71 results on '"Ramberger, S."'
Search Results
52. TTIPP3 - A fault-tolerant time-triggered platooning demonstrator.
- Author
-
Ramberger, S., Herzner, W., Schoitsch, E., and Kubinger, W.
- Published
- 2008
- Full Text
- View/download PDF
53. AlGaN/GaN HEMTs on SiC operating at 40 GHz
- Author
-
Quay, R., primary, Kiefer, R., additional, van Raay, F., additional, Massler, H., additional, Ramberger, S., additional, Muller, S., additional, Dammann, M., additional, Mikulla, M., additional, Schlechtweg, M., additional, and Weimann, G., additional
- Published
- 2002
- Full Text
- View/download PDF
54. AlGaN/GaN-HEMTs for power applications up to 40 GHz
- Author
-
Kiefer, R., primary, Quay, R., additional, Muller, S., additional, Kohler, K., additional, van Raay, F., additional, Raynor, B., additional, Pletschen, W., additional, Massler, H., additional, Ramberger, S., additional, Mikulla, M., additional, and Weimann, G., additional
- Published
- 2002
- Full Text
- View/download PDF
55. A symmetry device to speed up circuit simulation and stability tests.
- Author
-
Ramberger, S. and Merkle, T.
- Published
- 2002
- Full Text
- View/download PDF
56. Intercept point behavior of Ka-band GaAs high power amplifiers.
- Author
-
Merkle, T., Tessmann, A., and Ramberger, S.
- Published
- 2002
- Full Text
- View/download PDF
57. A 4-Watt X-band compact coplanar high power amplifier MMIC with 18-dB gain and 25-% PAE.
- Author
-
Bessemoulin, A., Quay, M.R., Ramberger, S., and Schlechtweg, M.
- Published
- 2002
- Full Text
- View/download PDF
58. Field quality optimization in a common coil magnet design
- Author
-
Gupta, R., primary, Ramberger, S., additional, and Russenschuck, S., additional
- Published
- 2000
- Full Text
- View/download PDF
59. Integrated design of superconducting accelerator magnets. A case study of the main quadrupole
- Author
-
Russenschuck, S., primary, Calmon, F., additional, Lewin, M., additional, Paul, C., additional, Ramberger, S., additional, Rodriguez-Mateos, F., additional, Tortschanoff, T., additional, Verweij, A., additional, and Wolf, R., additional
- Published
- 1998
- Full Text
- View/download PDF
60. Normal-Conducting Separation and Compensation Dipoles for the LHC Experimental Insertions.
- Author
-
Gurov, D., Kiselev, O., Morozov, I., Ogurtsov, A., Petrov, V., Ruvinsky, E., Sukhanov, A., Zhilayev, K., Bidon, S., Cornuet, D., Gérard, D., Hans, O., Kalbreier, W., Ramberger, S., and de Rijk, G.
- Subjects
ELECTROMAGNETS ,MAGNETS -- Design & construction ,MAGNETIC dipoles ,HADRON colliders ,MAGNETIC measurements ,MAGNETIC fields ,ELECTRIC fields - Abstract
The experimental insertions of the LHC make use of normal-conducting magnets to provide for part of the beam separation and to compensate the effect of two large spectrometer dipoles. Three different types with respect to the length were designed and are based on the same type of lamination. The main type of magnet MBXW has a core length of 3.4 m while the MBXWT and MBXWS magnets are 1.5 m and 0.75 m long versions respectively. The magnet design was done in collaboration between CERN and BINP and the dipole magnets are produced by BINP. So far all three MBXWS magnets, all three MBXWT magnets and fifteen of twenty-nine MBXW magnets have been manufactured and delivered to CERN. The report presents the main design issues and results of the acceptance tests including mechanical, electrical and magnetic field measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
61. MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors
- Author
-
Bravar, U., Bogomilov, M., Karadzhov, Y., Kolev, D., Russinov, I., Tsenov, R., Wang, L., Xu, F. Y., Zheng, S. X., Bertoni, R., Bonesini, M., Mazza, R., Palladino, V., Cecchet, G., Bari, A., Capponi, M., Iaciofano, A., Orestano, D., Pastore, F., Tortora, L., Ishimoto, S., Suzuki, S., Yoshimura, K., Mori, Y., Kuno, Y., Sakamoto, H., Sato, A., Yano, T., Yoshida, M., Frank Filthaut, Vretenar, M., Ramberger, S., Blondel, A., Cadoux, F., Masciocchi, F., Graulich, J. S., Verguilov, V., Wisting, H., Petitjean, C., Seviour, R., Ellis, M., Kyberd, P., Littlefield, M., Nebrensky, J. J., Forrest, D., Soler, F. J. P., Walaron, K., Cooke, P., Gamet, R., Alecou, A., Apollonio, M., Barber, G., Dobbs, A., Dornan, P., Fish, A., Hare, R., Jamdagni, A., Kasey, V., Khaleeq, M., Long, K., Pasternak, J., Sashalmi, T., Blackmore, V., Cobb, J., Lau, W., Rayner, M., Tunnell, C. D., Witte, H., Yang, S., Alexander, J., Charnley, G., Griffiths, S., Martlew, B., Moss, A., Mullacrane, I., Oats, A., York, S., Apsimon, R., Alexander, R. J., Barclay, P., Baynham, D. E., Bradshaw, T. W., Courthold, M., Hayler, R. Edgecock T., Hills, M., Jones, T., Mcnubbin, N., Murray, W. J., Nelson, C., Nicholls, A., Norton, P. R., Prior, C., Rochford, J. H., Rogers, C., Spensley, W., Tilley, K., Booth, C. N., Hodgson, P., Nicholson, R., Overton, E., Robinson, M., Smith, P., Adey, D., Back, J., Boyd, S., Harrison, P., Norem, J., Bross, A. D., Geer, S., Moretti, A., Neuffer, D., Popovic, M., Qian, Z., Raja, R., Stefanski, R., Cummings, M. A. C., Roberts, T. J., Demello, A., Green, M. A., Li, D., Sessler, A. M., Virostek, S., Zisman, M. S., Freemire, B., Hanlet, P., Huang, D., Kafka, G., Kaplan, D. M., Snopok, P., Torun, Y., Onel, Y., Cline, D., Lee, K., Fukui, Y., Yang, X., Rimmer, R. A., Cremaldi, L. M., Hart, T. L., Summers, D. J., Coney, L., Fletcher, R., Hanson, G. G., Heidt, C., Gallardo, J., Kahn, S., Kirk, H., and Palmer, R. B.
- Subjects
Accelerator Physics (physics.acc-ph) ,High Energy Physics - Experiment (hep-ex) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Physics - Accelerator Physics ,Accelerators and Storage Rings ,High Energy Physics - Experiment - Abstract
The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented., Proceedings of the DPF-2011 Conference, Providence, RI, August 8-13, 2011
62. A 4-Watt X-band compact coplanar high power amplifier MMIC with 18-dB gain and 25% PAE
- Author
-
Bessemoulin, A., Massler, H., Rüdiger Quay, Ramberger, S., Schlechtweg, M., and Publica
- Subjects
Leistungsverstärker ,HPA ,coplanar waveguide ,MMIC ,amplifier ,GaAS ,Koplanarleitung ,PHEMT ,high power - Abstract
The performance of a compact coplanar microwave monolithic integrated circuit (MMIC) amplifier with high output power in the X-band is presented. Based on our 0.3-µm gate-length GaAs power pseudomorphic high electron mobility transistor (PHEMT) process on 4-in wafer, this two-stage amplifier, having a chip size of 16 mm2, averages 4-W continuous-wave (CW) and 25% mean power-added efficiency (PAE) in the X band, with more than 18-dB linear gain. Peak output powers of P(exp -1 dB) = 36.3 dBm (43 W) and P(exp sat) of 36.9 dBm (4.9 W) at 10 GHz with a PAE of 50% were also measured. Compared to previously reported X-band coplanar high-power amplifiers, this represents a chip size reduction of 20%, comparable to the size of compact state-of-the-art microstrip power amplifiers.
63. A symmetry device to speed up circuit simulation and stability tests
- Author
-
Ramberger, S., primary and Merkle, T., additional
- Full Text
- View/download PDF
64. Flip-chip integration of power HEMTs: a step towards a GaN MMIC technology
- Author
-
Seemann, K., primary, Ramberger, S., additional, Tessmann, A., additional, Quay, R., additional, Schneider, J., additional, Riessle, M., additional, Walcher, H., additional, Kuri, M., additional, Kiefer, R., additional, and Schlechtweg, M., additional
- Full Text
- View/download PDF
65. Intercept point behavior of Ka-band GaAs high power amplifiers
- Author
-
Merkle, T., primary, Tessmann, A., additional, and Ramberger, S., additional
- Full Text
- View/download PDF
66. A n-state time-domain measurement test-bench for characterization of intermodulation distortion on device level
- Author
-
Merkle, T., primary, Ramberger, S., additional, Kuri, M., additional, and van Raay, F., additional
- Full Text
- View/download PDF
67. A n-state time-domain measurement test-bench for characterization of intermodulation distortion on device level.
- Author
-
Merkle, T., Ramberger, S., Kuri, M., and van Raay, F.
- Published
- 2003
- Full Text
- View/download PDF
68. Flip-chip integration of power HEMTs: a step towards a GaN MMIC technology.
- Author
-
Seemann, K., Ramberger, S., Tessmann, A., Quay, R., Schneider, J., Riessle, M., Walcher, H., Kuri, M., Kiefer, R., and Schlechtweg, M.
- Published
- 2003
- Full Text
- View/download PDF
69. Field Quality Optimization in a Common Coil Magnet Design
- Author
-
Ramberger, S
- Published
- 1999
70. Electron-muon ranger: performance in the MICE muon beam
- Author
-
D. Adams, A. Alekou, M. Apollonio, R. Asfandiyarov, G. Barber, P. Barclay, A. de Bari, R. Bayes, V. Bayliss, P. Bene, R. Bertoni, V.J. Blackmore, A. Blondel, S. Blot, M. Bogomilov, M. Bonesini, C.N. Booth, D. Bowring, S. Boyd, T.W. Bradshaw, U. Bravar, A.D. Bross, F. Cadoux, M. Capponi, T. Carlisle, G. Cecchet, C. Charnley, F. Chignoli, D. Cline, J.H. Cobb, G. Colling, N. Collomb, L. Coney, P. Cooke, M. Courthold, L.M. Cremaldi, S. Debieux, A. DeMello, A. Dick, A. Dobbs, P. Dornan, F. Drielsma, F. Filthaut, T. Fitzpatrick, P. Franchini, V. Francis, L. Fry, A. Gallagher, R. Gamet, R. Gardener, S. Gourlay, A. Grant, J.S. Graulich, J. Greis, S. Griffiths, P. Hanlet, O.M. Hansen, G.G. Hanson, T.L. Hart, T. Hartnett, T. Hayler, C. Heidt, M. Hills, P. Hodgson, C. Hunt, C. Husi, A. Iaciofano, S. Ishimoto, G. Kafka, D.M. Kaplan, Y. Karadzhov, Y.K. Kim, Y. Kuno, P. Kyberd, J.-B. Lagrange, J. Langlands, W. Lau, M. Leonova, D. Li, A. Lintern, M. Littlefield, K. Long, T. Luo, C. Macwaters, B. Martlew, J. Martyniak, F. Masciocchi, R. Mazza, S. Middleton, A. Moretti, A. Moss, A. Muir, I. Mullacrane, J.J. Nebrensky, D. Neuffer, A. Nichols, R. Nicholson, L. Nicola, E. Noah Messomo, J.C. Nugent, A. Oates, Y. Onel, D. Orestano, E. Overton, P. Owens, V. Palladino, J. Pasternak, F. Pastore, C. Pidcott, M. Popovic, R. Preece, S. Prestemon, D. Rajaram, S. Ramberger, M.A. Rayner, S. Ricciardi, T.J. Roberts, M. Robinson, C. Rogers, K. Ronald, K. Rothenfusser, P. Rubinov, P. Rucinski, H. Sakamato, D.A. Sanders, R. Sandström, E. Santos, T. Savidge, P.J. Smith, P. Snopok, F.J.P. Soler, D. Speirs, T. Stanley, G. Stokes, D.J. Summers, J. Tarrant, I. Taylor, L. Tortora, Y. Torun, R. Tsenov, C.D. Tunnell, M.A. Uchida, G. Vankova-Kirilova, S. Virostek, M. Vretenar, P. Warburton, S. Watson, C. White, C.G. Whyte, A. Wilson, H. Wisting, X. Yang, A. Young, M. Zisman, Science