7,226 results on '"Partial derivative"'
Search Results
52. Fuzzy-Approximation Adaptive Prescribed Performance Output Regulation for Uncertain Nonlinear Systems
- Author
-
Fujin Jia, Baoyong Zhang, Shengyuan Xu, and Zhengqiang Zhang
- Subjects
Computer science ,Function (mathematics) ,Fuzzy logic ,Computer Science Applications ,Human-Computer Interaction ,Tracking error ,Nonlinear system ,Control and Systems Engineering ,Control theory ,Backstepping ,Bounded function ,Partial derivative ,Electrical and Electronic Engineering ,Software - Abstract
This article studies the output regulation problem (ORP) for nonlinear systems based on prescribed performance control (PPC). The items with the partial derivative of the virtual controller are combined together by using backstepping, and then the fuzzy logic systems (FLSs) are used to approximate these combined items, so that the designed virtual controller does not have the partial derivative of the previous virtual controllers. Therefore, this method not only reduces the calculation burden in the backstepping method, but also avoids the disadvantages of dynamic surface control (DSC). Finally, a function ϴ is constructed such that the overall performance (dynamic performance and steady-state performance) of the tracking error (OPTE) is constrained by PP functions. The proposed control algorithm ensures that all the signals are semi-globally uniformly ultimately bounded (SGUUB), and the tracking error achieves the PPC. Simulation examples are provided to illustrate the effectiveness of the proposed method.
- Published
- 2022
53. CALCULATION SCHEME FOR THE MATTER CONSERVATION EQUATION
- Author
-
A.T. Salokhiddinov, A.G. Savitsky, D. McKinney, O.A. Ashirova, and P.A. Khakimova
- Subjects
partial derivative ,finite differences ,cases ,scheme viscosity ,matter transfer ,computed solution ,conservatism calculation - Abstract
The finite-difference scheme of directed differences (the Courant-Isaacson-Ries scheme), which is widely used in the practice of aerohydrodynamic calculations, is studied theoretically and on the example of test problems. We applied the commonly used in practice Courant-Isakson-Ries directional difference scheme that allowed us to find and show distributions of velocities where the laws of the matter conservation are violated in the calculations in solving the matter conservation equations or the correspondence of the obtained solutions to the most general practical understandings on the essence of the matter transfer. A scheme free from the shortcomings of the Courant-Isaacson-Ries scheme has been constructed, tested, and proposed for use in aerohydrodynamic calculations by the finite difference method. Moreover, all the valuable properties of this well-known scheme are preserved. Among the maintained properties: transportability, conservatism, stability in calculations, invariance, adequacy of the essence of the physical phenomenon of the transfer of matter in space. The disadvantages of the new finite-difference scheme proposed for solving the equations of conservation of matter should be considered: an increase in the required RAM for storing electronic means of calculating information about the velocity field in memory and an increase in the number of calculations needed. However, this is an insignificant price to pay for guaranteed conservatism in calculations while maintaining all other valuable properties of calculation schemes. A more stable behavior of the solution in the calculations will allow increasing the time steps so much that the losses in the number of calculations become not noticeable., {"references":["1.\tThiele, R. (2005). The Mathematics and Science of Leonhard Euler. In: VanBrummelen, G., Kinyon, M. (eds) Mathematics and the Historian's Craft. CMS Books in Mathematics. Springer, New York, NY. https://doi.org/10.1007/0-387-28272-6_6","2.\tUsov, A B. (2007). Numerical study of the Navier-Stokes equations in a complex domain. Izvestiyavuzov.North Caucasian region. Series: Natural Sciences. No.6.","3.\tAlekseev, A K, Bondarev, A E. (2020). On the relation of truncation and approximation errors for the set of solutions obtained by different numerical methods. ArXiv, abs/2005.06272","4.\tTaukenova, F I, Shkhanukov, M K, Lafishev, M K. (2006) Difference methods for solving boundary value problems for fractional differential equations. Comput.Math.and Math. Phys. 46, 1785–1795. https://doi.org/10.1134/S0965542506100149","5.\tZheng, Y. Systems of Conservation Laws (2001). Volume 38 ISBN : 978-1-4612-6631-0 https://doi.org/10.1007/978-1-4612-0141-0","6.\tLax, P.D. (2013). Stability of Difference Schemes. In: de Moura, C., Kubrusly, C. (eds) The Courant–Friedrichs–Lewy (CFL) Condition. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-8394-8_1","7.\tLax P. Richtmyer R. (2006). Survey of the Stability of Linear Finite Difference Equations. Communications on Pure and Applied Mathematics. DOI:9.267-293.10.1007/0-387-28148-7_11","8.\tYapici, K., Uludag, Y. (2013). Computational analysis of hydrodynamics of shear-thinning viscoelastic fluids in a square lid-driven cavity flow. Korea-Aust. Rheol. J. 25, 243–260. https://doi.org/10.1007/s13367-013-0025-6","9.\tDymnikov, V., Tyrtyshnikov, E., Lykossov, N.V., (2020). Zalesny V. Mathematical Modeling of Climate, Dynamics Atmosphere and Ocean: to the 95th Anniversary of G. I. Marchuk and the 40th Anniversary of the INM RAS. Izvestiya, Atmospheric and Oceanic Physics. No56. DOI:10.1134/S0001433820030056","10.\tSoldatenko, S, Bogomolov, A, Ronzhin, A. (2021) Mathematical Modelling of Climate Change and Variability in the Context of Outdoor Ergonomics. Mathematics. 9, 2920. https://doi.org/10.3390/ math9222920","11.\tEmmanuel, Jacob & Victor, Alexander. (2020). Numerical Solution for Weather Forecasting Using Finite Difference Scheme. IOSR Journal of Mathematics. 16. 49-56. DOI:10.9790/5728-1603054956.","12.\tKantha, L, Clayson, C A (2000) Numerical Models of Oceans and Oceanic Processes, Int. GeophysAcademic PressISBN: 0-12-434068-7","13.\tAlosaimi, M, Lesnic, D, Johansson, B T. (2021) Solution of the Cauchy problem for the wave equation using iterative regularization, Inverse Problems in Science and Engineering, 29:13, 2757-2771, DOI: 10.1080/17415977.2021.1949590.","14.\tMickens, R.E. (2020). Nonstandard Finite Difference Schemes. Methodology and Applications. https://doi.org/10.1142/11891","15.\tMoiseev, N Y, Silanteva, I Y. (2008) Difference schemes of arbitrary order of approximation for solving linear transport equations with constant coefficients by the Godunov method with antidiffusion. Journal of Computational Mathematics and Mathematical Physics, Volume 48, No7, pp 1282-1293","16.