2,906 results on '"Lebeda, A."'
Search Results
52. Correlated-Output Differential Privacy and Applications to Dark Pools.
- Author
-
James Hsin-yu Chiang, Bernardo David, Mariana Gama, and Christian Janos Lebeda
- Published
- 2023
- Full Text
- View/download PDF
53. Analysis methods for the first KATRIN neutrino-mass measurement
- Author
-
Aker, M, Altenmüller, K, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Bieringer, B, Blaum, K, Block, F, Bornschein, B, Bornschein, L, Böttcher, M, Brunst, T, Caldwell, TS, La Cascio, L, Chilingaryan, S, Choi, W, Díaz Barrero, D, Debowski, K, Deffert, M, Descher, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gauda, K, Gil, W, Glück, F, Grössle, R, Gumbsheimer, R, Höhn, T, Hannen, V, Haußmann, N, Helbing, K, Hickford, S, Hiller, R, Hillesheimer, D, Hinz, D, Houdy, T, Huber, A, Jansen, A, Köllenberger, L, Karl, C, Kellerer, J, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Lasserre, T, Le, TL, Lebeda, O, Lehnert, B, Lokhov, A, Lopez Poyato, JM, Müller, K, Machatschek, M, Malcherek, E, Mark, M, Marsteller, A, Martin, EL, Melzer, C, Mertens, S, Niemes, S, Oelpmann, P, Osipowicz, A, Parno, DS, Poon, AWP, Priester, F, Röllig, M, Röttele, C, Rest, O, Robertson, RGH, Rodenbeck, C, Ryšavý, M, Sack, R, Saenz, A, Schaller, A, Schäfer, P, Schimpf, L, Schlösser, K, Schlösser, M, Schlüter, L, Schrank, M, Schulz, B, and Šefčík, M
- Abstract
We report on the dataset, data handling, and detailed analysis techniques of the first neutrino-mass measurement by the Karlsruhe Tritium Neutrino (KATRIN) experiment, which probes the absolute neutrino-mass scale via the β-decay kinematics of molecular tritium. The source is highly pure, cryogenic T2 gas. The β electrons are guided along magnetic field lines toward a high-resolution, integrating spectrometer for energy analysis. A silicon detector counts β electrons above the energy threshold of the spectrometer, so that a scan of the thresholds produces a precise measurement of the high-energy spectral tail. After detailed theoretical studies, simulations, and commissioning measurements, extending from the molecular final-state distribution to inelastic scattering in the source to subtleties of the electromagnetic fields, our independent, blind analyses allow us to set an upper limit of 1.1 eV on the neutrino-mass scale at a 90% confidence level. This first result, based on a few weeks of running at a reduced source intensity and dominated by statistical uncertainty, improves on prior limits by nearly a factor of two. This result establishes an analysis framework for future KATRIN measurements, and provides important input to both particle theory and cosmology.
- Published
- 2021
54. Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment
- Author
-
Aker, M, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Bieringer, B, Block, F, Bornschein, B, Bornschein, L, Böttcher, M, Brunst, T, Caldwell, TS, Carney, RMD, Chilingaryan, S, Choi, W, Debowski, K, Deffert, M, Descher, M, Barrero, D Díaz, Doe, PJ, Dragoun, O, Drexlin, G, Edzards, F, Eitel, K, Ellinger, E, Miniawy, A El, Engel, R, Enomoto, S, Felden, A, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gauda, K, Gil, W, Glück, F, Groh, S, Grössle, R, Gumbsheimer, R, Hannen, V, Haußmann, N, Heizmann, F, Helbing, K, Hickford, S, Hiller, R, Hillesheimer, D, Hinz, D, Höhn, T, Houdy, T, Huber, A, Jansen, A, Karl, C, Kellerer, J, Kleesiek, M, Klein, M, Köhler, C, Köllenberger, L, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Kunka, N, Lasserre, T, La Cascio, L, Lebeda, O, Lehnert, B, Le, TL, Lokhov, A, Machatschek, M, Malcherek, E, Mark, M, Marsteller, A, Martin, EL, Meier, M, Melzer, C, Menshikov, A, Mertens, S, Mostafa, J, Müller, K, Niemes, S, Oelpmann, P, Parno, DS, Poon, AWP, Poyato, JML, Priester, F, Ranitzsch, PC-O, Robertson, RGH, Rodejohann, W, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schäfer, P, Schaller, A, Schimpf, L, and Schlösser, K
- Subjects
Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics - Abstract
AbstractThe KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium $$\upbeta $$ β -decay endpoint region with a sensitivity on $$m_\nu $$ m ν of 0.2 $$\hbox {eV}/\hbox {c}^2$$ eV / c 2 (90% CL). For this purpose, the $$\upbeta $$ β -electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6 keV. A dominant systematic effect of the response of the experimental setup is the energy loss of $$\upbeta $$ β -electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% $$\hbox {T}_2$$ T 2 gas mixture at 30 K, as used in the first KATRIN neutrino-mass analyses, as well as a $$\hbox {D}_2$$ D 2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of $$\sigma (m_\nu ^2)< {{10}^{-2}}{\hbox {eV}^{2}}$$ σ ( m ν 2 ) < 10 - 2 eV 2 [1] in the KATRIN neutrino-mass measurement to a subdominant level.
