51. Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels.
- Author
-
Cea LA, Balboa E, Puebla C, Vargas AA, Cisterna BA, Escamilla R, Regueira T, and Sáez JC
- Subjects
- Animals, Connexins genetics, Dexamethasone pharmacology, Gap Junctions genetics, Gap Junctions pathology, Mice, Mice, Transgenic, Muscular Atrophy chemically induced, Muscular Atrophy genetics, Muscular Atrophy pathology, Myofibrils genetics, Myofibrils pathology, Connexins biosynthesis, Dexamethasone adverse effects, Gap Junctions metabolism, Gene Expression Regulation drug effects, Muscular Atrophy metabolism, Myofibrils metabolism
- Abstract
Long-term treatment with high glucocorticoid doses induces skeletal muscle atrophy. However, the molecular mechanism of such atrophy remains unclear. We evaluated the possible involvement of connexin-based hemichannels (Cx HCs) in muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, on control (Cx43(fl/fl)Cx45(fl/fl)) and Cx43/Cx45 expression-deficient (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre) skeletal myofibers. Myofibers of Cx43(fl/fl)Cx45(fl/fl) mice treated with DEX (5h) expressed several proteins that form non-selective membrane channels (Cx39, Cx43, Cx45, Panx1, P2X7 receptor and TRPV2). After 5h DEX treatment in vivo, myofibers of Cx43(fl/fl)Cx45(fl/fl) mice showed Evans blue uptake, which was absent in myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Similar results were obtained in vitro using ethidium as an HC permeability probe, and DEX-induced dye uptake in control myofibers was blocked by P2X7 receptor inhibitors. DEX also induced a significant increase in basal intracellular Ca(2+) signal and a reduction in resting membrane potential in Cx43(fl/fl)Cx45(fl/fl) myofibers, changes that were not elicited by myofibers deficient in Cx43/Cx45 expression. Moreover, treatment with DEX induced NFκB activation and increased mRNA levels of TNF-α in control but not in Cx43/Cx45 expression-deficient myofibers. Finally, a prolonged DEX treatment (7days) increased atrogin-1 and Murf-1 and reduced the cross sectional area of Cx43(fl/fl)Cx45(fl/fl) myofibers, but these parameters remained unaffected in Cx43(fl/fl)Cx45(fl/fl):Myo-Cre myofibers. Therefore, DEX-induced expression of Cx43 and Cx45 plays a critical role in early sarcolemma changes that lead to atrophy. Consequently, this side effect of chronic glucocorticoid treatment might be avoided by co-administration with a Cx HC blocker., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF