PurposeMethodsResultsConclusionThis study aimed to evaluate the tomographic, biomechanical, and in vivo confocal microscopic (IVCM) effects of chronic gout disease on human cornea.This prospective study included 60 eyes of 30 participants with chronic gout disease and 60 eyes of 30 healthy controls. Corneal thickness, keratometry (K) readings, and corneal aberrations were measured with Sirius 3 D corneal tomography system (Sirius, CSO, Italy). Corneal biomechanical properties (corneal hysteresis [CH], corneal resistance factor [CRF], and intraocular pressure [IOP] parameters) were assessed with an ocular response analyzer (ORA, Reichert Ophthalmic Instruments). The number and morphology of corneal endothelial cells and the number of basal epithelial cells were evaluated with IVCM (Confoscan 4.0). Tear breakup time (TBUT) was also evaluated.The mean diagnosis time of the patients with gout was 91.2 ± 69.6 months (12–300 month). Among corneal tomography measurements, K readings were similar between the two groups, while total and higher-order aberrations(coma, trefoil,s pherical, and quadrafoil) were significantly higher in the gout group. In the evaluation of biomechanical measurements, the CH value was significantly lower and the corneal-compensated IOP value was significantly higher in the gout group (p = 0.02, p = 0.01, respectively). The two groups did not significantly differ regarding the CRF or Goldmann IOP (p = 0.61, p = 0.15, respectively). Among the IVCM parameters, the number of corneal basal epithelial cells and the percentage of corneal endothelial hexagonality were significantly lower in the gout group, but no significant difference was detected in terms of the number of endothelial cells or polymegathism (p = 0.02, p < 0.001, p = 0.18, p = 0.59, respectively). While TBUT was significantly lower in the gout group (p < 0.001).This study showed that chronic gout disease increases the corneal aberrations and decreases the basal epithelial cell count, hexagonality ratio of endothelial cell and corneal biomechanics. [ABSTRACT FROM AUTHOR]