- Published
- 2021
55. The Correlated Gaussian Sparse Histogram Mechanism.
- Author
-
Christian Janos Lebeda and Lukas Retschmeier
- Published
- 2024
- Full Text
- View/download PDF
56. Testing Identity of Distributions under Kolmogorov Distance in Polylogarithmic Space.
- Author
-
Christian Janos Lebeda and Jakub Tetek
- Published
- 2024
- Full Text
- View/download PDF
57. Better Gaussian Mechanism using Correlated Noise.
- Author
-
Christian Janos Lebeda
- Published
- 2024
- Full Text
- View/download PDF
58. Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition.
- Author
-
Christian Janos Lebeda, Matthew Regehr, Gautam Kamath 0001, and Thomas Steinke 0002
- Published
- 2024
- Full Text
- View/download PDF
59. Search for keV-scale sterile neutrinos with the first KATRIN data
- Author
-
M. Aker, D. Batzler, A. Beglarian, J. Behrens, A. Berlev, U. Besserer, B. Bieringer, F. Block, S. Bobien, B. Bornschein, L. Bornschein, M. Böttcher, T. Brunst, T. S. Caldwell, S. Chilingaryan, W. Choi, K. Debowski, M. Descher, D. Díaz Barrero, P. J. Doe, O. Dragoun, G. Drexlin, F. Edzards, K. Eitel, E. Ellinger, R. Engel, S. Enomoto, A. Felden, J. A. Formaggio, F. M. Fränkle, G. B. Franklin, F. Friedel, A. Fulst, K. Gauda, A. S. Gavin, W. Gil, F. Glück, R. Grössle, R. Gumbsheimer, V. Hannen, N. Haußmann, K. Helbing, S. Hickford, R. Hiller, D. Hillesheimer, D. Hinz, T. Höhn, T. Houdy, A. Huber, A. Jansen, C. Karl, J. Kellerer, M. Kleifges, M. Klein, C. Köhler, L. Köllenberger, A. Kopmann, M. Korzeczek, A. Kovalík, B. Krasch, H. Krause, L. La Cascio, T. Lasserre, T. L. Le, O. Lebeda, B. Lehnert, A. Lokhov, M. Machatschek, E. Malcherek, M. Mark, A. Marsteller, E. L. Martin, C. Melzer, S. Mertens, J. Mostafa, K. Müller, H. Neumann, S. Niemes, P. Oelpmann, D. S. Parno, A. W. P. Poon, J. M. L. Poyato, F. Priester, J. Ráliš, S. Ramachandran, R. G. H. Robertson, W. Rodejohann, C. Rodenbeck, M. Röllig, C. Röttele, M. Ryšavý, R. Sack, A. Saenz, R. Salomon, P. Schäfer, L. Schimpf, M. Schlösser, K. Schlösser, L. Schlüter, S. Schneidewind, M. Schrank, A. Schwemmer, M. Šefǧík, V. Sibille, D. Siegmann, M. Slezák, F. Spanier, M. Steidl, M. Sturm, H. H. Telle, L. A. Thorne, T. Thümmler, N. Titov, I. Tkachev, K. Urban, K. Valerius, D. Vénos, A. P. Vizcaya Hernández, C. Weinheimer, S. Welte, J. Wendel, M. Wetter, C. Wiesinger, J. F. Wilkerson, J. Wolf, S. Wüstling, J. Wydra, W. Xu, S. Zadoroghny, and G. Zeller
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract In this work we present a keV-scale sterile-neutrino search with a low-tritium-activity data set of the KATRIN experiment, acquired in a commissioning run in 2018. KATRIN performs a spectroscopic measurement of the tritium $$\upbeta $$ β -decay spectrum with the main goal of directly determining the effective electron anti-neutrino mass. During this commissioning phase a lower tritium activity facilitated the measurement of a wider part of the tritium spectrum and thus the search for sterile neutrinos with a mass of up to $$1.6\, \textrm{keV}$$ 1.6 keV . We do not find a signal and set an exclusion limit on the sterile-to-active mixing amplitude of $$\sin ^2\theta < 5\times 10^{-4}$$ sin 2 θ < 5 × 10 - 4 ( $$95\%$$ 95 % C.L.) at a mass of 0.3 keV. This result improves current laboratory-based bounds in the sterile-neutrino mass range between 0.1 and 1.0 keV.
