extracorporeal circulation is of concern to every perfusionist. The perfusionist uses a variety of devices to prevent such an accident. The Delta Lev-L-Sentry alarm system is one such device. It consists of a disposable sensor tape, an electronic sensor head, and a power/control box. The sensor head and tape are attached to the oxygenator. The unit will warn of a low level situation in the oxygenator when the fluid falls below the preset sensor tape position. This paper describes two possible situations where the Delta-L-Sentry alarm system may not activate properly, and one situation in which it will activate improperly.
- Published
- 1986
- Full Text
- View/download PDF
57. Warming Characteristics of a Dual Reservoir Cooler/Heater Unit
- Author
-
Walton, Howard G., Jerabek, Charles F., Sugden, Ernest H., Walton, Howard G., Jerabek, Charles F., and Sugden, Ernest H.
- Abstract
A study of the Hematherm model 400 dual reservoir cooler/heater was undertaken to determine whether warming times are affected by running both the oxygenator heat exchanger and the warming blanket from a single warming source. Forty patients were divided into two groups of twenty each. Group A patients were warmed to 37°C using only the heat exchanger of the oxygenator. Group B patients were warmed using the oxygenator's heat exchanger and blanket simultaneously at the initiation of warming. There was no statistical difference between the two groups with regards to the patient's body weights, B.S.A.'s and bypass times. Group A showed a significantly faster rise in both arterial and venous blood temperatures. There was no statistical difference demonstrated for the rise in esophageal, bladder or the Hematherm model 400 unit temperatures. The heating blanket did not contribute to the warming of the patient. Using the data obtained from this study, a formula based on the rise in temperature corrected for B.S.A. was developed to predict the total time needed to warm any patient.
- Published
- 1989
- Full Text
- View/download PDF
58. Stimulation of gene expression in neonatal rat ventricular myocytes by Ras is mediated by Ral guanine nucleotide dissociation stimulator (Ral.GDS) and phosphatidylinositol 3-kinase in addition to Raf
- Author
-
FULLER, Stephen J., FINN, Stephen G., DOWNWARD, Julian, and SUGDEN, Peter H.
- Abstract
Treatment of cultured neonatal ventricular myocytes with oncogenic Ras increases their size and stimulates the re-expression of genes which are normally restricted to the fetal stage of ventricular development, including atrial natriuretic factor (ANF) and skeletal muscle (SkM)-α-actin. To determine which signalling pathways mediate these responses, myocytes were transfected with oncogenic (V12) Ras mutants which interact selectively with different effectors and their effects on luciferase (LUX) reporter plasmids were examined. V12 human Ras (V12HRas), itself, activated ANF–LUX 9.6-fold, whereas mutants of V12HRas, which selectively stimulate Ral guanine nucleotide dissociation stimulator (Ral.GDS) (E37G), c-Raf (D38E) and phosphatidylinositol 3-kinase (PI-3-K; Y40C) enhanced ANF–LUX expression 3.0-, 3.7- and 1.7-fold respectively. The full response of ANF–LUX to V12HRas was restored by using a combination of the individual effector domain mutants. Likewise, SkM-α-actin–LUX expression was activated 12.0-, 3.5-, 4.5- and 3.0-fold by V12HRas, E37G, D38E and Y40C respectively, and a similar pattern of activation was also observed using a c-fosserum-response element–LUX reporter gene. Cell size was also increased by each of the mutants, but simultaneous expression of all three mutant constructs was needed to reconstitute the full effect of V12HRas on cell size (50% increase). Transfection with a constitutively active mutant of PI-3-K (p110K227E) stimulated ANF–LUX, SkM-α-actin–LUX, c-fos-serum-response element–LUX and Rous sarcoma virus–LUX by 3.1-, 3.2-, 2.1- and 2.9-fold respectively, but the co-transfected cytomegalovirus-β-galactosidase reporter gene was activated to a similar extent (1.9-fold). These results suggest that Raf, Ral.GDS and PI-3-K can all transduce transcriptional responses to V12HRas, but that the specific induction of genes associated with the hypertrophic response is not mediated through PI-3-K.
- Published
- 1998
- Full Text
- View/download PDF
59. Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes
- Author
-
CLERK, Angela, MICHAEL, Ashour, and SUGDEN, Peter H.
- Abstract
We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAPKs), namely the stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), the extracellularly responsive kinases (ERKs) and p38-MAPK, by oxidative stress as exemplified by H2O2 in primary cultures of neonatal rat ventricular myocytes. The 46 and 54 kDa species of SAPKs/JNKs were activated 5- and 10-fold, respectively, by 0.1 mM H2O2 (the maximally effective concentration). Maximal activation occurred at 15–30 min, but was still detectable after 2 h. Both ERK1 and ERK2 were activated 16-fold by 0.1 mM H2O2 with a similar time course to the SAPKs/JNKs, and this was comparable with their activation by 1 µM PMA, the most powerful activator of ERKs that we have so far identified in these cells. The activation of ERKs by H2O2 was inhibited by PD98059, which inhibits the activation of MAPK (or ERK) kinases, and by the protein kinase C (PKC) inhibitor, GF109203X. ERK activation was also inhibited by down-regulation of PMA-sensitive PKC isoforms. p38-MAPK was activated by 0.1 mM H2O2 as shown by an increase in its phosphorylation. However, maximal phosphorylation (activation) was more rapid (< 5 min) than for the SAPKs/JNKs or the ERKs. We studied the downstream consequences of p38-MAPK activation by examining activation of MAPK-activated protein kinase 2 (MAPKAPK2) and phosphorylation of the MAPKAPK2 substrate, the small heat shock protein HSP25/27. As with p38-MAPK, MAPKAPK2 was rapidly activated (maximal within 5 min) by 0.1 mM H2O2. This activation was abolished by 10 µM SB203580, a selective inhibitor of certain p38-MAPK isoforms. The phosphorylation of HSP25/27 rapidly followed activation of MAPKAPK2 and was also inhibited by SB203580. Phosphorylation of HSP25/27 was associated with a decrease in its aggregation state. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in neonatal rat ventricular myocytes. Activation of all three MAPKs has been associated with the development of the hypertrophic phenotype. However, stimulation of p38-MAPK and the consequent phosphorylation of HSP25/27 may also be important in cardioprotection.
- Published
- 1998
- Full Text
- View/download PDF
60. Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart
- Author
-
LAZOU, Antigone, SUGDEN, Peter H., and CLERK, Angela
- Abstract
We investigated the ability of phenylephrine (PE), an α-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 µM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4–5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 µM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2–3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 µM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).