\tBakirov, K B, Duishokov, K D. (2003) Numerical methods of weather forecasting. Quasi-geostrophic barotropic model of the atmosphere. Textbook, Meteorology, Bishkek, 39.","17.\tTkachev, D, Blokhin, A. Courant-Friedrichs' Hypothesis and Stability of the Weak Shock Wave Satisfying the Lopatinski Condition Open Journal of Applied Sciences Vol.3 No.1B1, July 12, 2013 DOI: 10.4236/ojapps.2013.31B1016.","18.\tMarchuk, G.I., Kurbatkin, G.P. (1978). Numerical weather forecast Earth and Universe. Science, Novosibirsk, pp 37-43.","19.\tTsydenov, B O, Starchenko, A V. (2011). Numerical simulation of the thermal bar effect in Lake Baikal during the spring-summer warming period. Vestn.Tomsk.State Univ.Mathematics and Mechanics 1(13): 120-129.","20.\tChang, S Y (2022) A novel series of solution methods for solving nonlinear stiff dynamic problems, Nonlinear Dynamics, DOI:10.1007/s11071-021-07048-0.","21.\tPrusov, V A, Doroshenko, A E, Chernysh, R I et al. (2007) Efficient difference scheme for numerical solution of a convective diffusion problem. CybernSyst Anal 43, 368–376 https://doi.org/10.1007/s10559-007-0058-2","21.\tPrusov, V A, Doroshenko, A E, Chernysh, R I et al. (2007) Efficient difference scheme for numerical solution of a convective diffusion problem. CybernSyst Anal 43, 368–376 https://doi.org/10.1007/s10559-007-0058-2","23.\tPopov, I V, Fryazinov, I V. (2015) The method of adaptive artificial viscosity for the numerical solution of equations of gas dynamics. Krasand, Moscow, 275.","24.\tZalesny, V B, Gusev, A. (2009). Mathematical model of the World Ocean dynamics with algorithms of variational assimilation of temperature and salinity fields. Russian Journal of Numerical Analysis and Mathematical Modelling.24. 10.1515/RJNAMM.2009.012."]}
- Published
- 2023
- Full Text
- View/download PDF
54. Calculus: Derivatives
- Author
-
Vince, John, Mackie, Ian, Series editor, and Vince, John
- Published
- 2014
- Full Text
- View/download PDF
55. Rates of Change and the Derivative
- Author
-
Vali, Shapoor, Chui, Charles K., Series editor, and Vali, Shapoor
- Published
- 2014
- Full Text
- View/download PDF
56. Superpolynomial Lower Bounds for General Homogeneous Depth 4 Arithmetic Circuits
- Author
-
Kumar, Mrinal, Saraf, Shubhangi, Hutchison, David, editor, Kanade, Takeo, editor, Kittler, Josef, editor, Kleinberg, Jon M., editor, Kobsa, Alfred, editor, Mattern, Friedemann, editor, Mitchell, John C., editor, Naor, Moni, editor, Nierstrasz, Oscar, editor, Pandu Rangan, C., editor, Steffen, Bernhard, editor, Terzopoulos, Demetri, editor, Tygar, Doug, editor, Weikum, Gerhard, editor, Esparza, Javier, editor, Fraigniaud, Pierre, editor, Husfeldt, Thore, editor, and Koutsoupias, Elias, editor
- Published
- 2014
- Full Text
- View/download PDF
57. Unified Decision Procedures for Regular Expression Equivalence
- Author
-
Nipkow, Tobias, Traytel, Dmitriy, Hutchison, David, editor, Kanade, Takeo, editor, Kittler, Josef, editor, Kleinberg, Jon M., editor, Kobsa, Alfred, editor, Mattern, Friedemann, editor, Mitchell, John C., editor, Naor, Moni, editor, Nierstrasz, Oscar, editor, Pandu Rangan, C., editor, Steffen, Bernhard, editor, Terzopoulos, Demetri, editor, Tygar, Doug, editor, Weikum, Gerhard, editor, Klein, Gerwin, editor, and Gamboa, Ruben, editor
- Published
- 2014
- Full Text
- View/download PDF
58. Functions of Several Variables; Partial Differentiation; and Total Differentiation
- Author
-
Weltner, Klaus, John, Sebastian, Weber, Wolfgang J., Schuster, Peter, Grosjean, Jean, Weltner, Klaus, John, Sebastian, Weber, Wolfgang J., Schuster, Peter, and Grosjean, Jean
- Published
- 2014
- Full Text
- View/download PDF
59. Derivatives. One and Several Variables
- Author
-
López, César Pérez and López, César Pérez
- Published
- 2014
- Full Text
- View/download PDF
60. Differentiation in one and Several Variables. Applications to Optimization
- Author
-
López, César Pérez and López, César Pérez
- Published
- 2014
- Full Text
- View/download PDF
61. Mathematical Supplement
- Author
-
Kroese, Dirk P., Chan, Joshua C. C., Kroese, Dirk P., and C.C. Chan, Joshua
- Published
- 2014
- Full Text
- View/download PDF
62. Linear directional differential equations in the unit ball: solutions of bounded L-index.
- Author
-
Bandura, Andriy and Skaskiv, Oleh
- Subjects
- *
UNIT ball (Mathematics) , *ANALYTIC functions , *INTEGRAL functions , *LINEAR orderings , *DIFFERENTIAL equations , *LINEAR differential equations , *L-functions - Abstract
We study sufficient conditions of boundedness of L-index in a direction b ∈ ℂn ∖ {0} for analytic solutions in the unit ball of a linear higher order non-homogeneous differential equation with directional derivatives. These conditions are restrictions by the analytic coefficients in the unit ball of the equation. Also we investigate asymptotic behavior of analytic functions of bounded L-index in the direction and estimate its growth. The results are generalizations of known propositions for entire functions of several variables. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
63. Extensive second-order method for reliability analysis of complicated geotechnical structures.
- Author
-
Su, Yonghua, Li, Shuai, Liu, Shaofeng, and Fang, Yanbing
- Subjects
- *
RELIABILITY in engineering , *FINITE differences - Abstract
In stability reliability analysis of complicated geotechnical structure, the analytical expression of limit state function (LSF) is often highly non-linear, implicit or indefinable. This results in the classical second-order reliability method (SORM) not to be applied directly. The present study is devoted to eliminating this dilemma. Firstly, universal solving methods of partial derivatives of LSF to its basic random variables are derived using finite difference principle. Secondly, the universal methods supplement SORM to substitute for Newton–Leibniz derivation method; then, an improved algorithm of SORM is developed in conjunction with Breitung's notion. Thirdly, reliability evaluation of three examples with explicit/implicit LSF are carried out, an available constant quantity of step length coefficient is sought out in the independent standard normal space (u-space) through theoretical inference and trial. Fourthly, an extensive SORM (ESORM) that does not resort to any abstruse mathematic theories is further formulated. Fifthly, combined with numerical simulation, stability reliability degree of one excavation, of which LSF is indefinable, is analysed immediately. Therefore, a practical alternative approach of SORM for complicated geotechnical structure is constructed in the present study. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
64. Las aprehensiones en el registro gráfico para el estudio de la derivada parcial.
- Author
-
VIGO INGAR, KATIA and FERREIRA DA SILVA, MARIA JOSÉ
- Published
- 2019
- Full Text
- View/download PDF
65. A comparative study of neural-network feature weighting.
- Author
-
Sun, Tongfeng, Ding, Shifei, Li, Pin, and Chen, Wei
- Subjects
COMPARATIVE studies - Abstract
Many feature weighting methods have been proposed to evaluate feature saliencies in recent years. Neural-network (NN) feature weighting, as a supervised method, is founded upon the mapping from input features to output decisions, and implemented by evaluating the sensitivity of network outputs to its inputs. Through training on sample data, NN implicitly embodies the saliencies of input features. The partial derivatives of the outputs with respect to the inputs in the trained NN are calculated to measure their sensitivities to input features, which means that implicit feature weighting of the NN is transformed into explicit feature weighting. The purpose of this paper is to further probe into the principle of NN feature weighting, and evaluate its performance through a comparative study between NN feature weighting method and state-of-art weighting methods in the same working conditions. The motivation of this study is inspired by the lack of direct and comprehensive comparison studies of NN feature weighting method. Experiments in UCI repository data sets, face data sets and self-built data sets show that NN feature weighting method achieves superior performance in different conditions and has promising prospects. Compared with the other existing methods, NN feature weighting method can be used in more complex conditions, provided that NN can work in those conditions. As decision data, output data can be labels, reals or integers. Especially, feature weights can be calculated without the discretization of outputs in the condition of continuous outputs. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
66. A VARIATIONAL ITERATION METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS USING THE ABOODH TRANSFORM.
- Author
-
BENATTIA, MOHAMED ELARBI and BELGHABA, KACEM
- Subjects
- *
LAGRANGE multiplier , *DIFFERENTIAL equations , *NUMERICAL analysis , *FINITE element method , *MATHEMATICAL optimization - Abstract
In this article we propose a modification of the Variational Iteration Method (VIM) by adopting Aboudh transformation method. With this method a Lagrange multiplier is determined and the technique enhances the anatical solution of both the linear and nonlinear ordinary differential equations. Adoption of the Adomian series is also demonstrated. Some examples are given to illustrate the process. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
67. Creep strain modeling for alloy 690 SG tube material based on modified theta projection method
- Author
-
Seong-In Moon, Bong-Sang Lee, Jong Min Kim, Joon-Yeop Kwon, Kwon-Jae Choi, and Min-Chul Kim
- Subjects
Stress (mechanics) ,Creep strain ,Materials science ,Nuclear Energy and Engineering ,Creep ,Alloy ,engineering ,Projection method ,Boiler (power generation) ,Partial derivative ,Tube (fluid conveyance) ,Mechanics ,engineering.material - Abstract
During a severe accident, steam generator (SG) tubes undergo rapid changes in the pressure and temperature. Therefore, an appropriate creep model to predict a short term creep damage is essential. In this paper, a novel creep model for Alloy 690 SG tube material was proposed. It is based on the theta (θ) projection method that can represent all three stages of the creep process. The original θ projection method poses a limitation owing to its inability to represent experimental creep curves for SG tube materials for a large strain rate in the tertiary creep region. Therefore, a new modified θ projection method is proposed; subsequently, a master curve for Alloy 690 SG material is also proposed to optimize the creep model parameters, θi (i = 1–5). To adapt the implicit creep scheme to the finite element code, a partial derivative of incremental creep with respect to the stress is necessary. Accordingly, creep model parameters with a strictly linear relationship with the stress and temperature were proposed. The effectiveness of the model was validated using a commercial finite element analysis software. The creep model can be applied to evaluate the creep rupture behavior of SG tubes in nuclear power plants.
- Published
- 2022
68. Distributed Stabilization of Heterogeneous MASs in Uncertain Strong-Weak Competition Networks
- Author
-
Hong-Xiang Hu, Guanghui Wen, Xinghuo Yu, Tingwen Huang, and Zheng-Guang Wu
- Subjects
0209 industrial biotechnology ,Computer science ,02 engineering and technology ,Computer Science Applications ,Human-Computer Interaction ,Competition (economics) ,Nonlinear system ,020901 industrial engineering & automation ,Control and Systems Engineering ,Control theory ,Bounded function ,0202 electrical engineering, electronic engineering, information engineering ,Partial derivative ,020201 artificial intelligence & image processing ,Electrical and Electronic Engineering ,Software ,Sign (mathematics) - Abstract
Distributed stabilization problem is studied in this article for multiple heterogeneous agents in the uncertain strong-weak competition network with exogenous disturbances, where the agents are modeled by the second-order systems with different nonlinear intrinsic dynamics, and the network uncertainty is characterized by unknown nonzero parameters, which contains three different relationships among agents: 1) cooperation; 2) strong competition; and 3) weak competition. To achieve distributed stabilization, the whole network is first divided into two parts: 1) identifiable part and 2) unidentifiable part, and a new distributed robust integral sign of the error (RISE) controller is designed for each agent, where the selection rules of the corresponding parameters are given. It is shown that the heterogeneous multiagent system (MAS) can achieve distributed stabilization no matter whether the identifiable part is structurally balanced or not. Furthermore, it is proved that the global distributed stabilization is achieved for the heterogeneous agents provided that the partial derivatives of the nonlinear intrinsic dynamics are bounded. Finally, two numerical examples are given to demonstrate the effectiveness of the designed controller.