and Technology Facilities Council (STFC), Adams, D., Alekou, A., Apollonio, M., Asfandiyarov, R., Barber, G., Barclay, P., De Bari, A., Bayes, R., Bayliss, V., Bene, P., Bertoni, R., Blackmore, V. J., Blondel, A., Blot, S., Bogomilov, M., Bonesini, M., Booth, C. N., Bowring, D., Boyd, S., Bradshaw, T. W., Bravar, U., Bross, A. D., Cadoux, F., Capponi, M., Carlisle, T., Cecchet, G., Charnley, C., Chignoli, F., Cline, D., Cobb, J. H., Colling, G., Collomb, N., Coney, L., Cooke, P., Courthold, M., Cremaldi, L. M., Debieux, S., Demello, A., Dick, A., Dobbs, A., Dornan, P., Drielsma, F., Filthaut, F., Fitzpatrick, T., Franchini, P., Francis, V., Fry, L., Gallagher, A., Gamet, R., Gardener, R., Gourlay, S., Grant, A., Graulich, J. S., Greis, J., Griffiths, S., Hanlet, P., Hansen, O. M., Hanson, G. G., Hart, T. L., Hartnett, T., Hayler, T., Heidt, C., Hills, M., Hodgson, P., Hunt, C., Husi, C., Iaciofano, A., Ishimoto, S., Kafka, G., Kaplan, D. M., Karadzhov, Y., Kim, Y. K., Kuno, Y., Kyberd, P., Lagrange, J. -B., Langlands, J., Lau, W., Leonova, M., Li, D., Lintern, A., Littlefield, M., Long, K., Luo, T., Macwaters, C., Martlew, B., Martyniak, J., Masciocchi, F., Mazza, R., Middleton, S., Moretti, A., Moss, A., Muir, A., Mullacrane, I., Nebrensky, J. J., Neuffer, D., Nichols, A., Nicholson, R., Nicola, L., Messomo, E. N., Nugent, J. C., Oates, A., Onel, Y., Orestano, D., Overton, E., Owens, P., Palladino, V., Pasternak, J., Pastore, F., Pidcott, C., Popovic, M., Preece, R., Prestemon, S., Rajaram, D., Ramberger, S., Rayner, M. A., Ricciardi, S., Roberts, T. J., Robinson, M., Rogers, C., Ronald, K., Rothenfusser, K., Rubinov, P., Rucinski, P., Sakamato, H., Sanders, D. A., Sandstrom, R., Santos, E., Savidge, T., Smith, P. J., Snopok, P., Soler, F. J. P., Speirs, D., Stanley, T., Stokes, G., Summers, D. J., Tarrant, J., Taylor, I., Tortora, L., Torun, Y., Tsenov, R., Tunnell, C. D., Uchida, M. A., Vankova-Kirilova, G., Virostek, S., Vretenar, M., Warburton, P., Watson, S., White, C., Whyte, C. G., Wilson, A., Wisting, H., Yang, X., Young, A., Zisman, M., and Palladino, Vittorio
- Subjects
Technology ,Physics - Instrumentation and Detectors ,Traverse ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Electron ,Cooling channel ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Particle identification method ,Particle identification methods ,Calorimeters ,DESIGN ,Particle tracking detectors ,0103 physical sciences ,Ionization cooling ,Detectors and Experimental Techniques ,Nuclear Experiment ,010306 general physics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Instrumentation ,Instruments & Instrumentation ,QC ,Mathematical Physics ,Physics ,Calorimeter ,Range (particle radiation) ,Muon ,Science & Technology ,010308 nuclear & particles physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Particle tracking detector ,Experimental High Energy Physics ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Performance of High Energy Physics Detectors ,Beam (structure) - Abstract
The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$., 22 pages, 19 figures
- Published
