Nicolas Bitouze, Eirik Rosnes, Alexandre Graell i Amat, Département Electronique ( ELEC ), Université européenne de Bretagne ( UEB ) -Télécom Bretagne-Institut Mines-Télécom [Paris], Lab-STICC_TB_CACS_IAS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance ( Lab-STICC ), École Nationale d'Ingénieurs de Brest ( ENIB ) -Université de Bretagne Sud ( UBS ) -Université de Brest ( UBO ) -Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques ( IBNM ), Université de Brest ( UBO ) -Université européenne de Bretagne ( UEB ) -ENSTA Bretagne-Institut Mines-Télécom [Paris]-Centre National de la Recherche Scientifique ( CNRS ) -École Nationale d'Ingénieurs de Brest ( ENIB ) -Université de Bretagne Sud ( UBS ) -Université de Brest ( UBO ) -Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques ( IBNM ), Université de Brest ( UBO ) -Université européenne de Bretagne ( UEB ) -ENSTA Bretagne-Institut Mines-Télécom [Paris]-Centre National de la Recherche Scientifique ( CNRS ), Department of Signals and Systems, Chalmers University of Technology [Göteborg], Department of Informatics, Selmer Center, University of Bergen ( UIB ), Département Electronique (ELEC), Université européenne de Bretagne - European University of Brittany (UEB)-Institut Mines-Télécom [Paris] (IMT)-Télécom Bretagne, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), The Selmer Center in Secure Communication, Department of Informatics [Bergen] (UiB), University of Bergen (UiB)-University of Bergen (UiB), and Télécom Bretagne (devenu IMT Atlantique), Ex-Bibliothèque
International audience; While some write once memory (WOM) codes are inherently decodable, others require the added knowledge of the current generation in order to successfully decode the state of the memory. If there is no limit on the code length, n, a binary non-decodable t-write WOM code can be made decodable at an insignificant cost in terms of code rate by adding t - 1 cells to store the current generation after replicating the code enough times for the t - 1 cells to be of negligible weight. This justifies the research on non-decodable WOM codes. However, if n is bounded, the t - 1 additional cells may introduce a significant loss in terms of code rate. In this paper, we propose a new method to make non-decodable WOM codes decodable at a lower price when n is bounded. The main idea is to add cells that do not only store the current generation, but also additional data, by using a synchronous (t - 1)-write WOM code of length t - 1 or slightly above which does not contain the all-zero codeword. A bound on the rate of a simple family of synchronous WOM codes with n = t is given, as well as very short codes from this family. Better codes are then obtained by local manipulations of these codes. Finally, a construction of synchronous WOM codes with good properties is proposed to reach higher values of t.