- Published
- 2022
69. Adaptive fixed-time tracking control for a class of nonlinear pure-feedback systems: A relative threshold event-triggered strategy
- Author
-
Qiangqiang Zhu, Guangju Zhang, Ben Niu, Shengtao Li, and Peiyong Duan
- Subjects
Scheme (programming language) ,0209 industrial biotechnology ,Class (computer programming) ,Computer science ,Applied Mathematics ,020208 electrical & electronic engineering ,02 engineering and technology ,Decoupling (cosmology) ,Tracking (particle physics) ,Computer Science Applications ,Nonlinear system ,020901 industrial engineering & automation ,Control and Systems Engineering ,Control theory ,0202 electrical engineering, electronic engineering, information engineering ,Partial derivative ,Design process ,Electrical and Electronic Engineering ,Instrumentation ,computer ,computer.programming_language - Abstract
In this paper, a fixed-time controller under the mechanism of event-trigger is designed for a class of nonlinear pure-feedback systems with non-differentiable non-affine functions. By properly modeling non-affine terms, the limitation of the partial derivatives of non-affine functions is eliminated. In our design process, we first develop a fixed-time adaptive controller using decoupling method. Then, a relative threshold event-trigger mechanism (ETM) is introduced in Section 3.1. The proposed controller can not only stabilize the system within a fixed-time, but also save communication resources more effectively. Lastly, the feasibility of the proposed control scheme is verified by two simulation examples.
- Published
- 2022
70. A note on the smoothness of densities
- Author
-
Michael L. Stein
- Subjects
Statistics and Probability ,Stochastic partial differential equation ,Nonlinear system ,Smoothness (probability theory) ,Distribution (mathematics) ,Applied Mathematics ,Mathematical analysis ,Partial derivative ,Statistics, Probability and Uncertainty ,Linear combination ,Random variable ,Independence (probability theory) ,Mathematics - Abstract
Empirical distributions in a range of fields are often substantially non-Gaussian but smooth enough to suggest that the underlying population distribution has at least several derivatives. Linear combinations of many random variables often have smooth densities even if the random variables are not independent. The main result here generalizes the elementary result that a convolution of densities has as many derivatives as the sum of the number of derivatives of each component to certain nonlinear functions of random vectors whose components may not be independent. Linearity is replaced by an assumption that the nonlinear function has positive first partial derivatives bounded away from 0 along at least some coordinates and independence is replaced by an assumption that the joint density has certain mixed partial derivatives. This approach to justifying the smoothness of empirical distributions is contrasted with other possible approaches, including solutions of stochastic partial differential equations and ergodic distributions for chaotic dynamical systems.
- Published
- 2022
71. Convergent newton method and neural network for the electric energy usage prediction
- Author
-
José de Jesús Rubio, Jaime Pacheco, David Ricardo Cruz, Genaro Ochoa, Marco Antonio Islas, and Enrique Garcia
- Subjects
Information Systems and Management ,Artificial neural network ,Computer science ,Computer Science Applications ,Theoretical Computer Science ,Electric energy ,symbols.namesake ,Artificial Intelligence ,Control and Systems Engineering ,Convergence (routing) ,symbols ,Applied mathematics ,Partial derivative ,Gradient descent ,Adaptation (computer science) ,Newton's method ,Software - Abstract
In the neural network adaptation, the Newton method could find a minimum with its second-order partial derivatives, and convergent gradient steepest descent could assure its error convergence with its time-varying adaptation rates. In this article, the convergent Newton method is proposed as the combination of the Newton method and the convergent gradient steepest descent for the neural networks adaptation, where the convergent Newton method incorporates the second-order partial derivatives inside of the time-varying adaptation rates. Hence, the convergent Newton method could assure its error convergence and could find a minimum. Experiments show that the convergent Newton method obtains satisfactory results in the electric energy usage data prediction.
- Published
- 2022
72. On the smoothness condition in Euler's theorem on homogeneous functions.
- Author
-
Dobbs, David E.
- Subjects
- *
MATHEMATICS theorems , *HOMOGENEOUS polynomials , *EULER theorem , *DIFFERENTIABLE functions , *DERIVATIVES (Mathematics) - Abstract
For a function
with continuous first partial derivatives, a theorem of Euler characterizes when f is a homogeneous function. This note determines whether the conclusion of Euler's theorem holds if the smoothness of f is not assumed. An example is given to show that if n ≥ 2, a homogeneous function (of any degree) need not be differentiable (and so the conclusion of Euler's theorem would fail for such a function). By way of contrast, it is shown that if n = 1, a homogeneous function (of any degree) must be differentiable (and so Euler's theorem does not need to assume the smoothness of f if n = 1). Additional characterizations of homogeneous functions, remarks and examples illustrate the theory, emphasizing differences in behaviour between the contexts n ≥ 2 and n = 1. This note could be used as enrichment material in calculus courses and possibly some science courses. [ABSTRACT FROM AUTHOR] - Published
- 2018
- Full Text
- View/download PDF
73. Sufficient conditions of boundedness of L-index and analog of Hayman's Theorem for analytic functions in a ball.
- Author
-
Bandura, Andriy and Skaskiv, Oleh
- Subjects
MATHEMATICS theorems ,MATHEMATICAL functions ,MATHEMATICS - Abstract
We generalize some criteria of boundedness of L-index in joint variables for analytic in an unit ball functions. Our propositions give an estimate maximum modulus of the analytic function on a skeleton in polydisc with the larger radii by maximum modulus on a skeleton in the polydisc with the lesser radii. An analog of Hayman's Theorem for the functions is obtained. Also we established a connection between class of analytic in ball functions of bounded lj -index in every direction 1
j , j ∊ {1, , n} and class of analytic in ball of functions of bounded L-index in joint variables, where L(z) = (l1 (z), , ln (z)), lj : Bn ∊ R+ is continuous function, 1j = (0, , 0, 1 j..th place 0, , 0) ∊ Rn + , z ∊ Cn . [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
74. Optimization on the smallest eigenvalue of grounded Laplacian matrix via edge addition.
- Author
-
Zhou, Xiaotian, Sun, Haoxin, Li, Wei, and Zhang, Zhongzhi
- Subjects
- *
GREEDY algorithms , *EIGENVALUES , *APPROXIMATION algorithms , *TIME complexity , *LAPLACIAN matrices , *COMBINATORIAL optimization - Abstract
The grounded Laplacian matrix L − S of a graph G = (V , E) with n = | V | nodes and m = | E | edges is a (n − s) × (n − s) submatrix of its Laplacian matrix L , obtained from L by deleting rows and columns corresponding to s = | S | ≪ n ground nodes forming set S ⊂ V. The smallest eigenvalue of L − S plays an important role in various practical scenarios, such as characterizing the convergence rate of leader-follower opinion dynamics, with a larger eigenvalue indicating faster convergence of opinion. In this paper, we study the problem of adding k ≪ n edges among all the nonexistent edges forming the candidate edge set Q = (V × V) ﹨ E , in order to maximize the smallest eigenvalue of the grounded Laplacian matrix. We show that the objective function of the combinatorial optimization problem is monotone but non-submodular. To solve the problem, we first simplify the problem by restricting the candidate edge set Q to be (S × (V ﹨ S)) ﹨ E , and prove that it has the same optimal solution as the original problem, although the size of set Q is reduced from O (n 2) to O (n). Then, we propose two greedy approximation algorithms. One is a simple greedy algorithm with an approximation ratio (1 − e − α γ) / α and time complexity O (k n 4) , where γ and α are, respectively, submodularity ratio and curvature, whose bounds are provided for some particular cases. The other is a fast greedy algorithm without approximation guarantee, which has a running time O ˜ (k m) , where O ˜ (⋅) suppresses the poly (log n) factors. Numerous experiments on various real networks are performed to validate the superiority of our algorithms, in terms of effectiveness and efficiency. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
75. Synergistic changes in precipitation and soil water use efficiency and their driving mechanisms of terrestrial ecosystems in China.