- 2015
71. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment
- Author
-
Maurizio Bonesini, J. Tarrant, A. Oates, A. Iaciofano, A. Blondel, Kenneth Long, Simone Gilardoni, Robert B. Palmer, D. Huang, T. L. Hart, S. York, R. Beuselinck, N. Collomb, Alessandra Lombardi, A. Wilson, L. M. Cremaldi, S. Griffiths, Chris Rogers, L. Howlett, H.G. Kirk, M. Khaleeq, A. DeMello, Michael A. Green, Malcolm Ellis, T.W. Bradshaw, H. Sakamoto, E. Gschwendtner, A. Lintern, C. Nelson, A. de Bari, A. Fish, Fr Pastore, Koji Yoshimura, V. Kasey, T. Hayler, P. Snopok, A. Sato, V. Blackmore, D. Clark, R. Nicholson, T. Sashalmi, J. J. Nebrensky, G. Vankova-Kirilova, Mario Parisi, G. Lucchini, P.A. Cooke, P. Owens, Paul Fraser Harrison, S. Watson, F. Masciocchi, D. A. Sanders, T. Yano, Maurizio Vretenar, A. Tonazzo, David Colling, C. D. Tunnell, K. Tilley, I. Russinov, K. Walaron, Matthew Hills, I. Mullacrane, A. Cirillo, R. Sandstrom, X. Yang, P. J. Dornan, G. Gregoire, J. Rochford, H. Wisting, C. Petitjean, Yasuo Fukui, P. Hodgson, Michael S. Zisman, Alessandro Manfredini, Richard Fletcher, L. Coney, U. Bravar, Y. Mori, P.J. Smith, D. Kolev, G. Kafka, T. Carlisle, E. Overton, A. D. Bross, J. Alexander, Max Robinson, R. Mazza, M. Courthold, A. Nichols, S. Greenwood, Y. Kuno, C. Macwaters, G. G. Hanson, C. N. Booth, P. Hanlet, W. Lau, Andrew Moss, R. Tsenov, K. Lee, A.K. Jamdagni, A. Jones, Y. Karadzhov, S. Fayer, M. Yoshida, Juan C. Gallardo, P. Kyberd, R. Hare, Patrick Janot, A. Alekou, G. Charnley, C. Heidt, S. Ricciardi, P. Gruber, Federico Ferri, Daniel M. Kaplan, Jaroslaw Pasternak, David B. Cline, Derun Li, Ben Freemire, S. Blot, H. Haseroth, G.J. Barber, Rebecca Seviour, David Neuffer, P. Bene, R. Gamet, Frank Filthaut, D.E. Baynham, M. Apollonio, Domizia Orestano, Takashi Matsushita, Holger Witte, V. Grichine, Christopher J. White, S. Ramberger, E. McKigney, R. J. Apsimon, D. Adey, F. J. P. Soler, J. S. Graulich, Klaus Hanke, L. Tortora, Mike Rayner, Steve Virostek, B. Martlew, R. Garoby, Milorad Popovic, Y. Ivaniouchenkov, Shiming Yang, Franck Cadoux, D. J. Summers, S. B. Boyd, Maiko Takahashi, Rob Edgecock, Yagmur Torun, A. Dobbs, Shota Suzuki, M. A.C. Cummings, V. Verguilov, F. Strati, F. Y. Xu, L. Wang, S.A. Kahn, R. Bertoni, M. Capponi, S. X. Zheng, T.J. Roberts, G. Cecchet, W. Spensley, S. Geer, Alfred Moretti, Yasar Onel, T. Savidge, S. Ishimoto, J. Leaver, P. Drumm, Yongsun Kim, V. Palladino, David Forrest, Robert Rimmer, F. Paleari, J.H. Cobb, D. Adams, Robert D. Preece, I. Clark, J. J. Back, M. Littlefield, M. Bogomilov, P. Barclay, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Bene, Pierre, Blondel, Alain, Cadoux, Franck, Graulich, Jean-Sébastien, Grichine, Vladimir, Gschwendtner-Riegler, Edda, Masciocchi, Florian, Sandstrom, Rikard, Verguilov, Vassil Zlatilov, Wisting, Havard, Bogomilov, M, Karadzhov, Y, Kolev, D, Russinov, I, Tsenov, R, Vankova Kirilova, G, Wang, L, Xu, Fy, Zheng, Sx, Bertoni, R, Bonesini, M, Ferri, F, Lucchini, G, Mazza, R, Paleari, F, Strati, F, Palladino, V, Cecchet, G, de