51. The role of endoplasmic reticulum Ca2+-independent phospholipase a2γ in oxidant-induced lipid peroxidation, Ca2+ release, and renal cell death.
- Author
-
Eaddy AC, Cummings BS, McHowat J, and Schnellmann RG
- Subjects
- Animals, Endoplasmic Reticulum enzymology, Kidney Cortex enzymology, Kidney Cortex metabolism, Rabbits, Spectrometry, Mass, Electrospray Ionization, Calcium metabolism, Cell Death drug effects, Endoplasmic Reticulum drug effects, Group IV Phospholipases A2 metabolism, Kidney Cortex drug effects, Lipid Peroxidation drug effects, Oxidants toxicity
- Abstract
Oxidant-induced lipid peroxidation and cell death are major components of ischemia/reperfusion and toxicant injury. Our previous studies showed that renal proximal tubular cells (RPTCs) express Ca(2+)-independent phospholipase A(2)γ (iPLA(2)γ) in endoplasmic reticulum (ER) and mitochondria and that iPLA(2)γ is cytoprotective. Our present studies reveal the role of ER-iPLA(2)γ in oxidant-induced ER lipid peroxidation, Ca(2+) release, and cell death. Oxidant tert-butyl hydroperoxide (TBHP) caused ER lipid peroxidation and Ca(2+) release in isolated rabbit kidney cortex microsomes. ER-iPLA(2)γ inhibition, using bromoenol lactone (BEL), potentiated both oxidant-induced ER lipid peroxidation and Ca(2+) release. Assessment of fatty acids using electrospray ionization-mass spectrometry revealed that ER-iPLA(2)γ mediates the TBHP-induced release of arachidonic acid (20:4), linoleic acid (18:2), and their oxidized forms (18:2-OH, 18:2-OOH, 20:4-OH, 20:4-OOH, 20:4-(OH)(3). iPLA(2)γ inhibition also accelerated oxidant-induced ER Ca(2+) release in RPTC. Depletion of ER Ca(2+) stores in RPTC with thapsigargin, an ER Ca(2+) pump inhibitor, prior to TBHP exposure reduced necrotic cell death and blocked the potentiation of TBHP-induced necrotic cell death by BEL. Together, these data provide strong evidence that ER-iPLA(2)γ protects renal cells from oxidant-induced necrotic cell death by releasing unsaturated and/or oxidized fatty acids from ER membranes, thereby preserving ER membrane integrity and preventing ER Ca(2+) release.
- Published
- 2012
- Full Text
- View/download PDF