- Author
-
Li, Chao and Zhang, Shiqiang
- Subjects
- *
WATER efficiency , *SOIL moisture , *ARID regions , *CLIMATE change , *CARBON emissions , *DROUGHTS , *DROUGHT forecasting - Abstract
Soil water use efficiency (SWUE) and precipitation use efficiency (PUE) are paramount indicators in examining the coupling mechanism of carbon and water cycles in terrestrial vegetation ecosystems. However, the mechanisms influencing variations in PUE and SWUE warrant further investigation due to existing research gaps. The gross primary productivity (GPP) and net primary productivity (NPP) in China were simulated using the TL-LUE model and improved CASA model, respectively. PUE and SWUE were then calculated in conjunction with precipitation and soil water data. A further investigation was conducted on the joint evolutionary patterns of PUE and SWUE. The impact of factors such as climate change, vegetation variation, carbon dioxide emission, and human activities on PUE and SWUE was separately identified using partial derivatives and elasticity coefficients. The results suggest an insignificant downward in PUE and a significant upward trend in SWUE in China from the period of 2000–2018. Notably, drought mitigation in the arid zone led to a steeper decrease in PUE compared to humid, sub-humid and semi-arid zones. Drought mitigation resulted in a decrease of SWUE in arid zones, yet an increase in humid, sub-humid and semi-arid zones. The correlations between vegetation change and precipitation and PUE or SWUE, respectively, were predominantly influenced by changes in drought conditions. NPP and precipitation collectively dominated the alterations in PUE, contributing 41.55% and −58.45%, respectively. However, GPP exerted a more substantial influence on SWUE compared to precipitation, with notable contributions of 93.93% and −6.07%, respectively. The contributions to PUE from climate variation, human activities, vegetation change and carbon dioxide were −57%, 30%, 12% and −1%, respectively. Simultaneously, the contributions to SWUE from these same factors appeared as 20%, 63%, 16% and 1%, respectively. This study intends to augment the comprehension of the influence exerted by global climate change and human activities on the correlation between carbon and water in terrestrial vegetation ecosystems. [Display omitted] • Mechanisms influencing variations in PUE and SWUE need further investigation. • The effects of main factors on PUE and SWUE were isolated and quantified. • PUE and SWUE showed decreasing and increasing trends, respectively. • Climate change and human activities dominate the changes in PUE and SWUE. • The comprehension on coupled ecosystem-carbohydrate relationships were enhanced. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
76. The mixed conformable partial derivatives
- Author
-
Zhao, Chang-Jian and Cheung, Wing-Sum
- Published
- 2021
- Full Text
- View/download PDF
77. General Step-Index Optical Fiber Modal Characteristic and Sensitivity Analysis
- Author
-
Yundong Zhang and Xun Xie
- Subjects
Optical fiber ,Modal ,Implicit function ,law ,Fiber (mathematics) ,Mathematical analysis ,Partial derivative ,Function (mathematics) ,Boundary value problem ,Sensitivity (control systems) ,Atomic and Molecular Physics, and Optics ,Mathematics ,law.invention - Abstract
An analytical approach about the general type of step-index optical fiber modes and their variations is presented in this paper. The theoretical model is solved through our analytical method. With the boundary conditions, a composite equation set is established and solved. The precise results of all modes are achieved with a high-precision numerical solution. The modal characteristic contains the distributions of electromagnetic fields, the effective refractive index, and its tendencies. The modal sensitivity is based on the former and the partial derivative of the effective refractive index (neff/ni and neff/ri). The derivative rule of implicit functions and determinant function allows our method to analyze the sensitivity of modes. Furthermore, four qualitative deductions are derived during the process, including the qualitative analysis of modes and their constraints, supporting previous experiments. Our work is beneficial for exploiting new fiber and researching relative fiber sensors.
- Published
- 2022
78. Spectral CG Algorithm for Solving Fuzzy Nonlinear Equations
- Author
-
Hisham M. Khudhur, Mezher M. Abed, and Ufuk Öztürk
- Subjects
Hessian matrix ,Range (mathematics) ,Nonlinear system ,symbols.namesake ,Conjugate gradient method ,symbols ,Partial derivative ,Wolfe conditions ,Minification ,Fuzzy logic ,Algorithm ,Mathematics - Abstract
The non-linear conjugate gradient method is a very effective technique for addressing Large-Scale minimization problems, and it has a wide range of applications in Mathematics, Chemistry, Physics, Engineering, and Medicine, etc. In this paper, we present a new spectral conjugate gradient algorithm, a non-linear conjugate gradient algorithm, whose derivation is based on the Hisham–Khalil (KH) and Newton algorithms Based on Pure Conjugacy Condition, The importance of the research lies in finding an appropriate way to solve all kinds of linear and non-linear fuzzy equations because the Buckley and Qu's method is ineffective in solving all kinds of fuzzy equations and because the conjugate gradient method does not need a Hessian matrix (second partial derivatives of functions) in the solution. The descent property of the suggested method is shown provided that the step size meets the strong Wolfe conditions. In many circumstances, numerical results demonstrate that the novel technique is more efficient than the Fletcher–Reeves (FR) and Hisham–Khalil (KH) procedures in solving Fuzzy Nonlinear Equations.