- Published
- 2023
- Full Text
- View/download PDF
60. Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRIN
- Author
-
Aker, M, Altenmüller, K, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Bieringer, B, Blaum, K, Block, F, Bornschein, B, Bornschein, L, Böttcher, M, Brunst, T, Caldwell, TS, La Cascio, L, Chilingaryan, S, Choi, W, Barrero, D Díaz, Debowski, K, Deffert, M, Descher, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gauda, K, Gil, W, Glück, F, Grössle, R, Gumbsheimer, R, Höhn, T, Hannen, V, Haußmann, N, Helbing, K, Hickford, S, Hiller, R, Hillesheimer, D, Hinz, D, Houdy, T, Huber, A, Jansen, A, Köllenberger, L, Karl, C, Kellerer, J, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Lasserre, T, Le, TL, Lebeda, O, Le Guennic, N, Lehnert, B, Lokhov, A, Poyato, JM Lopez, Müller, K, Machatschek, M, Malcherek, E, Mark, M, Marsteller, A, Martin, EL, Melzer, C, Mertens, S, Niemes, S, Oelpmann, P, Osipowicz, A, Parno, DS, Poon, AWP, Priester, F, Röllig, M, Röttele, C, Rest, O, Robertson, RGH, Rodenbeck, C, Ryšavý, M, Sack, R, Saenz, A, Schaller, A, Schäfer, P, Schimpf, L, Schlösser, M, Schlösser, K, Schlüter, L, Schrank, M, and Schulz, B
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,KATRIN Collaboration ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino. The analysis is sensitive to the mass, m_{4}, of the fourth mass state for m_{4}^{2}≲1000 eV^{2} and to active-to-sterile neutrino mixing down to |U_{e4}|^{2}≳2×10^{-2}. No significant spectral distortion is observed and exclusion bounds on the sterile mass and mixing are reported. These new limits supersede the Mainz results for m_{4}^{2}≲1000 eV^{2} and improve the Troitsk bound for m_{4}^{2}
- Published
- 2021
61. Welcome culture in German schools: teachers’ perspectives
- Author
-
Lea Klöpfer, Maria Lebeda, and Wiebke Waburg
- Subjects
migration ,school ,teachers ,refugees from Ukraine ,welcome culture ,Education (General) ,L7-991 - Abstract
The secondary analysis focuses on teachers’ perspectives on welcome culture (Willkommenskultur) in German schools for pupils who have fled from Ukraine. The following research question was pursued: What aspects of the welcome culture become apparent in statements of teachers? Data from five group discussions with individuals from primary and secondary schools and an educational institution in Rhineland-Palatinate were analyzed. Participants included teachers (n = 12), school principals (n = 2), and one director. The study indicates that refugees from Ukraine are treated differently from refugees originating from Syria or other countries; these differences can be recognized at both the individual and societal levels.