- Published
- 1998
- Full Text
- View/download PDF
61. The effects of surgical stress and short-term fasting on protein synthesis in vivo in diverse tissues of the mature rat
- Author
-
Preedy, V R, Paska, L, Sugden, P H, Schofield, P S, and Sugden, M C
- Abstract
1. We measured fractional rates of protein synthesis, capacities for protein synthesis (i.e. RNA/protein ratio) and efficiencies of protein synthesis (i.e. protein-synthesis rate relative to RNA content) in fasted (24 or 48 h) or fasted/surgically stressed female adult rats. 2. Of the 15 tissues studied, fasting caused decreases in protein content in the liver, gastrointestinal tract, heart, spleen and tibia. There was no detectable decrease in the protein content of the skeletal muscles studied. 3. Fractional rates of synthesis were not uniformly decreased by fasting. Rates in striated muscles, uterus, liver, spleen and tibia were consistently decreased, but decreases in other tissues (lung, gastrointestinal tract, kidney or brain) were inconsistent or not detectable, suggesting that, in many tissues in the mature rat, protein synthesis was not especially sensitive to fasting. 4. In fasting, the decreases in fractional synthesis rate resulted from changes in efficiency (liver and tibia) or from changes in efficiency and capacity (heart, diaphragm, plantaris and gastrocnemius). In the soleus, the main change was a decrease in capacity. 5. Surgical stress increased fractional rates of protein synthesis in diaphragm (where there were increases in both efficiency and capacity) by about 50%, in liver by about 20%, in spleen by about 40%, and possibly also in the heart. In liver and spleen, capacities were increased. In other tissues (including the skeletal muscles), the fractional rates of protein synthesis were unaffected by surgical stress.
- Published
- 1988
- Full Text
- View/download PDF
62. Effects of pressure overload and insulin on protein turnover in the perfused rat heart. Prostaglandins are not involved although their synthesis is stimulated by insulin
- Author
-
Smith, D M and Sugden, P H
- Abstract
A modified anterogradely perfused rat heart preparation is described in which all the cardiac output passes through the coronary circulation. Such a preparation develops hypertensive aortic pressures. Hypertensive aortic pressures or insulin stimulate the rate of cardiac protein synthesis and inhibit the rate of protein degradation. Aortic pressure and insulin may be important in the regulation of cardiac nitrogen balance in vivo. By abolishing cardiac prostaglandin synthesis with 4-biphenylacetate, we were able to investigate the possible involvement of prostaglandins in the modulation of protein turnover by pressure overload or insulin. There was no evidence of any involvement. However, insulin stimulated and cycloheximide inhibited cardiac prostaglandin synthesis. These findings are consonant with an enzyme involved in prostaglandin synthesis being short-lived and prostaglandin synthesis being rapidly influenced by activators and inhibitors of protein synthesis and degradation.
- Published
- 1987
- Full Text
- View/download PDF
63. The role of protein kinases in adaptational growth of the heart
- Author
-
Bogoyevitch, M. A. and Sugden, P. H.
- Published
- 1996
- Full Text
- View/download PDF
64. Stimulation of protein synthesis, glucose uptake and lactate output by insulin and adenosine deaminase in the rat heart
- Author
-
Fuller, Stephen J. and Sugden, Peter H.
- Abstract
In the anterogradely perfused rat heart, physiological concentrations of insulin stimulated the rates and efficiencies of protein synthesis in both ventricles and atria. Half-maximal stimulation of ventricular protein synthesis was obtained at about 35 μUml. Glucose uptake and lactate release were also stimulated over this range of insulin concentrations. Adenosine deaminase increased protein synthesis rates in ventricles and atria in the presence of submaximally stimulating insulin concentrations (40 μUml) but had no effect in the absence of insulin or in the presence of maximally stimulating concentrations. The insulin sensitivities of glucose uptake and lactate release were also increased by adenosine deaminase. Adenosine may be a modulator of insulin sensitivity in the heart.
- Published
- 1986
- Full Text
- View/download PDF
65. Activation of mitogen‐activated protein kinases (p38‐MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart
- Author
-
Haq, Syed E.A., Clerk, Angela, and Sugden, Peter H.
- Abstract
Adenosine and mitogen‐activated protein kinases (MAPKs) have been separately implicated in cardiac ischaemic preconditioning. We investigated the activation of MAPK subfamilies by adenosine in perfused rat hearts. p38‐MAPK was rapidly phosphorylated and activated (10‐fold activation, maximal at 5 min) by 10 mM adenosine, as was the p38‐MAPK substrate, MAPKAPK2 (4.5‐fold). SAPKs/JNKs were activated (5‐fold) and ERKs were phosphorylated (both maximal at 5 min). The concentration dependences of activation of p38‐MAPK and ERKs were biphasic with a ‘high affinity’ component (maximal at 10–100 μM adenosine) and a ‘low affinity’ component that had not saturated at 10 mM. SAPKs/JNKs were activated only by 10 mM adenosine. These results are consistent with MAPK involvement in adenosine‐mediated ischaemic preconditioning.
- Published
- 1998
- Full Text
- View/download PDF
66. Cellular stresses differentially activate c-Jun N-terminal protein kinases and extracellular signal-regulated protein kinases in cultured ventricular myocytes.
- Author
-
Bogoyevitch, M A, Ketterman, A J, and Sugden, P H
- Abstract
Anisomycin or osmotic stress induced by sorbitol activated c-Jun N-terminal protein kinases (JNKs) in ventricular myocytes cultured from neonatal rat hearts. After 15-30 min, JNK was activated by 10-20-fold. Activation by anisomycin was transient, but that by sorbitol was sustained for at least 4 h. In-gel JNK assays confirmed activation of two renaturable JNKs of 46 and 55 kDa (JNK-46 and JNK-55, respectively). An antibody against human JNK1 immunoprecipitated JNK-46 activity. Endothelin-1, an activator of extracellular signal-regulated protein kinases (ERKs), also transiently activated JNKs by 2-5-fold after 30 min. Phorbol 12-myristate 13-acetate did not activate the JNKs although it activated ERK1 and ERK2, which phosphorylated the c-Jun transactivation domain in vitro. ATP depletion and repletion achieved by incubation in cyanide+deoxyglucose and its subsequent removal from the medium activated the ERKs but failed to activate the JNKs. Sorbitol (but not anisomycin) also stimulated the ERKs. Sorbitol-stimulated JNK activity could be resolved into three peaks by fast protein liquid chromatography on a Mono Q column. The two major peaks contained JNK-46 or JNK-55. These results demonstrate that cellular stresses differentially activate the JNKs and ERKs and that there may be "cross-talk" between these MAPK pathways.
- Published
- 1995
67. The p38-MAPK inhibitor, SB203580, inhibits cardiac stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs)
- Author
-
Clerk, A. and Sugden, P. H.