Bari, A, Capponi, M, Cirillo, A, Iaciofano, A, Manfredini, A, Parisi, Mario, Orestano, Domizia, Pastore, F, Tonazzo, A, Tortora, L, Mori, Y, Kuno, Y, Sakamoto, H, Sato, A, Yano, T, Yoshida, M, Ishimoto, S, Suzuki, S, Yoshimura, K, Filthaut, F, Garoby, R, Gilardoni, S, Gruber, P, Hanke, K, Haseroth, H, Janot, P, Lombardi, A, Ramberger, S, Vretenar, M, Bene, P, Blondel, A, Cadoux, F, Graulich, J, Grichine, V, Gschwendtner, E, Masciocchi, F, Sandstrom, R, Verguilov, V, Wisting, H, Petitjean, C, Seviour, R, Alexander, J, Charnley, G, Collomb, N, Griffiths, S, Martlew, B, Moss, A, Mullacrane, I, Oates, A, Owens, P, White, C, York, S, Adams, D, Apsimon, R, Barclay, P, Baynham, De, Bradshaw, Tw, Courthold, M, Drumm, P, Edgecock, R, Hayler, T, Hills, M, Ivaniouchenkov, Y, Jones, A, Lintern, A, Macwaters, C, Nelson, C, Nichols, A, Preece, R, Ricciardi, S, Rochford, Jh, Rogers, C, Spensley, W, Tarrant, J, Tilley, K, Watson, S, Wilson, A, Forrest, D, Soler, Fjp, Walaron, K, Cooke, P, Gamet, R, Alekou, A, Apollonio, M, Barber, G, Beuselinck, R, Clark, D, Clark, I, Colling, D, Dobbs, A, Dornan, P, Fayer, S, Fish, A, Hare, R, Greenwood, S, Jamdagni, A, Kasey, V, Khaleeq, M, Leaver, J, Long, K, Mckigney, E, Matsushita, T, Pasternak, J, Sashalmi, T, Savidge, T, Takahashi, M, Blackmore, V, Carlisle, T, Cobb, Jh, Lau, W, Rayner, M, Tunnell, Cd, Witte, H, Yang, S, Booth, Cn, Hodgson, P, Howlett, L, Nicholson, R, Overton, E, Robinson, M, Smith, P, Adey, D, Back, J, Boyd, S, Harrison, P, Ellis, M, Kyberd, P, Littlefield, M, Nebrensky, Jj, Bross, Ad, Geer, S, Neuffer, D, Moretti, A, Popovic, M, Cummings, Mac, Roberts, Tj, Demello, A, Green, Ma, Li, D, Virostek, S, Zisman, M, Freemire, B, Hanlet, P, Huang, D, Kafka, G, Kaplan, Dm, Snopok, P, Torun, Y, Blot, S, Kim, Yk, Bravar, U, Onel, Y, Cline, D, Fukui, Y, Lee, K, Yang, X, Rimmer, Ra, Cremaldi, Lm, Gregoire, G, Hart, Tl, Sanders, Da, Summers, Dj, Coney, L, Fletcher, R, Hanson, Gg, Heidt, C, Gallardo, J, Kahn, S, Kirk, H, Palmer, Rb, Parisi, M., Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Kolev, D., Palladino, Vittorio, AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Accelerator Physics (physics.acc-ph) ,Accelerator Applications ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,ddc:500.2 ,01 natural sciences ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Calorimeters ,law ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Ionization cooling ,010306 general physics ,Instrumentation ,Mathematical Physics ,QC ,Physics ,Muon ,010308 nuclear & particles physics ,Instrumentation and methods for time-of-flight (TOF) spectroscopy ,Particle accelerator ,Accelerators and Storage Rings ,13. Climate action ,Muon collider ,Experimental High Energy Physics ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Physics::Accelerator Physics ,Neutrino Factory ,Physics - Accelerator Physics ,Instrumentation for particle accelerators and storage rings - low energy (linear accelerators, cyclotrons, electrostatic accelerators), Calorimeters, Instrumentation and methods for time-of-flight (TOF) spectroscopy, Accelerator Applications ,High Energy Physics::Experiment ,International Muon Ionization Cooling Experiment ,Instrumentation for particle accelerators and storage rings - low energy (linear accelerators, cyclotrons, electrostatic accelerators) ,Beam (structure) ,Lepton - Abstract
The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz muon rate, with a neglible pion contamination in the beam. The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In this paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.