- Published
- 2024
- Full Text
- View/download PDF
62. Quantifying low-energy nitrogen ion channeling in α-titanium by molecular dynamics simulations
- Author
-
Lebeda, Miroslav, Drahokoupil, Jan, Veřtát, Petr, and Vlčák, Petr
- Published
- 2023
- Full Text
- View/download PDF
63. Characterization of the secondary neutron field inside a cyclotron for production of radiopharmaceuticals
- Author
-
Zmeškal, Marek, Košťál, Michal, Czakoj, Tomáš, Šimon, Jan, Majerle, Mitja, Zach, Václav, Lebeda, Ondřej, Vadják, Šimon, Antoš, Michal, and Matěj, Zdeněk
- Published
- 2023
- Full Text
- View/download PDF
64. Suppression of Penning discharges between the KATRIN spectrometers
- Author
-
Aker, M., Altenmüller, K., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Felden, A., Formaggio, J. A., Fränkle, F., Franklin, G. B., Frankrone, H., Friedel, F., Fulst, A., Gauda, K., Gil, W., Glück, F., Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Hartmann, J., Haußmann, N., Heizmann, F., Heizmann, J., Helbing, K., Hickford, S., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kuffner, B., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Lehnert, B., Letnev, J., Leven, F., Le, T. L., Lichter, S., Lokhov, A., Machatschek, M., Malcherek, E., Marsteller, A., Martin, E. L., Melzer, C., Menshikov, A., Mertens, S., Monreal, B., Müller, K., Naumann, U., Neumann, H., Niemes, S., Noe, M., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Poyato, J. M. L., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Schulz, B., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Steven, M., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, "electron catchers" were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background., Comment: - 12 pages, 14 figures, LaTeX; typos corrected, references added; precised a few arguments, added additional discussions, results unchanged
- Published
- 2019
- Full Text
- View/download PDF
65. An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN
- Author
-
Aker, M., Altenmüller, K., Arenz, M., Babutzka, M., Barrett, J., Bauer, S., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Besserer, U., Blaum, K., Block, F., Bobien, S., Bokeloh, K., Bonn, J., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., La Cascio, L., Chilingaryan, S., Choi, W., Corona, T. J., Debowski, K., Deffert, M., Descher, M., Doe, P. J., Dragoun, O., Drexlin, G., Dunmore, J. A., Dyba, S., Edzards, F., Eisenblätter, L., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Felden, A., Fischer, S., Flatt, B., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frankrone, H., Friedel, F., Fuchs, D., Fulst, A., Furse, D., Gauda, K., Gemmeke, H., Gil, W., Glück, F., Görhardt, S., Groh, S., Grohmann, S., Grössle, R., Gumbsheimer, R., Minh, M. Ha, Hackenjos, M., Hannen, V., Harms, F., Hartmann, J., Haußmann, N., Heizmann, F., Helbing, K., Hickford, S., Hilk, D., Hillen, B., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Howe, M. A., Huber, A., Jansen, A., Kaboth, A., Karl, C., Kazachenko, O., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kosmider, A., Kovalí, A., Krasch, B., Kraus, M., Krause, H., Kuckert, L., Kuffner, B., Kunka, N., Lasserre, T., Le, T. L., Lebeda, O., Leber, M., Lehnert, B., Letnev, J., Leven, F., Lichter, S., Lobashev, V. M., Lokhov, A., Machatschek, M., Malcherek, E., Müller, K., Mark, M., Marsteller, A., Martin, E. L., Melzer, C., Menshikov, A., Mertens, S., Minter, L. I., Mirz, S., Monreal, B., Guzman, P. I. Morales, Naumann, U., Ndeke, W., Neumann, H., Niemes, S., Noe, M., Oblath, N. S., Ortjohann, H. -W., Osipowicz, A., Ostrick, B., Otten, E., Parno, D. S., Phillips II, D. G., Plischke, P., Pollithy, A., Poon, A. W. P., Pouryamout, J., Prall, M., Priester, F., Röllig, M., Röttele, C., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Roll, Ch., Rupp, S., Rysavy, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schön, H., Schönung, K., Schrank, M., Schulz, B., Schwarz, J., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Skasyrskaya, A., Slezak, M., Spalek, A., Spanier, F., Steidl, M., Steinbrink, N., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thümmler, T., Thorne, L. A., Titov, N., Tkachev, I., Trost, N., Urban, K., Venos, D., Valerius, K., VanDevender, B. A., Vianden, R., Hernandez, A. P. Vizcaya, Wall, B. L., Wüstling, S., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wierman, K. J., Wilkerson, J. F., Wolf, J., Xu, W., Yen, Y. -R., Zacher, M., Zadorozhny, S., Zboril, M., and Zeller, G.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint at 18.57 keV gives an effective neutrino mass square value of $(-1.0^{+0.9}_{-1.1})$ eV$^2$. From this we derive an upper limit of 1.1 eV (90$\%$ confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of two and provides model-independent input to cosmological studies of structure formation.