- Published
- 2022
79. A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data
- Author
-
Muhammad Rizwan Asif, Anders Vest Christiansen, Pradip Kumar Maurya, Esben Auken, Bo Zhang, Denys Grombacher, Gianluca Fiandaca, Jakob Juul Larsen, and Thue S. Bording
- Subjects
Speedup ,Computer science ,inverse modeling ,Inversion (discrete mathematics) ,Least squares ,symbols.namesake ,Mathematical model ,Range (statistics) ,Jacobian matrices ,Electrical and Electronic Engineering ,Neurons ,Conductivity ,Artificial neural network ,Data models ,Computational modeling ,Jacobian matrix ,Logic gates ,neural networks ,transient electromagnetics (TEM) ,Jacobian matrix and determinant ,symbols ,General Earth and Planetary Sciences ,Partial derivative ,Forward modeling ,Transient (oscillation) ,Algorithm - Abstract
Inversion of large-scale time-domain transient electromagnetic (TEM) surveys is computationally expensive and time-consuming. The calculation of partial derivatives for the Jacobian matrix is by far the most computationally intensive task, as this requires calculation of a significant number of forward responses. We propose to accelerate the inversion process by predicting partial derivatives using an artificial neural network. Network training data for resistivity models for a broad range of geological settings are generated by computing partial derivatives as symmetric differences between two forward responses. Given that certain applications have larger tolerances for modeling inaccuracy and varying degrees of flexibility throughout the different phases of interpretation, we present four inversion schemes that provide a tunable balance between computational time and inversion accuracy when modeling TEM datasets. We improve speed and maintain accuracy with a hybrid framework, where the neural network derivatives are used initially and switched to full numerical derivatives in the final iterations. We also present a full neural network solution where neural network forward and derivatives are used throughout the inversion. In a least-squares inversion framework, a speedup factor exceeding 70 is obtained on the calculation of derivatives, and the inversion process is expedited ~36 times when the full neural network solution is used. Field examples show that the full nonlinear inversion and the hybrid approach gives identical results, whereas the full neural network inversion results in higher deviation but provides a reasonable indication about the overall subsurface geology.
- Published
- 2022
80. Simulation of plane elastostatic equations of anisotropic functionally graded materials by integrated radial basis function based on finite difference approach
- Author
-
Mehdi Dehghan, Ali Ebrahimijahan, and Mostafa Abbaszadeh
- Subjects
Current (mathematics) ,Basis (linear algebra) ,Plane (geometry) ,Applied Mathematics ,Mathematical analysis ,General Engineering ,Finite difference ,Finite difference method ,Computational Mathematics ,Partial derivative ,Radial basis function ,Boundary value problem ,Analysis ,Mathematics - Abstract
We present a method based on integrated radial basis function-finite difference for numerical solution of plane elastostatic equations which is a boundary value problem. The two-dimensional version of the governed equation is solved by the proposed method on various geometries such as the rectangular and irregular domains. In the current paper, one of our goals is to present an improved integrated radial basis function method based on the finite difference technique to approximate the second-order mixed partial derivatives with respect to x and y to get more accurate numerical results. Several examples are solved by applying integrated radial basis function based on finite difference method to check its accuracy and validity.
- Published
- 2022
81. Distributed Adaptive Consensus of Parabolic PDE Agents on Switching Graphs With Relative Output Information
- Author
-
Housheng Su and Qian Qiu
- Subjects
Adaptive control ,Computer science ,MathematicsofComputing_NUMERICALANALYSIS ,Topology (electrical circuits) ,Topology ,Parabolic partial differential equation ,Telecommunications network ,Synchronization ,Computer Science Applications ,Computer Science::Multiagent Systems ,Corollary ,Control and Systems Engineering ,Partial derivative ,Symmetric matrix ,Electrical and Electronic Engineering ,Information Systems - Abstract
This article mainly solves the consensus issue of parabolic partial differential equation (PDE) agents with switching topology by output feedback. A novel edge-based adaptive control protocol is designed to reach consensus under the condition that the switching graphs are always connected at any switching instants. Different from the existing adaptive protocol associated with partial differential dynamics, the proposed adaptive observer-type law relies on the relative output information rather than relative state information. A proper Lyapunov functional is constructed and some important lemmas are used, then a sufficient condition is obtained for the consensus of parabolic PDE agents on switching graphs. Besides, a corollary about the distributed adaptive consensus of parabolic PDE agents on fixed undirected communication networks is given. Finally, the theoretical results are demonstrated by two numerical simulations.
- Published
- 2022
82. Results on the solutions of several second order mixed type partial differential difference equations
- Author
-
Wenju Tang, Hong-Yan Xu, and Keyu Zhang
- Subjects
Fermat's Last Theorem ,General Mathematics ,Order (ring theory) ,Mixed type ,entire solution ,Type (model theory) ,Nevanlinna theory ,Combinatorics ,fermat type ,partial differential difference equation ,QA1-939 ,nevanlinna theory ,Partial derivative ,Mathematics - Abstract
This article is concerned with the existence of entire solutions for the following complex second order partial differential-difference equation \begin{document}$ \left(\frac{\partial^2 f(z_1, z_2)}{\partial z_1^2}+\frac{\partial^2 f(z_1, z_2)}{\partial z_2^2}\right)^{l}+f(z_1+c_1, z_2+c_2)^{k} = 1, $\end{document} where $ c_1, c_2 $ are constants in $ \mathbb{C} $ and $ k, l $ are positive integers. In addition, we also investigate the forms of finite order transcendental entire solutions for several complex second order partial differential-difference equations of Fermat type, and obtain some theorems about the existence and the forms of solutions for the above equations. Meantime, we give some examples to explain the existence of solutions for some theorems in some cases. Our results are some generalizations of the previous theorems given by Qi [23], Xu and Cao [35], Liu, Cao and Cao [17].
- Published
- 2022
83. A Subsurface Targets’ Classification Method Utilizing Gradient Learning Technique
- Author
-
Yaxin Mu, Xiaojuan Zhang, Wupeng Xie, and Yaoxin Zheng
- Subjects
Training set ,Gradient learning ,Computer science ,0211 other engineering and technologies ,02 engineering and technology ,Geotechnical Engineering and Engineering Geology ,Electromagnetic induction ,Nonlinear system ,Dipole ,Robustness (computer science) ,Partial derivative ,Electrical and Electronic Engineering ,Algorithm ,021101 geological & geomatics engineering - Abstract
Recent advances in the time-domain electromagnetic (TDEM) method have dramatically improved detection and discrimination of subsurface targets. Inversion of observed response using a 3-D orthogonal magnetic dipolar model provides location, orientation, and intrinsic responses of the target based on deterministic optimization methods, which is dependent on the initial values and could be trapped in local minimum solutions. In this letter, we applied a supervised descent method (SDM) to the inversion of electromagnetic induction (EMI) data accurately by individually and simultaneously training every single sample in the training set to avoid the direct use of the SDM that causes inaccurate classification results. This method provides a new way to incorporate prior information using gradient learning and reduce the computational complexity as it does not compute partial derivatives in the nonlinear least-squares problem or groups difference in the heuristic random search algorithm. Then the simulation and field experiments are performed to verify the feasibility of this method. Both the simulation and experimental results demonstrate that the SDM shows good performance and robustness in the classification of subsurface anomalous targets.
