51. Comparing proton momentum distributions in A = 2 and 3 nuclei via 2H 3H and 3He (e,e′p) measurements
- Author
-
Z. Ye, B. Schmookler, J. P. Chen, G. M. Urciuoli, Diego Lonardoni, P. M. King, Hongbang Liu, R. Michaels, D. King, M. Olson, Darko Androić, S. Covrig, Toshiyuki Gogami, Pete Markowitz, S. Paul, Weidong Li, M. Viviani, Whitney Armstrong, P. E. Reimer, Larry Weinstein, T. Su, M. Patsyuk, H. Atac, B. Dongwi, Or Hen, N. Santiesteban, B. Sawatzky, T. Kutz, V. Bellini, R. I. Pomatsalyuk, H. Bhatt, I. Korover, S. A. Wood, R. Obrecht, S. Riordan, V. Pandey, E. Fuchey, Shanfeng Li, A. Beck, M. Hattawy, John Arrington, S. Mey-Tal Beck, Andrew Puckett, D. Bulumulla, Bogdan Wojtsekhowski, Aditya R. Khanal, F. Hauenstein, Simon Širca, A. Shahinyan, M. N. H. Rashad, Axel Schmidt, Cynthia Keppel, M. Khachatryan, J. Gomez, N. Lashley-Colthirst, D. Blyth, J. Castellanos, Ruprecht Machleidt, R. Suleiman, H. Albataineh, D. Bhetuwal, V. Khachatryan, Kondo Gnanvo, Eliahu Cohen, F. Tortorici, J. Roche, V. A. Punjabi, N. Nuruzzaman, S. Alsalmi, M. Nycz, H. Szumila-Vance, B. Duran, G. G. Petratos, Z. E. Meziani, C. Gal, Vladimir Nelyubin, G. Laskaris, L. Tang, W. Tireman, M. Mihovilovic, A. Karki, Ronald Ransome, D. G. Meekins, A. T. Katramatou, Olfred Hansen, W. U. Boeglin, Nilanga Liyanage, D. Biswas, C. Ayerbe Gayoso, Jiawen Zhang, S. Premathilake, D. Nguyen, X. Bai, E.P. Segarra, Siyu Jian, Elliot Hughes, R. Cruz-Torres, Douglas Higinbotham, L. Ou, S. Barcus, V. Owen, J. Bane, A. S. Tadepalli, R. E. McClellan, A. Habarakada, Sylvester Joosten, K. Craycraft, H. F. Ibrahim, B. Karki, Dipangkar Dutta, Laura Elisa Marcucci, M. Duer, T. Gautam, B. Pandey, Shalev Gilad, A. Papadopoulou, K. A. Aniol, A. Camsonne, D. Abrams, S. Park, F. Sammarruca, N. Sparveris, E. Piasetzky, C. Gu, T. Hague, T. Averett, and C. E. Hyde
- Subjects
production [pi] ,Nuclear and High Energy Physics ,data analysis method ,Photon ,Nuclear Theory ,interference ,FOS: Physical sciences ,Electron ,Impulse (physics) ,Inelastic scattering ,01 natural sciences ,xperimental results | Jefferson Lab | electron p: scattering | parity: violation | inelastic scattering | structure function | interference | photon | Z0 | pi: production | spin: asymmetry | data analysis method ,Nuclear Theory (nucl-th) ,structure function ,0103 physical sciences ,Z0 ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,010308 nuclear & particles physics ,Momentum transfer ,photon ,inelastic scattering ,scattering [electron p] ,Eikonal approximation ,NATURAL SCIENCES. Physics ,lcsh:QC1-999 ,PRIRODNE ZNANOSTI. Fizika ,Deuterium ,xperimental results ,High Energy Physics::Experiment ,violation [parity] ,Atomic physics ,Nucleon ,asymmetry [spin] ,lcsh:Physics ,Jefferson Lab - Abstract
We report the first measurement of the $(e,e'p)$ reaction cross-section ratios for Helium-3 ($^3$He), Tritium ($^3$H), and Deuterium ($d$). The measurement covered a missing momentum range of $40 \le p_{miss} \le 550$ MeV$/c$, at large momentum transfer ($\langle Q^2 \rangle \approx 1.9$ (GeV$/c$)$^2$) and $x_B>1$, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for $^3$He$/d$ and $^3$H$/d$ extend to just above the typical nucleon Fermi-momentum ($k_F \approx 250$ MeV$/c$) and differ from each other by $\sim 20\%$, while for $^3$He/$^3$H they agree within the measurement accuracy of about 3\%. At momenta above $k_F$, the measured $^3$He/$^3$H ratios differ from the calculation by $20\% - 50\%$. Final state interaction (FSI) calculations using the generalized Eikonal Approximation indicate that FSI should change the $^3$He/$^3$H cross-section ratio for this measurement by less than 5\%. If these calculations are correct, then the differences at large missing momenta between the $^3$He/$^3$H experimental and calculated ratios could be due to the underlying $NN$ interaction, and thus could provide new constraints on the previously loosely-constrained short-distance parts of the $NN$ interaction., 8 pages, 3 figures (4 panels)
- Published
- 2019