- Published
- 1998
- Full Text
- View/download PDF
68. Metabolism of aromatic amino acids by the rat heart and diaphragm
- Author
-
Sugden, Peter H.
- Published
- 1980
- Full Text
- View/download PDF
69. Role of multisite phosphorylation in the regulation of ox kidney pyruvate dehydrogenase complex
- Author
-
Sugden, Peter H. and Simister, Neil E.
- Published
- 1980
- Full Text
- View/download PDF
70. Contrasting response of protein degradation to starvation and insulin as measured by release of Nτ-methylhistidine or phenylalanine from the perfused rat heart
- Author
-
Smith, D M and Sugden, P H
- Abstract
An isotope-dilution method is described for the measurement of N tau-methylhistidine release from the perfused rat heart. We argue that release of N tau-methylhistidine is indicative of cardiac actin degradation. N tau-Methylhistidine release is compared with phenylalanine release in the presence of cycloheximide (phenylalanine release being a measure of degradation of mixed proteins). In hearts perfused with glucose plus acetate, the rate of actin degradation was increased by starvation and was not inhibited by insulin. In contrast, the rate of mixed-protein degradation was decreased by starvation and was inhibited by insulin. The fractional rate of degradation of mixed proteins in hearts from fed or starved rats was greater than that for actin. It is suggested that there are at least two pools of intracellular protein, the degradation rates of which differ in terms of their response to insulin and starvation.
- Published
- 1986
- Full Text
- View/download PDF
71. Rates of protein turnover in vivo and in vitro in ventricular muscle of hearts from fed and starved rats
- Author
-
Preedy, V R, Smith, D M, Kearney, N F, and Sugden, P H
- Abstract
Starvation of 300 g rats for 3 days decreased ventricular-muscle total protein content and total RNA content by 15 and 22% respectively. Loss of body weight was about 15%. In glucose-perfused working rat hearts in vitro, 3 days of starvation inhibited rates of protein synthesis in ventricles by about 40-50% compared with fed controls. Although the RNA/protein ratio was decreased by about 10%, the major effect of starvation was to decrease the efficiency of protein synthesis (rate of protein synthesis relative to RNA). Insulin stimulated protein synthesis in ventricles of perfused hearts from fed rats by increasing the efficiency of protein synthesis. In vivo, protein-synthesis rates and efficiencies in ventricles from 3-day-starved rats were decreased by about 40% compared with fed controls. Protein-synthesis rates and efficiencies in ventricles from fed rats in vivo were similar to values in vitro when insulin was present in perfusates. In vivo, starvation increased the rate of protein degradation, but decreased it in the glucose-perfused heart in vitro. This contradiction can be rationalized when the effects of insulin are considered. Rates of protein degradation are similar in hearts of fed animals in vivo and in glucose/insulin-perfused hearts. Degradation rates are similar in hearts of starved animals in vivo and in hearts perfused with glucose alone. We conclude that the rates of protein turnover in the anterogradely perfused rat heart in vitro closely approximate to the rates in vivo in absolute terms, and that the effects of starvation in vivo are mirrored in vitro.
- Published
- 1984
- Full Text
- View/download PDF
72. Stimulation of left-atrial protein-synthesis rates by increased left-atrial filling pressures in the perfused working rat heart in vitro
- Author
-
Smith, D M and Sugden, P H
- Abstract
We investigated the effect of an increase in the left-atrial filling pressure on the rate of left-atrial protein synthesis in the left-side-perfused working rat heart preparation of Taegtmeyer, Hems & Krebs [(1980) Biochem. J. 186, 701-711]. An increase in filling pressure (preload) at a constant aortic pressure (afterload) increased both the intra-atrial pressure and the atrial stroke volume. The aortic pressure (afterload) was held constant. An increase in filling pressure from 5 to 20 cmH2O at an aortic pressure of 70 cmH2O, or an increase in filling pressure of 7.5 to 20 cmH2O at an aortic pressure of 100 cmH2O, significantly stimulated the rates of left-atrial protein synthesis by 30-40%. The stimulation was observed when the rates of protein synthesis were expressed relative to either protein or RNA content. Since perfusate entering the right atrium from the coronary circulation left that atrium passively, the rate of protein synthesis in this compartment can be used as an internal control. Rates of right-atrial protein synthesis were similar to those in the left atria exposed to the lower filling pressures and were unaffected by the increases in left-atrial filling pressure. We suggest that the acute effects of increased left-atrial filling pressure on protein synthesis in that compartment may be important in the development of left-atrial hypertrophy. This condition is seen in patients who have raised pulmonary venous pressures in, for example, mitral stenosis.
- Published
- 1983
- Full Text
- View/download PDF
73. Differential rates of protein synthesis in vitro and RNA contents in rat heart ventricular and atrial muscle
- Author
-
Smith, D M and Sugden, P H
- Abstract
The rates of protein synthesis in perfused rat heart ventricular or atrial muscle were measured by incorporation of [U-14C]phenylalanine in the presence of the remaining plasma amino acids. Atrial protein-synthesis rates were about twice the ventricular rates. Atrial RNA contents were also about twice the ventricular contents. Thus the efficiencies of protein synthesis (protein-synthesis rate/RNA) in the two compartments were similar. There were marked differences in ventricular and atrial RNA contents during the course of rat growth. Atrial RNA content was always greater than ventricular content and declined more slowly during growth, producing a 2-fold change in atrial/ventricular RNA-content ratio between the 88 g and 370 g rat groups.
- Published
- 1983
- Full Text
- View/download PDF
74. The effects of insulin on glucose uptake and lactate release in perfused working rat heart preparations
- Author
-
Sugden, P H and Smith, D M
- Abstract
The effects of insulin on glucose uptake and lactate release in the perfused working rat heart have been investigated in three types of preparation: (i) a control low-workload preparation; (ii) an increased-pressure-workload preparation, simulating conditions of aortic pressure encountered in vivo; (iii) an increased-volume-workload preparation, where pumping work done is approximately the same as (ii) but coronary flow is restricted because of the decreased aortic pressure. Insulin stimulated glucose uptake and lactate release in preparations (i) and (ii), but failed to do so in preparation (iii). It was considered possible that preparation (iii) was hypoxic, thus necessitating a maximal stimulation of glucose uptake. This was confirmed by improving cardiac oxygenation by addition of stroma-free haemoglobin to the perfusate in preparation (iii). Under these conditions in the absence of insulin, glucose uptake and lactate release were decreased compared with perfusions in the absence of haemoglobin. Insulin stimulation of both processes was restored. We conclude that the failure of other workers to observe insulin effects on glucose uptake and lactate release under physiological workloads [preparation (ii)] may be a consequence of intracellular hypoxia in their preparations.
- Published
- 1982
- Full Text
- View/download PDF
75. The effects of glucose, acetate, lactate and insulin on protein degradation in the perfused rat heart
- Author
-
Sugden, P H and Smith, D M
- Abstract
Rat hearts were perfused as working preparations by the method of Taegtmeyer, Hems & Krebs [(1980 Biochem. J. 186, 701-711]. In the presence of glucose, insulin significantly inhibited protein degradation at concentrations as low as 50 mu units/ml. Acetate or lactate, when present either as sole fuel for contraction or in combination with glucose, did not inhibit protein degradation. Insulin inhibition or protein degradation was decreased with either lactate as sole fuel. We suggest that the inhibition of protein degradation occurs over the normal range of plasma concentrations of insulin present in vivo and that the presence of glucose may be at least in part necessary for this effect of insulin.
- Published
- 1982
- Full Text
- View/download PDF
76. Oncogenic src, raf, and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes.
- Author
-
Fuller, S J, Gillespie-Brown, J, and Sugden, P H
- Abstract
In response to hormones and growth factors, cultured neonatal ventricular myocytes increase in profile, exhibit myofibrillogenesis, and re-express genes whose expression is normally restricted to the fetal stage of ventricular development. These include atrial natriuretic factor (ANF), beta-myosin heavy chain (beta-MHC), and skeletal muscle (SkM)-alpha-actin. By using luciferase reporter plasmids, we examined whether oncogenes that activate the extracellular signal-regulated kinase cascade (srcF527, Ha-rasV12, and v-raf) increased expression of "fetal" genes. Transfection of myocytes with srcF527 stimulated expression of ANF, SkM-alpha-actin, and beta-MHC by 62-, 6.7-, and 50-fold, respectively, but did not induce DNA synthesis. Stimulation of ANF expression by srcF527 was greater than by Ha-rasV12, which in turn was greater than by v-raf. General gene expression was also increased but to a lesser extent. The response to srcF527 was inhibited by dominant-negative Ha-rasN17. Myocyte area was increased by srcF527, Ha-rasV12, and v-raf, and although it altered myocyte morphology by causing a pseudopodial appearance, srcF527 did not detectably increase myofibrillogenesis either alone or in combination with Ha-rasV12. A kinase-dead src mutant increased myocyte size to a much lesser extent than srcF527 and also did not inhibit ANF-luciferase expression in response to phenylephrine. We conclude that members of the Src family of tyrosine kinases may be important in mediating the transcriptional changes occurring during cardiac myocyte hypertrophy and that Ras and Raf may be downstream effectors.
- Published
- 1998
77. Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes.
- Author
-
Foncea, R, Andersson, M, Ketterman, A, Blakesley, V, Sapag-Hagar, M, Sugden, P H, LeRoith, D, and Lavandero, S
- Abstract
In response to insulin-like growth factor-I (IGF-I), neonatal rat cardiac myocytes exhibit a hypertrophic response. The elucidation of the IGF-I signal transduction system in these cells remains unknown. We show here that cardiac myocytes present a single class of high affinity receptors (12,446 +/- 3,669 binding sites/cell) with a dissociation constant of 0.36 +/- 0.10 nM. Two different beta-subunits of IGF-I receptor were detected, and their autophosphorylation was followed by increases in the phosphotyrosine content of extracellular signal-regulated kinases (ERKs), insulin receptor substrate 1, phospholipase C-gamma1, and phosphatidylinositol 3-kinase. IGF-I transiently activates c-Raf in cultured neonatal cardiac myocytes, whereas A-raf is activated much less than c-Raf. Two peaks of ERK activity (ERK1 and ERK2) were resolved in cardiac myocytes treated with IGF-I by fast protein liquid chromatography, both being stimulated by IGF-I (with EC50 values for the stimulation of ERK1 and ERK2 by IGF-I of 0.10 and 0. 12 nM, respectively). Maximal activation of ERK2 (12-fold) and ERK1 (8.3-fold) activities was attained after a 5-min exposure to IGF-I. Maximal activation of p90 S6 kinase by IGF-I was achieved after 10 min, and then the activity decreased slowly. Interestingly, IGF-I stimulates incorporation of [3H]phenylalanine (1.6-fold) without any effect on [3H]thymidine incorporation. These data suggest that IGF-I activates multiple signal transduction pathways in cardiac myocytes some of which may be relevant to the hypertrophic response of the heart.
- Published
- 1997
78. Endothelin-1-Dependent Signaling Pathways in the Myocardium
- Author
-
Sugden, P. H. and Bogoyevitch, M. A.
- Published
- 1996
- Full Text
- View/download PDF
79. Stimulation of phosphatidylinositol hydrolysis, protein kinase C translocation, and mitogen-activated protein kinase activity by bradykinin in rat ventricular myocytes: dissociation from the hypertrophic response
- Author
-
CLERK, Angela, GILLESPIE-BROWN, Judith, FULLER, Stephen J., and SUGDEN, Peter H.
- Abstract
In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1–8) [(Des-Arg9)BK] stimulated PtdInsP2 hydrolysis by 3–4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 μM [BK(1–8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-Δ and nPKC-ϵ from the soluble to the particulate fraction. EC50 values for nPKC-Δ translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-ϵ translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-Δ and nPKC-ϵ by BK(1–8) were more than 5 μM. The classical PKC, cPKC-α, and the atypical PKC, aPKC-ζ, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3–5 min, 30–35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1–8) were more than 10 μM. The order of potency [BK≈kallidin ≫ BK(1–8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-Δ and nPKC-ϵ translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2 BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1–8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-Δ and nPKC-ϵ, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology and patterns of gene expression. This difference could not be attributed to dissimilarities between the duration of activation of p42/p44-MAPK by BK or ET-1. Thus activation of these signalling pathways alone may be insufficient to induce a powerful hypertrophic response.
- Published
- 1996
- Full Text
- View/download PDF
80. Regulation of kinase reactions in pig heart pyruvate dehydrogenase complex
- Author
-
Kerbey, A L, Radcliffe, P M, Randle, P J, and Sugden, P H
- Abstract
1. Pig heart pyruvate dehydrogenase complex is inactivated by phosphorylation (MgATP2-) of an alpha-chain of the decarboxylase component. Three serine residues may be phosphorylated, one of which (site 1) is the major inactivating site. 2. The relative rates of phosphorylation are site 1 greater than 2 greater than site 3. 3. The kinetics of the inactivating phosphorylation were investigated by measuring inactivation of the complex with MgATP2-. The apparent Km for the Mg complex of ATP was 25.5 microM; ADP was a competitive inhibitor (Ki 69.8 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 2.8 microM). Inactivation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA. 4. The kinetics of additional phosphorylations (predominantly site 2 under these conditions) were investigated by measurement of 32P incorporation into non-radioactive pyruvate dehydrogenase phosphate containing 3-6% of active complex, and assumed from parrallel experiments with 32P labelling to contain 91% of protein-bound phosphate in site 1 and 9% in site 2. 5. The apparent Km for the Mg complex of ATP was 10.1 microM; ADP was a competitive inhibitor (Ki 31.5 microM) and sodium pyruvate an uncompetitive inhibitor (Ki 1.1 mM). 6. Incorporation was accelerated by increasing concentration ratios of NADH/NAD+ and of acetyl-CoA/CoA, although it was less marked at the highest ratios.