- Published
- 2019
- Full Text
- View/download PDF
66. First operation of the KATRIN experiment with tritium
- Author
-
Aker, M., Altenmüller, K., Arenz, M., Baek, W. -J., Barrett, J., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Felden, A., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frankrone, H., Friedel, F., Fuchs, D., Fulst, A., Gauda, K., Gil, W., Glück, F., Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Hartmann, J., Haußmann, N., Minh, M. Ha, Heizmann, F., Heizmann, J., Helbing, K., Hickford, S., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Howe, M. A., Huber, A., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kuffner, B., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Lebert, M., Lehnert, B., Letnev, J., Leven, F., Le, T. L., Lichter, S., Lokhov, A., Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Megas, F., Melzer, C., Menshikov, A., Mertens, S., Meier, M., Mirz, S., Monreal, B., Guzmán, P. I. Morales, Müller, K., Naumann, U., Neumann, H., Niemes, S., Noe, M., Off, A., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Poyato, J. M. L., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Schulz, B., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Steven, M., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Urban, K., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadorozhny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of beta-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2 eV 90% CL. In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019.
- Published
- 2019
- Full Text
- View/download PDF
67. High-resolution spectroscopy of gaseous $^\mathrm{83m}$Kr conversion electrons with the KATRIN experiment
- Author
-
Altenmüller, K., Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Hickford, S., Hilk, D., Hillesheimer, D., Hinz, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Plischke, P., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous $^\mathrm{83m}$Kr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The results obtained in this calibration measurement represent a major commissioning milestone for the upcoming direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the full KATRIN beamline. The KATRIN main spectrometer's excellent energy resolution of ~ 1 eV made it possible to determine the narrow K-32 and L$_3$-32 conversion electron line widths with an unprecedented precision of ~ 1 %., Comment: Fixed affiliation of the corresponding author
- Published
- 2019
- Full Text
- View/download PDF
68. Gamma-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K., Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bode, T., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, A., Kraus, M., Lasserre, T., Lebeda, O., Lehnert, B., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Seitz-Moskaliuk, H., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KATRIN experiment aims to measure the effective electron antineutrino mass $m_{\overline{\nu}_e}$ with a sensitivity of 0.2 eV/c$^2$ using a gaseous tritium source combined with the MAC-E filter technique. A low background rate is crucial to achieving the proposed sensitivity, and dedicated measurements have been performed to study possible sources of background electrons. In this work, we test the hypothesis that gamma radiation from external radioactive sources significantly increases the rate of background events created in the main spectrometer (MS) and observed in the focal-plane detector. Using detailed simulations of the gamma flux in the experimental hall, combined with a series of experimental tests that artificially increased or decreased the local gamma flux to the MS, we set an upper limit of 0.006 count/s (90% C.L.) from this mechanism. Our results indicate the effectiveness of the electrostatic and magnetic shielding used to block secondary electrons emitted from the inner surface of the MS.
