51. Using leaf optical properties to detect ozone effects on foliar biochemistry.
- Author
-
Ainsworth EA, Serbin SP, Skoneczka JA, and Townsend PA
- Subjects
- Genotype, Illinois, Least-Squares Analysis, Nitrogen metabolism, Optics and Photonics methods, Photosynthesis drug effects, Plant Leaves metabolism, Glycine max drug effects, Glycine max genetics, Ozone pharmacology, Photosynthesis physiology, Plant Leaves physiology, Remote Sensing Technology methods, Seeds growth & development, Glycine max physiology
- Abstract
Efficient methods for accurate and meaningful high-throughput plant phenotyping are limiting the development and breeding of stress-tolerant crops. A number of emerging techniques, specifically remote sensing methods, have been identified as promising tools for plant phenotyping. These remote sensing methods can be used to accurately and rapidly relate variations in leaf optical properties with important plant characteristics, such as chemistry, morphology, and photosynthetic properties at the leaf and canopy scales. In this study, we explored the potential to utilize optical (λ = 500-2,400 nm) near-surface remote sensing reflectance spectroscopy to evaluate the effects of ozone pollution on photosynthetic capacity of soybean (Glycine max Merr.). The research was conducted at the Soybean Free Air Concentration Enrichment (SoyFACE) facility where we subjected plants to ambient (44 nL L(-1)) and elevated ozone (79-82 nL L(-1) target) concentrations throughout the growing season. Exposure to elevated ozone resulted in a significant loss of productivity, with the ozone-treated plants displaying a ~30 % average decrease in seed yield. From leaf reflectance data, it was also clear that elevated ozone decreased leaf nitrogen and chlorophyll content as well as the photochemical reflectance index (PRI), an optical indicator of the epoxidation state of xanthophyll cycle pigments and thus physiological status. We assessed the potential to use leaf reflectance properties and partial least-squares regression (PLSR) modeling as an alternative, rapid approach to standard gas exchange for the estimation of the maximum rates of RuBP carboxylation (V c,max), an important parameter describing plant photosynthetic capacity. While we did not find a significant impact of ozone fumigation on V c,max, standardized to a reference temperature of 25 °C, the PLSR approach provided accurate and precise estimates of V c,max across ambient plots and ozone treatments (r (2) = 0.88 and RMSE = 13.4 μmol m(-2) s(-1)) based only on the variation in leaf optical properties and despite significant variability in leaf nutritional status. The results of this study illustrate the potential for combining the phenotyping methods used here with high-throughput genotyping methods as a promising approach for elucidating the basis for ozone tolerance in sensitive crops.
- Published
- 2014
- Full Text
- View/download PDF