51. Option Pricing With Modular Neural Networks
- Author
-
Dragan Kukolj, Nikola Gradojevic, and Ramazan Gençay
- Subjects
Computer Science::Computer Science and Game Theory ,Mathematical optimization ,Modularity (networks) ,Artificial neural network ,Computer Networks and Communications ,Stochastic process ,business.industry ,Computer science ,General Medicine ,Modular design ,Modular neural network ,Computer Science Applications ,Economic indicator ,Artificial Intelligence ,Price index ,Stock exchange ,Valuation of options ,Feedforward neural network ,Binomial options pricing model ,business ,Mathematical economics ,Strike price ,Moneyness ,Software ,Parametric statistics - Abstract
This paper investigates a nonparametric modular neural network (MNN) model to price the S&P-500 European call options. The modules are based on time to maturity and moneyness of the options. The option price function of interest is homogeneous of degree one with respect to the underlying index price and the strike price. When compared to an array of parametric and nonparametric models, the MNN method consistently exerts superior out-of-sample pricing performance. We conclude that modularity improves the generalization properties of standard feedforward neural network option pricing models (with and without the homogeneity hint).
- Published
- 2007