- Published
- 2019
- Full Text
- View/download PDF
69. Suppression of Penning discharges between the KATRIN spectrometers
- Author
-
Aker, M, Altenmüller, K, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bornschein, B, Bornschein, L, Bouquet, H, Brunst, T, Caldwell, TS, Chilingaryan, S, Choi, W, Debowski, K, Deffert, M, Descher, M, Díaz Barrero, D, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Eversheim, D, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, F, Franklin, GB, Frankrone, H, Friedel, F, Fulst, A, Gauda, K, Gil, W, Glück, F, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Hartmann, J, Haußmann, N, Heizmann, F, Heizmann, J, Helbing, K, Hickford, S, Hillesheimer, D, Hinz, D, Höhn, T, Holzapfel, B, Holzmann, S, Houdy, T, Jansen, A, Karl, C, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Köhler, C, Köllenberger, L, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Kuffner, B, Kunka, N, Lasserre, T, La Cascio, L, Lebeda, O, Lehnert, B, Letnev, J, Leven, F, Le, TL, Lichter, S, Lokhov, A, Machatschek, M, Malcherek, E, Marsteller, A, Martin, EL, Melzer, C, Menshikov, A, Mertens, S, Mirz, S, Monreal, B, Müller, K, Naumann, U, Neumann, H, Niemes, S, Noe, M, Ortjohann, HW, Osipowicz, A, Otten, E, Parno, DS, and Pollithy, A
- Subjects
Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c2 by precisely measuring the endpoint region of the tritium β-decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.
- Published
- 2020
70. Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy.
- Author
-
Aker, Max, Altenmüller, Konrad, Beglarian, Armen, Behrens, Jan, Berlev, Anatoly, Besserer, Uwe, Bieringer, Benedikt, Blaum, Klaus, Block, Fabian, Bornschein, Beate, Bornschein, Lutz, Böttcher, Matthias, Brunst, Tim, Caldwell, Thomas C, Chilingaryan, Suren, Choi, Wonqook, Díaz Barrero, Deseada D, Debowski, Karol, Deffert, Marco, Descher, Martin, Doe, Peter J, Dragoun, Otokar, Drexlin, Guido, Dyba, Stephan, Edzards, Frank, Eitel, Klaus, Ellinger, Enrico, Engel, Ralph, Enomoto, Sanshiro, Fedkevych, Mariia, Felden, Arne, Formaggio, Joseph F, Fränkle, Florian, Franklin, Gregg B, Friedel, Fabian, Fulst, Alexander, Gauda, Kevin, Gil, Woosik, Glück, Ferenc, Größle, Robin, Gumbsheimer, Rainer, Hannen, Volker, Haußmann, Norman, Helbing, Klaus, Hickford, Stephanie, Hiller, Roman, Hillesheimer, David, Hinz, Dominic, Höhn, Thomas, Houdy, Thibaut, Huber, Anton, Jansen, Alexander, Karl, Christian, Kellerer, Jonas, Kippenbrock, Luke, Klein, Manuel, Köhler, Christoph, Köllenberger, Leonard, Kopmann, Andreas, Korzeczek, Marc, Kovalík, Alojz, Krasch, Bennet, Krause, Holger, La Cascio, Luisa, Lasserre, Thierry, Le, Thanh-Long, Lebeda, Ondřej, Lehnert, Bjoern, Lokhov, Alexey, Machatschek, Moritz, Malcherek, Emma, Marsteller, Alexander, Martin, Eric L, Meier, Matthias, Melzer, Christin, Mertens, Susanne, Müller, Klaus, Niemes, Simon, Oelpmann, Patrick, Osipowicz, Alexander, Parno, Diana S, Poon, Alan WP, Lopez Poyato, Jose M, Priester, Florian, Rest, Oliver, Röllig, Marco, Röttele, Carsten, Robertson, RG Hamish, Rodenbeck, Caroline, Ryšavỳ, Milos, Sack, Rudolf, Saenz, Alejandro, Schäfer, Peter, Schaller Née Pollithy, Anna, Schimpf, Lutz, Schlösser, Klaus, Schlösser, Magnus, Schlüter, Lisa, Schrank, Michael, and Schulz, Bruno
- Subjects
KATRIN ,Raman spectroscopy ,gas composition monitoring ,tritium ,Analytical Chemistry ,Distributed Computing ,Electrical and Electronic Engineering ,Environmental Science and Management ,Ecology - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c2, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment's windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium-one of the key parameters required in the derivation of the electron neutrino mass. The concentrations cx for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10-3 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, εT, is derived with precision of
- Published
- 2020
71. High-resolution spectroscopy of gaseous 83mKr conversion electrons with the KATRIN experiment
- Author
-
Altenmüller, K, Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Hickford, S, Hilk, D, Hillesheimer, D, Hinz, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Plischke, P, Pollithy, A, Poon, AWP, Priester, F, C-O Ranitzsch, P, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, and Seitz-Moskaliuk, H
- Subjects
Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
In this work, we present the first spectroscopic measurements of conversion electrons originating from the decay of metastable gaseous 83mKr with the Karlsruhe Tritium Neutrino (KATRIN) experiment. The obtained results represent one of the major commissioning milestones for the subsequent direct neutrino mass measurement with KATRIN. The successful campaign demonstrates the functionalities of the KATRIN beamline. Precise measurement of the narrow K-32, L3-32, and N2,3-32 conversion electron lines allowed to verify the eV-scale energy resolution of the KATRIN main spectrometer necessary for competitive measurement of the absolute neutrino mass scale.
- Published
- 2020
72. First operation of the KATRIN experiment with tritium
- Author
-
Aker, M, Altenmüller, K, Arenz, M, Baek, WJ, Barrett, J, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bornschein, B, Bornschein, L, Bouquet, H, Brunst, T, Caldwell, TS, Chilingaryan, S, Choi, W, Debowski, K, Deffert, M, Descher, M, Díaz Barrero, D, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Eversheim, D, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, FM, Franklin, GB, Frankrone, H, Friedel, F, Fuchs, D, Fulst, A, Gauda, K, Gil, W, Glück, F, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Hartmann, J, Haußmann, N, Ha-Minh, M, Heizmann, F, Heizmann, J, Helbing, K, Hickford, S, Hillesheimer, D, Hinz, D, Höhn, T, Holzapfel, B, Holzmann, S, Houdy, T, Howe, MA, Huber, A, Jansen, A, Karl, C, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Köhler, C, Köllenberger, L, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Kuffner, B, Kunka, N, Lasserre, T, La Cascio, L, Lebeda, O, Lebert, M, Lehnert, B, Letnev, J, Leven, F, Le, TL, Lichter, S, Lokhov, A, Machatschek, M, Malcherek, E, Mark, M, Marsteller, A, Martin, EL, Megas, F, Melzer, C, Menshikov, A, Mertens, S, and Meier, M
- Subjects
Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of β -decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2eV (90 % CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019.
- Published
- 2020
73. Using Project Management to Implement Transformational Change Initiatives: Implementing Guided Pathways at Great West Community College
- Author
-
Janet Lebeda
- Abstract
The systemic restructuring of community colleges to better align students on pathways to success (guided pathways) is on the rise. Institutions are transforming their practices and systems on a broad scale to enable students to better succeed. However, many of these initiatives are difficult to implement simultaneously and require planning, resource management, and change management. In this qualitative case study, the experience of Great West Community College (GWCC) is considered as they implemented a guided pathways reform using a tailored project management methodology. GWCC used project management to design and implement transformational changes across the institution. This approach supported them in successfully making large-scale and systemic changes across the college and provided lessons learned to inform their practice for future change efforts. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com/en-US/products/dissertations/individuals.shtml.]
- Published
- 2022
74. The KATRIN Superconducting Magnets: Overview and First Performance Results
- Author
-
Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, n W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, uE., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KATRIN experiment aims for the determination of the effective electron anti-neutrino mass from the tritium beta-decay with an unprecedented sub-eV sensitivity. The strong magnetic fields, designed for up to 6~T, adiabatically guide $\beta$-electrons from the source to the detector within a magnetic flux of 191~Tcm$^2$. A chain of ten single solenoid magnets and two larger superconducting magnet systems have been designed, constructed, and installed in the 70-m-long KATRIN beam line. The beam diameter for the magnetic flux varies from 0.064~m to 9~m, depending on the magnetic flux density along the beam line. Two transport and tritium pumping sections are assembled with chicane beam tubes to avoid direct "line-of-sight" molecular beaming effect of gaseous tritium molecules into the next beam sections. The sophisticated beam alignment has been successfully cross-checked by electron sources. In addition, magnet safety systems were developed to protect the complex magnet systems against coil quenches or other system failures. The main functionality of the magnet safety systems has been successfully tested with the two large magnet systems. The complete chain of the magnets was operated for several weeks at 70$\%$ of the design fields for the first test measurements with radioactive krypton gas. The stability of the magnetic fields of the source magnets has been shown to be better than 0.01$\%$ per month at 70$\%$ of the design fields. This paper gives an overview of the KATRIN superconducting magnets and reports on the first performance results of the magnets.