- Published
- 1979
- Full Text
- View/download PDF
81. Amino acid sequences around the sites of phosphorylation in the pig heart pyruvate dehydrogenase complex
- Author
-
Sugden, P H, Kerbey, A L, Randle, P J, Waller, C A, and Reid, K B M
- Abstract
1. When pig heart pyruvate dehydrogenase complex was phosphorylated to completion with [gamma-32P]ATP by its intrinsic kinase, three phosphorylation sites were observed. The amino acid sequences around these sites were: sequence 1, Tyr-Gly-Met-Gly-Thr-Ser(P)-Val-Glu-Arg; and sequence 2, Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser(P)-Tyr-Arg. 2. When phosphorylated to inactivation by repetitive additions of limiting quantities of [gamma-32P]ATP, phosphate was incorporated mainly (more than 90%) into Ser-5 of sequence 2. Phosphorylation of this site thus results in activation of pyruvate dehydrogenase. 3. If Ser-5 is phosphorylated with ATP and the enzyme then incubated with [gamma-32P]ATP, phosphorylation of the remaining sites occurred. Ser-12 of sequence 2 is phosphorylated about twice as rapidly as Ser-6 of sequence 1. 4. Incubation of pyruvate dehydrogenase with excess [gamma-32P]ATP with termination of phosphorylation at about 50% complete inactivation showed that Ser-5 of sequence 2 was phosphorylated most rapidly, but also that Ser-12 of sequence 2 was significantly (15% of total) phosphorylated. Ser-6 sequence 1 contained about 1% total P. 5. These results suggest that addition of limiting amounts of ATP produces primarily phosphorylation of Ser-5 of sequence 2 (inactivating site). This also occurs during incubation with excess ATP before complete inactivation occurs, but a greater occupancy of other sites also occurs during this treatment.
- Published
- 1979
- Full Text
- View/download PDF
82. Protein kinase activities in rat pancreatic islets of Langerhans
- Author
-
Sugden, M C, Ashcroft, S J, and Sugden, P H
- Abstract
1. Protein kinase activities in homogenates of rat islets of Langerhans were studied. 2. On incubation of homogenates with [gamma-32P]ATP, incorporation of 32P into protein occurred: this phosphorylation was neither increased by cyclic AMP nor decreased by the cyclic AMP-dependent protein kinase inhibitor described by Ashby & Walsh [(1972) J. Biol. Chem. 247, 6637–6642]. 3. On incubation of homogenates with [gamma-32P]ATP and histone as exogenous substrate for phosphorylation, incorporation of 32P into protein was stimulated by cyclic AMP (approx. 2.5-fold) and was inhibited by the cyclic AMP-dependent protein kinase inhibitor. In contrast, when casein was used as exogenous substrate, incorporation of 32P into protein was not stimulated by cyclic AMP, nor was it inhibited by the cyclic AMP-dependent protein kinase inhibitor. 4. DEAE-cellulose ion-exchange chromatography resolved four peaks of protein kinase activity. One species was the free catalytic subunit of cyclic AMP-dependent protein kinase, two species corresponded to ‘Type I’ and ‘Type II’ cyclic AMP-dependent protein kinase holoenzymes [see Corbin, Keely & Park (1975) J. Biol. Chem. 250, 218–225], and the fourth species was a cyclic AMP-independent protein kinase. 5. Determination of physical and kinetic properties of the protein kinases showed that the properties of the cyclic AMP-dependent activities were similar to those described in other tissues and were clearly distinct from those of the cyclic AMP-independent protein kinase. 6. The cyclic AMP-independent protein kinase had an s20.w of 5.2S, phosphorylated a serine residue(s) in casein and was not inhibited by the cyclic AMP-dependent protein kinase inhibitor. 7. These studies demonstrate the existence in rat islets of Langerhans of multiple forms of cyclic AMP-dependent protein kinase and also the presence of a cyclic AMP-independent protein kinase distinct from the free catalytic subunit of cyclic AMP-dependent protein kinase. The presence of the cyclic AMP-independent protein kinase may account for the observed characteristics of 32P incorporation into endogenous protein in homogenates of rat islets.
- Published
- 1979
- Full Text
- View/download PDF
83. Purification and characterization of the catalytic subunit of adenosine 3':5'-cyclic monophosphate-dependent protein kinase from bovine liver
- Author
-
Sugden, P H, Holladay, L A, Reimann, E M, and Corbin, J D
- Abstract
1. The catalytic subunit of bovine liver cyclic AMP-dependent protein kinase (EC2.7.1.37) was purified essentially by the method of Reimann & Corbin [(1976) Fed. Proc. Fed. Am. Soc. Exp. Biol. 35, 1384]. 2. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, sedimentation-velocity centrifugation and sedimentation-equilibrium centrifugation showed that the catalytic subunit was monodisperse. Polyacrylamide-gel isoelectric-focusing electrophoresis revealed the presence of at least three isoenzyme forms of catalytic subunit activity with slightly different pI values (6.72, 7.04 and 7.35). 3. Physical properties of the catalytic subunit were determined by several different methods. It had mol.wt. 39000-42000, Stokes radium 2.73-3.08 nm, so20.w 3.14S, f/fo 1.19-1.23 and, assuming a prolate ellipsoid, axial ration 4-5. 4. Amino acid analysis was performed on the catalytic subunit. It had one cysteine residue/molecule which was essential for activity. Inhibition by thiol-specific reagents was partially prevented by the presence of ATP-Mg2+. 5. The circular-dichroic spectrum showed the catalytic subunit contained 29% α-helical form, 18% β-form and 53% aperiodic form. Near-u.v. circular dichroism showed the presence of aromatic residues whose equivalent molar ellipticity was greatly altered by the addition of ATP-Mg2+. 6. Kinetic experiments showed that the catalytic subunit had an apparent Km for ATP of 7 muM. 5'-Adenylyl imidodiphosphate inhibitied competitively with ATP with a Ki of 60 muM. The kinetic plot for histone (Sigma, type II-A) was biphasic showing ‘high’-and ‘low’-Km segments. Under assay conditions the specific activity of the catalytic subunit was 3 × 10(6) units/mg of protein. Of various metal ions tested, the catalytic subunit was most active with Mg2+.7. When assayed with histone (Sigma, type II-A) as substrate, the activity of the catalytic subunit was increased by non-ionic detergents or urea. No such activation was observed with casein as substrate.
