51. Quantification of Chaotic Intrinsic Variability of Sea‐Air CO 2 Fluxes at Interannual Timescales
- Author
-
Thierry Penduff, Ch. Ethé, Marion Gehlen, Sarah Berthet, Roland Séférian, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), and ANR-16-CE01-0014,SOBUMS,Comprendre la réponse du cycle du carbone dans l'océan austral au stress climatique(2016)
- Subjects
010504 meteorology & atmospheric sciences ,Mesoscale meteorology ,Chaotic ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Boundary current ,Ocean dynamics ,Geophysics ,13. Climate action ,Middle latitudes ,Sea air ,General Earth and Planetary Sciences ,Environmental science ,14. Life underwater ,Oceanic carbon cycle ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,0105 earth and related environmental sciences - Abstract
International audience; Chaotic intrinsic variability (CIV) emerges spontaneously from nonlinear ocean dynamics even without any atmospheric variability. Eddy-permitting numerical simulations suggest that CIV is a significant contributor to the interannual to decadal variability of physical properties. Here we show from an ensemble of global ocean eddy-permitting simulations that large-scale interannual CIV propagates from physical properties to sea-air CO 2 fluxes in areas of high mesoscale eddy activity (e.g., Southern Ocean and western boundary currents). In these regions and at scales larger than 500 km (~5°), CIV contributes significantly to the interannual variability of sea-air CO 2 fluxes. Between 35°S and 45°S (midlatitude Southern Ocean), CIV amounts to 23.76 TgC yr −1 or one half of the atmospherically forced variability. Locally, its contribution to the total interannual variance of sea-air CO 2 fluxes exceeds 76%. Outside eddy-active regions its contribution to total interannual variability is below 16%. Plain Language Summary Sea-air CO 2 fluxes undergo substantial regional and interannual fluctuations. These fluctuations are mostly forced by changes in large-scale atmospheric patterns, but ocean internal dynamics could also contribute to them. This study quantifies these two sources of variability and their contributions to fluctuations of sea-air CO 2 fluxes over large oceanic regions. It relies on the analyses of three ocean numerical simulations driven by the same atmospheric forcing but starting from small differences in initial conditions, and including a simplified representation of marine ecosystems. Simulations are run at a horizontal resolution allowing to model part of the effect of ocean mesoscale activity on physical and chemical tracers. We demonstrate that nonlinear oceanic processes drive fluctuations of sea-air CO 2 fluxes at interannual timescales that are inherently random. The magnitude of these fluctuations is substantial over areas of high kinetic energy and locally exceeds 76% of the total interannual variance of sea-air CO 2 fluxes.
- Published
- 2020
- Full Text
- View/download PDF