51. Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks
- Author
-
Pere Caminal, Beatriz F. Giraldo, Ivan Díaz, Carlos Arizmendi, Enrique Romero, René Alquézar, Salvador Benito, Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Institut de Bioenginyeria de Catalunya, Universitat Politècnica de Catalunya. SOCO - Soft Computing, and Universitat Politècnica de Catalunya. SISBIO - Senyals i Sistemes Biomèdics
- Subjects
Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC] ,Informàtica::Intel·ligència artificial::Aprenentatge automàtic [Àrees temàtiques de la UPC] ,medicine.medical_treatment ,Feature selection ,Disease cluster ,Electrocardiography ,Text mining ,Intensive care ,Machine learning ,Aprenentatge automàtic ,medicine ,Cluster Analysis ,Humans ,Computer Simulation ,Data mining ,Monitoring, Physiologic ,Mechanical ventilation ,Medicine -- Data processing ,Models, Statistical ,Artificial neural network ,business.industry ,Computers ,Respiration ,Pattern recognition ,Equipment Design ,Perceptron ,Respiration, Artificial ,Medical informatics ,Data Interpretation, Statistical ,Breathing ,Artificial intelligence ,Neural Networks, Computer ,Mineria de dades ,business ,Ventilator Weaning ,Medicina -- Informàtica - Abstract
The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.
- Published
- 2009
- Full Text
- View/download PDF