- Published
- 1976
- Full Text
- View/download PDF
84. Adenosine 3':5'-cyclic monophosphate-binding proteins in bovine and rat tissues
- Author
-
Sugden, P H and Corbin, J D
- Abstract
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into ‘type I’ or ‘type II’ depending on whether they were derived from ‘type I’ or ‘type II’ protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.
- Published
- 1976
- Full Text
- View/download PDF
85. The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and nervous tissues of vertebrates and invertebrates
- Author
-
Sugden, P H and Newsholme, E A
- Abstract
1. The effect of NH4+, Pi and K+ on phosphofructokinase from muscle and nervous tissues of a large number of animals was investigated. The activation of the enzyme from lobster abdominal muscle by NH4+ was increased synergistically by the presence of Pi or SO4(2-). In the absence of K+, NH4+ plus Pi markedly activated phosphofructokinase from all tissues studied. In the presence of 100 mM-K+, NH4+ plus Pi activated phosphofructokinase from nervous tissue and muscle of invertebrates and the enzyme from brain of vertebrates, but there was no effect of NH4+ plus Pi on the enzyme from the muscles of vertebrates. Nonetheless, NH4+ plus Pi increased the activity of vertebrate muscle phosphofructokinase in the presence of 50 mM-K+ at inhibitory concentrations of ATP, i.e. these ions de-inhibited the enzyme. In the absence of NH4+ plus Pi, K+ activated phosphofructokinase from vertebrate tissues at non-inhibitory ATP concentrations, but the effect was less marked with the enzyme from invertebrate tissues. Indeed, high concentrations of K+ (greater than 50 mM) caused inhibition of invertebrate tissue phosphofructokinase. Of the other alkali-metal ions tested, only Rb+ activated phosphofructokinase from lobster abdominal muscle and rat heart muscle. 2. The properties of lobster abdominal-muscle phosphofructokinase were studied in detail. This muscle was chosen as representative of invertebrate muscle because large quantities of tissue could be obtained from one animal and the enzyme was considerably more stable in tissue extracts than in extracts of insect flight muscle. In general, the properties of the enzyme from this tissue were similar to those of the enzyme from many other tissues: ATP concentrations above an optimum value inhibited the enzyme and this inhibition was decreased by raising the fructose 6-phosphate or the AMP concentration. In particular, NH4+ plus Pi activated the enzyme at noninhibitory concentrations of ATP and they also relieved ATP inhibition (see above). 3. It is suggested that increases in the concentration of NH4+ and Pi, under conditions of increased ATP utilization in certain muscles and/or nervous tissue, may play a part in the stimulation of glycolysis through the effects on phosphofructokinase (the effect may be a direct activation and/or a relief of ATP inhibition). Changes in the concentration of NH4+ and Pi are consistent with this theory in nervous tissue and the anaerobic type of muscles. The role of AMP deaminase in production of NH4+ from AMP in these tissues is discussed in relation to the control of glycolysis.
- Published
- 1975
- Full Text
- View/download PDF
86. Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenases, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissues from vertebrates and invertebrates
- Author
-
Sugden, P H and Newsholme, E A
- Abstract
1. The activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenases were measured in nervous tissue from different animals in an attempt to provide more information about the citric acid cycle in this tissue. In higher animals the activities of citrate synthase are greater than the sum of activities of the isocitrate dehydrogenases, whereas they are similar in nervous tissues from the lower animals. This suggests that in higher animals the isocitrate dehydrogenase reaction is far-removed from equilibrium. If it is assumed that isocitrate dehydrogenase activities provide an indication of the maximum flux through the citric acid cycle, the maximum glycolytic capacity in nervous tissue is considerably greater than that of the cycle. This suggest that glycolysis can provide energy in excess of the aerobic capacity of the tissue. 2. The activities of glutamate dehydrogenase are high in most nervous tissues and the activities of aspartate aminotransferase are high in all nervous tissue investigated. However, the activities of alanine aminotransferase are low in all tissues except the ganglia of the waterbug and cockroach. In these insect tissues, anaerobic glycolysis may result in the formation of alanine rather than lactate.
- Published
- 1975
- Full Text
- View/download PDF
87. Endothelin-1, phorbol esters and phenylephrine stimulate MAP kinase activities in ventricular cardiomyocytes
- Author
-
Bogoyevitch, Marie A., Glennon, Peter E., and Sugden, Peter H.
- Abstract
ET-1 stimulated MBP kinase activity in cultured cardiomyocytes. Maximal activation (3.5-fold) was at 5 min. EC 50was 0.2 nM. PMA or PE also increased MBP kinase (4- or 2.5-fold, respectively). Pre-treatment with PMA down-regulated the subsequent response to ET-1 or PMA. ET-1- or PMA-stimulated MBP kinase was resolved into 2 major (peaks II and IV) and 2 minor peaks by FPLC on Mono Q. Peaks II and IV were inactivated by either LAR or PP2A. Renatured MBP kinase activities following SDS-PAGE in MBP-containing gels and immunoblot analysis showed that peak II was a p42 MAP kinase and peak IV was a p44 MAP kinase.
- Published
- 1993
- Full Text
- View/download PDF
88. Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors
- Author
-
Sugden, P. H. and Clerk, A.
- Published
- 1997
- Full Text
- View/download PDF
89. Hypertrophic Agonists Stimulate the Activities of the Protein Kinases c-Raf and A-Raf in Cultured Ventricular Myocytes (∗)
- Author
-
Bogoyevitch, Marie A., Marshall, Christopher J., and Sugden, Peter H.
- Abstract
We detected expression of two Raf isoforms, c-Raf and A-Raf, in neonatal rat heart. Both isoforms phosphorylated, activated, and formed complexes with mitogen-activated protein kinase kinase 1 in vitro. However, these isoforms were differentially activated by hypertrophic stimuli such as peptide growth factors, endothelin-1 (ET1), or 12-O-tetradecanoylphorbol-13-acetate (TPA) that activate the mitogen-activated protein kinase cascade. Exposure of cultured ventricular myocytes to acidic fibroblast growth factor activated c-Raf but not A-Raf. In contrast, TPA produced a sustained activation of A-Raf and only transiently activated c-Raf. ET1 transiently activated both isoforms. TPA and ET1 were the most potent activators of c-Raf and A-Raf. Both utilized protein kinase C-dependent pathways, but stimulation by ET1 was also partially sensitive to pertussis toxin pretreatment. c-Raf was inhibited by activation of cAMP-dependent protein kinase although A-Raf was less affected. Fetal calf serum, phenylephrine, and carbachol were less potent activators of c-Raf and A-Raf. These results demonstrate that A-Raf and c-Raf are differentially regulated and that A-Raf may be an important mediator of mitogen-activated protein kinase cascade activation when cAMP is elevated.