- Published
- 2022
84. Adaptive Fuzzy Finite-Time Tracking Control of Stochastic High-Order Nonlinear Systems With a Class of Prescribed Performance
- Author
-
Tong Wang, Shuzhong Song, Zhumu Fu, and Nan Wang
- Subjects
Lyapunov stability ,Computer science ,Applied Mathematics ,02 engineering and technology ,Covariance ,Fuzzy logic ,Exponential type ,Nonlinear system ,Computational Theory and Mathematics ,Artificial Intelligence ,Control and Systems Engineering ,Control theory ,Backstepping ,0202 electrical engineering, electronic engineering, information engineering ,Partial derivative ,020201 artificial intelligence & image processing ,Random variable - Abstract
This paper investigated the adaptive fuzzy finite-time control problem for a class of high-order stochastic nonlinear systems with a class of exponential type prescribed performance function. It is assumed that the nonlinear functions in the controlled plant are unknown, in which fuzzy logic systems (FLSs) are utilized due to the approximation ability of any unknown continuous functions with arbitrary approximation errors. Based on the FLSs and backstepping design technique, an novel adaptive fuzzy tracking control strategy is proposed to guarantee that the closed-loop nonlinear system is semi-globally finite-time stable in probability via Lyapunov stability theory and It ${\hat o}$ formula. Compared with existing results, the transformed error signal was regarded as a stochastic variable. In addition, the expressions of the first and second-order partial derivatives of the transformed error signals are given in this paper. Finally, a simulation example with different covariance values is given to show the effectiveness of the proposed control strategy.
- Published
- 2022
85. DC IR-Drop Analysis of Power Distribution Networks by a Robin Transmission Condition-Enhanced Discontinuous Galerkin Method
- Author
-
Ping Li, Min Tang, An Fa Yang, Li Jun Jiang, Hakan Bagci, and Jun Fa Mao
- Subjects
Work (thermodynamics) ,Matrix (mathematics) ,Discretization ,Heat flux ,Discontinuous Galerkin method ,Degrees of freedom (statistics) ,Partial derivative ,Electrical and Electronic Engineering ,Topology ,Industrial and Manufacturing Engineering ,Electronic, Optical and Magnetic Materials ,Mathematics ,Power (physics) - Abstract
In this work, a novel Robin transmission condition (RTC) enhanced discontinuous Galerkin (DG) method is proposed for the DC IR-Drop analysis of power distribution networks with Joule Heating effects included. Unlike the conventional DG method, the proposed DG method straightforwardly applied to discretize the second-order spatial partial differential governing equations for the electrostatic potential Φ and the steady-state temperature T, respectively. The numerical flux in DG used to facilitate the information exchange among neighboring subdomains introduces two additional variables: the current density J for the electrical potential equation and the thermal flux q for the thermal equation. To solve them, at the interface of neighboring subdomains a RTC is presented as the second equation to establish another connection for solutions in neighboring subdomains. With this strategy, the number of degrees of freedom (DoF) involved in the proposed RTC-DG method is dramatically reduced compared with the traditional DG method. The finalized matrix system is solved in a FETI-like procedure, namely, the unknowns are obtained in a subdomain-by-subdomain scheme. Finally, the accuracy and the efficiency of the proposed RTC-DG method is validated by serval representative examples.
- Published
- 2022
86. A generalized operational matrix of mixed partial derivative terms with applications to multi-order fractional partial differential equations
- Author
-
Muhammad Umar Mirza, Imran Talib, Muhammad Bilal Riaz, Fahd Jarad, and Asma Nawaz
- Subjects
Operational matrices ,020209 energy ,MathematicsofComputing_NUMERICALANALYSIS ,02 engineering and technology ,01 natural sciences ,Caputo derivative ,010305 fluids & plasmas ,Matrix (mathematics) ,0103 physical sciences ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,0202 electrical engineering, electronic engineering, information engineering ,Order (group theory) ,Applied mathematics ,Multi-term and Multi-order Fractional partial differential equations ,MATLAB ,Legendre polynomials ,Mixed partial derivative terms ,Mathematics ,computer.programming_language ,Partial differential equation ,General Engineering ,Function (mathematics) ,Engineering (General). Civil engineering (General) ,Partial derivative ,TA1-2040 ,computer ,Numerical stability - Abstract
In this paper, a computational approach based on the operational matrices in conjunction with orthogonal shifted Legendre polynomials (OSLPs) is designed to solve numerically the multi-order partial differential equations of fractional order consisting of mixed partial derivative terms. Our computational approach has ability to reduce the fractional problems into a system of Sylvester types matrix equations which can be solved by using MATLAB builtin function lyap(.). The solution is approximated as a basis vectors of OSLPs. The efficiency and the numerical stability is examined by taking various test examples.
- Published
- 2022
87. Long time behavior of Robin boundary sub-diffusion equation with fractional partial derivatives of Caputo type in differential and difference settings
- Author
-
Mostafa Abbaszadeh, Ahmed S. Hendy, and Mahmoud A. Zaky
- Subjects
Numerical Analysis ,Diffusion equation ,General Computer Science ,Applied Mathematics ,Boundary (topology) ,Absorbing set (random dynamical systems) ,State (functional analysis) ,Theoretical Computer Science ,Modeling and Simulation ,Bounded function ,Applied mathematics ,Partial derivative ,Algebraic number ,Differential (mathematics) - Abstract
A Robin boundary sub-diffusion equation is considered with fractional partial derivatives of the Caputo type. The model is an extension of various well-known equations from mathematical physics, biology, and chemistry. Initial–boundary data are imposed upon a closed and bounded spatial domain. We state and prove two main theorems in differential and difference settings to ensure the algebraic decay rate of the long-time behavior for that kind of problem. The dissipation of the continuous solution for such a problem is discussed in the first theorem based on energy inequalities and by the aid of Gronwall inequalities. It demonstrates that with an L 2 ( Ω ) -bounded absorbing set, the solution is dissipated with respect to time. The numerical dissipativity is proved in the second theorem by using discrete energy inequalities and the discrete Paley–Wiener inequality. Finally, an example is provided to illustrate the main outcomes.