- Published
- 1995
- Full Text
- View/download PDF
90. The Expression of Constitutively Active Isotypes of Protein Kinase C to Investigate Preconditioning*
- Author
-
Zhao, Jing, Renner, Oliver, Wightman, Lionel, Sugden, Peter H., Stewart, Luisa, Miller, Andrew D., Latchman, David S., and Marber, Michael S.
- Abstract
The role of protein kinase C (PKC) in ischemic preconditioning remains controversial because of difficulties with both its measurement and pharmacological manipulation. We investigated preconditioning in isolated neonatal rat cardiocytes by expressing constitutively active isotypes of PKC. Observations at differing durations of simulated ischemia suggested β-galactosidase (β-gal) activity reflected viability within transfected myocytes. Preconditioning with 90 min of ischemia significantly increased β-gal activity and myocyte survival after 6 h of ischemia; an effect abolished by PKC inhibitors. After co-transfection with plasmids encoding β-gal and either constitutively active mutants of PKC-δ, PKC-α, wild type PKC-δ, or empty vector, cardiocytes were subjected to 6 h of ischemia. Only PKC-δ, rendered constitutively active by a limited deletion within the pseudosubstrate domain, consistently increased resistance to simulated ischemia (β-gal activity was 85.6 ± 11.9% versus53.7 ± 6.5% (p≤ 0.01) and dead myocytes 46.8 ± 3.4%versus68.7 ± 2.8% (p≤ 0.01)). Since transfection was apparent in only 5–12% of cells, the results suggested a protective bystander effect that was confirmed by co-culture of transfected myocytes with untransfected myocytes. In neonatal cardiocytes expression of active PKC-δ increases resistance to simulated ischemia. This observation may provide further insight into the mechanism and possible avenues for therapeutic exploitation of preconditioning.
- Published
- 1998
- Full Text
- View/download PDF
91. Effects of vasopressin, glucagon and dibutyryl cyclic AMP on the activities of enzymes of fatty acid esterification in rat hepatocytes
- Author
-
Sugden, Mary C., Williamson, Dermot H., and Sugden, Peter H.
- Published
- 1980
- Full Text
- View/download PDF
92. Classical, novel and atypical isoforms of PKC stimulate ANF‐ and TRE/AP‐1‐regulated‐promoter activity in ventricular cardiomyocytes
- Author
-
Decock, Juliette B.J., Gillespie-Brown, Judith, Parker, Peter J., Sugden, Peter H., and Fuller, Stephen J.
- Abstract
Cultured neonatal rat ventricular myocytes were co‐transfected with expression plasmids encoding protein kinase C (PKC) isoforms from each of the PKC subfamilies (classical PKC‐α, novel PKC‐ε or atypical PKC‐ξ) together with an atrial natriuretic factor (ANF) reporter plasmid. Each PKC had been rendered constitutively active by a single Ala→Glu mutation or a small deletion in the inhibitory pseudosubstrate site. cPKC‐α, nPKC‐ε or aPKC‐ξ expression plasmids each stimulated ANF‐promoter activity and expression of a reporter gene under the control of a 12‐O‐tetradecanoylphorbol 13‐acetate‐response element (TRE). Upregulation of the ANF promoter is characteristic of the hypertrophic response in the heart ventricle and a TRE is present in the ANF promoter. Thus all subfamilies of PKC may have the potential to contribute to hypertrophic response in cardiomyocytes.
- Published
- 1994
- Full Text
- View/download PDF
93. Protein synthesis in rat cardiac myocytes is stimulated at the level of translation by phorbol esters
- Author
-
Fuller, Stephen J. and Sugden, Peter H.
- Abstract
12- O-Tetradecanoylphorbol 13-acetate acutely stimulated the rate of protein synthesis maximally by about 43% in terminally differentiated myocytes freshly isolated from adult rat hearts. Stimulation was rapidly expressed (within 20 min). The relative effects of four phorbol esters on protein synthesis was consistent with a specific effect on protein kinase C. Inhibition of transcription with actinomycin D had no effect on the absolute stimulation of the protein synthesis rate by 12- O-tetradecanoylphorbol 13-acetate. We conclude that protein kinase C may be involved in the regulation of the translational process.
- Published
- 1989
- Full Text
- View/download PDF
94. Cell stress-induced phosphorylation of ATF2 and c-Jun transcription factors in rat ventricular myocytes
- Author
-
CLERK, Angela and SUGDEN, Peter H.
- Abstract
Ventricular myocytes are exposed to various pathologically important cell stresses in vivo. In vitro,extreme stresses (sorbitol-induced hyperosmotic shock in the presence or absence of okadaic acid, and anisomycin) were applied to ventricular myocytes cultured from neonatal rat hearts to induce a robust activation of the 46 and 54 kDa stress-activated protein kinases (SAPKs). These activities were increased in nuclear extracts of cells in the absence of any net import of SAPK protein. Phosphorylation of ATF2 and c-Jun was increased as shown by the appearance of reduced-mobility species on SDS/PAGE, which were sensitive to treatment with protein phosphatase 2A. Hyperosmotic shock and anisomycin had no effect on the abundance of ATF2. In contrast, cell stresses induced a greater than 10-fold increase in total c-Jun immunoreactivity detected on Western blots with antibody to c-Jun (KM-1). Cycloheximide did not inhibit this increase, which we conclude represents phosphorylation of c-Jun. This conclusion was supported by use of a c-Jun(phospho-Ser-73) antibody. Immunostaining of cells also showed increases in nuclear phospho-c-Jun in response to hyperosmotic stress. Severe stress (hyperosmotic shock+okadaic acid for 2 h) induced proteins (migrating at approx. 51 and 57 kDa) that cross-reacted strongly with KM-1 antibodies in both the nucleus and the cytosol. These may represent forms of c-Jun that had undergone further modification. These studies show that stresses induce phosphorylation of transcription factors in ventricular myocytes and we suggest that this response may be pathologically relevant.
- Published
- 1997
- Full Text
- View/download PDF
95. Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy
- Author
-
BOGOYEVITCH, Marie A., ANDERSSON, Monica B., GILLESPIE-BROWN, Judith, CLERK, Angela, GLENNON, Peter E., FULLER, Stephen J., and SUGDEN, Peter H.