- Published
- 2021
88. Event-Triggered Iterative Learning Containment Control of Model-Free Multiagent Systems
- Author
-
Changchun Hua, Xinping Guan, and Yunfei Qiu
- Subjects
Convex hull ,Containment (computer programming) ,Computer science ,Multi-agent system ,Iterative learning control ,Directed graph ,Computer Science Applications ,Human-Computer Interaction ,Control and Systems Engineering ,Control theory ,Linearization ,Partial derivative ,Electrical and Electronic Engineering ,Software - Abstract
A new event-triggered iterative learning control method is proposed for handling the distributed containment control problem of model-free multiagent systems under a fixed directed graph. The designed controller merely uses the input and output signals, controlled model information is not required. At first, the unknown dynamic is transformed into the linearization model upon the base of pseudo partial derivative. Secondly, the novel distributed containment controller is proposed for each follower by use of iterative learning algorithm. Moreover, a new trigger mechanism is designed to save energy of the systems, such that the updating number of the proposed controller can be reduced greatly. Mathematical deduction shows that the controller can render the outputs of the followers converge to a convex hull formed by the outputs of leaders. Finally, simulation examples are given for verifying the significance of proposed method.
- Published
- 2021
89. Wavefield solutions from machine learned functions constrained by the Helmholtz equation
- Author
-
Chao Song, Umair bin Waheed, Tariq Alkhalifah, and Qi Hao
- Subjects
Surface (mathematics) ,Artificial neural network ,Helmholtz equation ,Computer science ,Automatic differentiation ,Partial derivative ,Ocean Engineering ,Function (mathematics) ,Time domain ,Wave equation ,Algorithm ,Physics::Geophysics - Abstract
Solving the wave equation is one of the most (if not the most) fundamental problems we face as we try to illuminate the Earth using recorded seismic data. The Helmholtz equation provides wavefield solutions that are dimensionally reduced, per frequency, compared to the time domain, which is useful for many applications, like full waveform inversion. However, our ability to attain such wavefield solutions depends often on the size of the model and the complexity of the wave equation. Thus, we use here a recently introduced framework based on neural networks to predict functional solutions through setting the underlying physical equation as a loss function to optimize the neural network (NN) parameters. For an input given by a location in the model space, the network learns to predict the wavefield value at that location, and its partial derivatives using a concept referred to as automatic differentiation, to fit, in our case, a form of the Helmholtz equation. We specifically seek the solution of the scattered wavefield considering a simple homogeneous background model that allows for analytical solutions of the background wavefield. Providing the NN with a reasonable number of random points from the model space will ultimately train a fully connected deep NN to predict the scattered wavefield function. The size of the network depends mainly on the complexity of the desired wavefield, with such complexity increasing with increasing frequency and increasing model complexity. However, smaller networks can provide smoother wavefields that might be useful for inversion applications. Preliminary tests on a two-box-shaped scatterer model with a source in the middle, as well as, the Marmousi model with a source at the surface demonstrate the potential of the NN for this application. Additional tests on a 3D model demonstrate the potential versatility of the approach.
- Published
- 2021
90. Dynamics of D’Alembert wave and soliton molecule for a (2+1)-dimensional generalized breaking soliton equation
- Author
-
Bo Ren and Peng-Cheng Chu
- Subjects
Physics ,media_common.quotation_subject ,Dynamics (mechanics) ,One-dimensional space ,General Physics and Astronomy ,Equations of motion ,Asymmetry ,Nonlinear system ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,Classical mechanics ,Partial derivative ,Soliton ,Nonlinear Sciences::Pattern Formation and Solitons ,Variable (mathematics) ,media_common - Abstract
The D’Alembert solution is an important basic formula in linear partial differential theory due to that it can be considered as a general solution of the wave motion equation. However, the study of the D’Alembert wave is few works in nonlinear partial differential systems. In this paper, one construct the D’Alembert solution of a (2+1)-dimensional generalized breaking soliton equation which possesses the nonlinear terms. This D’Alembert wave has one arbitrary function in the traveling wave variable. We investigate the dynamics of the three soliton molecule, the soliton molecule by bound as an asymmetry soliton and one-soliton, the interaction between the half periodic wave and two-kink, and the interaction among the half periodic wave, one-kink and a kink soliton molecule of the (2+1)-dimensional generalized breaking soliton equation by selecting the appropriate parameters.
- Published
- 2021
91. Differentiation Theory of the Functions
- Author
-
Anastassiou, George A., Iatan, Iuliana F., Anastassiou, George A., and Iatan, Iuliana F.
- Published
- 2013
- Full Text
- View/download PDF
92. Greeks
- Author
-
Beyna, Ingo and Beyna, Ingo
- Published
- 2013
- Full Text
- View/download PDF
93. Case Studies for Establishing the M pdx Matrix
- Author
-
Colosi, Tiberiu, Abrudean, Mihail-Ioan, Unguresan, Mihaela-Ligia, Muresan, Vlad, Colosi, Tiberiu, Abrudean, Mihail-Ioan, Unguresan, Mihaela-Ligia, and Muresan, Vlad
- Published
- 2013
- Full Text
- View/download PDF
94. Conclusions
- Author
-
Colosi, Tiberiu, Abrudean, Mihail-Ioan, Unguresan, Mihaela-Ligia, Muresan, Vlad, Colosi, Tiberiu, Abrudean, Mihail-Ioan, Unguresan, Mihaela-Ligia, and Muresan, Vlad
- Published
- 2013
- Full Text
- View/download PDF
95. Partial Derivatives
- Author
-
Vince, John and Vince, John
- Published
- 2013
- Full Text
- View/download PDF
96. Segregation Analysis
- Author
-
Xu, Shizhong and Xu, Shizhong
- Published
- 2013
- Full Text
- View/download PDF
97. On Fermat-Type Functional and Partial Differential Equations
- Author
-
Li, Bao Qin, Sabadini, Irene, editor, and Struppa, Daniele C, editor
- Published
- 2012
- Full Text
- View/download PDF
98. Calculus
- Author
-
Borwein, Jonathan M., Skerritt, Matthew P., Borwein, Jonathan M., and Skerritt, Matthew P.
- Published
- 2012
- Full Text
- View/download PDF
99. Deciding Regular Expressions (In-)Equivalence in Coq
- Author
-
Moreira, Nelma, Pereira, David, Melo de Sousa, Simão, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, Kahl, Wolfram, editor, and Griffin, Timothy G., editor
- Published
- 2012
- Full Text
- View/download PDF
100. Multi-Tilde-Bar Derivatives
- Author
-
Caron, Pascal, Champarnaud, Jean-Marc, Mignot, Ludovic, Hutchison, David, editor, Kanade, Takeo, editor, Kittler, Josef, editor, Kleinberg, Jon M., editor, Mattern, Friedemann, editor, Mitchell, John C., editor, Naor, Moni, editor, Nierstrasz, Oscar, editor, Pandu Rangan, C., editor, Steffen, Bernhard, editor, Sudan, Madhu, editor, Terzopoulos, Demetri, editor, Tygar, Doug, editor, Vardi, Moshe Y., editor, Weikum, Gerhard, editor, Moreira, Nelma, editor, and Reis, Rogério, editor
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.