- Abstract
Phenylephrine and noradrenaline (α-adrenergic agonism) or isoprenaline (β-adrenergic agonism) stimulated protein synthesis rates, increased the activity of the atrial natriuretic factor gene promoter and activated mitogen-activated protein kinase (MAPK). The EC50 for MAPK activation by noradrenaline was 2–4 μM and that for isoprenaline was 0.2–0.3 μM. Maximal activation of MAPK by isoprenaline was inhibited by the β-adrenergic antagonist, propranolol, whereas the activation by noradrenaline was inhibited by the α1-adrenergic antagonist, prazosin. FPLC on a Mono-Q column separated two peaks of MAPK (p42MAPK and p44MAPK) and two peaks of MAPK-activating activity (MEK) activated by isoprenaline or noradrenaline. Prolonged phorbol ester exposure partially down-regulated the activation of MAPK by noradrenaline but not by isoprenaline. This implies a role for protein kinase C in MAPK activation by noradrenaline but not isoprenaline. A role for cyclic AMP in activation of the MAPK pathway was eliminated when other agonists that elevate cyclic AMP in the cardiac myocyte did not activate MAPK. In contrast, MAPK was activated by exposure to ionomycin, Bay K8644 or thapsigargin that elevate intracellular Ca2+. Furthermore, depletion of extracellular Ca2+ concentrations with bis-(o-aminophenoxy)ethane-NNN´N´-tetra-acetic acid (BAPTA) or blocking of the L-type Ca2+ channel with nifepidine or verapamil inhibited the response to isoprenaline without inhibiting the responses to noradrenaline. We conclude that α- and β-adrenergic agonists can activate the MEK/MAPK pathway in the heart by different signalling pathways. Elevation of intracellular Ca2+ rather than cyclic AMP appears important in the activation of MAPK by isoprenaline in the cardiac myocyte.
- Published
- 1996
- Full Text
- View/download PDF
96. Effects of increasing extracellular pH on protein synthesis and protein degradation in the perfused working rat heart
- Author
-
Fuller, S J, Gaitanaki, C J, and Sugden, P H
- Abstract
Increasing the extracellular pH over the range pH 7.4-8.9 stimulated protein synthesis by about 60% in the rat heart preparation anterogradely perfused in vitro. Protein degradation was inhibited by this pH increase. The magnitudes of the effects at pH 8.9 on protein synthesis and degradation were similar to those of high concentrations of insulin. Cardiac outputs were increased, as were cardiac phosphocreatine contents, indicating that the alterations in extracellular pH did not adversely affect the physiological viability of the preparation. ATP contents were unaltered. The creatine kinase equilibrium was used to assess the magnitude of the change in intracellular pH induced by these treatments. The increase in intracellular pH was about 0.2 for a 1-unit increase in extracellular pH. Thus small changes in intracellular pH have dramatic effects on cardiac protein turnover.
- Published
- 1989
- Full Text
- View/download PDF
97. The effects of lactate, acetate, glucose, insulin, starvation and alloxan-diabetes on protein synthesis in perfused rat hearts
- Author
-
Smith, D M, Fuller, S J, and Sugden, P H
- Abstract
Compared with glucose, lactate + acetate stimulated ventricular protein synthesis in anterogradely perfused hearts from fed or 72 h-starved rats. Stimulation was greater on a percentage basis in starved rats. Atrial protein synthesis was not detectably stimulated by lactate + acetate. Insulin stimulated protein synthesis in atria and ventricles. The stimulation of protein synthesis by lactate + acetate and insulin was not additive, the percentage stimulation by insulin being less in the ventricles of lactate + acetate-perfused hearts than in glucose-perfused hearts. Perfusion of hearts from 72 h-starved or alloxan-diabetic rats with glucose + lactate + acetate + insulin did not increase protein-synthesis rates or efficiencies (protein synthesis expressed relative to total RNA) to values for fed rats, implying there is a decrease in translational activity in these hearts. In the perfused heart, inhibition of protein synthesis by starvation and its reversal by re-feeding followed a relatively prolonged time course. Synthesis was still decreasing after 3 days of starvation and did not return to normal until after 2 days of re-feeding.
- Published
- 1986
- Full Text
- View/download PDF
98. The effects of 6 hours of hypoxia on protein synthesis in rat tissues in vivo and in vitro
- Author
-
Preedy, V R, Smith, D M, and Sugden, P H
- Abstract
Rates of protein synthesis were measured in vivo in several tissues (heart, skeletal muscles, liver, tibia, skin, brain, kidney, lung) of fed rats exposed to O2/N2 (1:9) for 6 h starting at 08:00-11:00 h. Protein synthesis rates were depressed by 15-35% compared with normoxic controls in all of the tissues studied. The decreases were greatest in the brain and the skin. Although hypoxia inhibited gastric emptying, its effects on protein synthesis could probably not be attributed to its induction of a starved state, because protein-synthesis rates in brain and skin were not decreased by a 15-18 h period of starvation initiated at 23:00 h. Furthermore, we showed that protein synthesis was inhibited by hypoxia in the rat heart perfused in vitro, suggesting a direct effect. The role of hypoxia in perturbing tissue nitrogen balance in various physiological and pathological states is discussed.
- Published
- 1985
- Full Text
- View/download PDF
99. A comparison of rates of protein turnover in rat diaphragm in vivo and in vitro
- Author
-
Preedy, V R, Smith, D M, and Sugden, P H
- Abstract
Protein synthesis and degradation rates in diaphragms from fed or starved rats were compared in vivo and in vitro. For fed rats, synthesis rates in vivo were approximately twice those in vitro, but for starved rats rates were similar. Degradation rates were less in vivo than in vitro in diaphragms from either fed or starved rats.
- Published
- 1986
- Full Text
- View/download PDF
100. Regional variation and differential sensitivity of rat heart protein synthesis in vivo and in vitro
- Author
-
Preedy, V R, Smith, D M, Kearney, N F, and Sugden, P H
- Abstract
In vivo, fractional rates of protein synthesis in atrial muscle of hearts taken from fed rats were 70% greater than in ventricular muscle. After 3 days starvation, atrial protein synthesis is inhibited, but the inhibition is less than in ventricles. A crude subcellular fractionation of the aqueous homogenates by centrifugation at 32000g showed that the supernatant and precipitate proteins were synthesized at the same rate in the ventricles. The fractional rates of protein synthesis and RNA/protein ratios in the right ventricle were 10% greater than in the left ventricle. Protein synthesis in both of these regions was inhibited equally by starvation. In vitro, rates of protein synthesis in atria and ventricles of anterogradely perfused rat hearts were stimulated by saturating insulin concentrations and were inhibited by starvation, but the effects in atria were smaller than in ventricles. Rates of protein synthesis in atria in vitro were 80-95% of rates in vivo. The heart therefore shows considerable regional variation in rates of protein synthesis in vivo and in vitro, and the sensitivity of protein synthesis in the various regions to interventions such as insulin and starvation differs.
- Published
- 1985
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.