- Published
- 2018
- Full Text
- View/download PDF
75. Muon-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K., Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bobien, S., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Leiber, B., Letnev, J., Linek, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rink, R., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Rovedo, P., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Wandkowsky, N., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c$^{2}$. It investigates the kinematics of $\beta$-particles from tritium $\beta$-decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about $12\%$ of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than $17\%$ ($90\%$ confidence level) of the overall MS background.
- Published
- 2018
- Full Text
- View/download PDF
76. Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment
- Author
-
KATRIN Collaboration, Arenz, M., Baek, W. -J., Bauer, S., Beck, M., Beglarian, A., Behrens, J., Berendes, R., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buglak, W., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Furse, D., Gil, W., Glück, F., Urena, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Wandkowsky, N., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of $0.2\,{\text{eV}/c^2}$ (90\% C.L.) by precision measurement of the shape of the tritium \textbeta-spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. A common background source in this setup is the decay of short-lived isotopes, such as $\textsuperscript{219}$Rn and $\textsuperscript{220}$Rn, in the spectrometer volume. Active and passive countermeasures have been implemented and tested at the KATRIN main spectrometer. One of these is the magnetic pulse method, which employs the existing air coil system to reduce the magnetic guiding field in the spectrometer on a short timescale in order to remove low- and high-energy stored electrons. Here we describe the working principle of this method and present results from commissioning measurements at the main spectrometer. Simulations with the particle-tracking software Kassiopeia were carried out to gain a detailed understanding of the electron storage conditions and removal processes., Comment: 16 pages, 9 figures, 4 tables
- Published
- 2018
- Full Text
- View/download PDF
77. Gamma-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K, Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bode, T, Bornschein, B, Bornschein, L, Bouquet, H, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, AG, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Karl, C, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, A, Kraus, M, Lasserre, T, Lebeda, O, Lehnert, B, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schlüter, L, Schrank, M, Seitz-Moskaliuk, H, and Sibille, V
- Subjects
Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The KATRIN experiment aims to measure the effective electron antineutrino mass mν¯e with a sensitivity of 0.2eV/c2 using a gaseous tritium source combined with the MAC-E filter technique. A low background rate is crucial to achieving the proposed sensitivity, and dedicated measurements have been performed to study possible sources of background electrons. In this work, we test the hypothesis that gamma radiation from external radioactive sources significantly increases the rate of background events created in the main spectrometer (MS) and observed in the focal-plane detector. Using detailed simulations of the gamma flux in the experimental hall, combined with a series of experimental tests that artificially increased or decreased the local gamma flux to the MS, we set an upper limit of 0.006count/s (90% C.L.) from this mechanism. Our results indicate the effectiveness of the electrostatic and magnetic shielding used to block secondary electrons emitted from the inner surface of the MS.
- Published
- 2019
78. Muon-induced background in the KATRIN main spectrometer
- Author
-
Altenmüller, K, Arenz, M, Baek, W-J, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bobien, S, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, A Gonzalez, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Leiber, B, Letnev, J, Linek, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PC-O, Rest, O, Rink, R, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Rovedo, P, Ryšavý, M, Sack, R, Saenz, A, and Schimpf, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Cosmic-ray muon backgrounds ,Electrostatic spectrometer ,Neutrino mass ,Astronomical and Space Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Particle and high energy physics - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of β-particles from tritium β-decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background.
- Published
- 2019
79. Investigation of hydraulic resistance and heat transfer in the flow of HE-XE mixture with a small Prandtl number in a quasi-triangular pipe
- Author
-
Makarov, M.S., Vitovsky, O.V., Naumkin, V.S., and Lebeda, K.S.
- Published
- 2022
- Full Text
- View/download PDF
80. Exact exchange-like electric response from a meta-generalized gradient approximation: A semilocal realization of ultranonlocality.
- Author
-
Aschebrock, Thilo, Lebeda, Timo, Brütting, Moritz, Richter, Rian, Schelter, Ingo, and Kümmel, Stephan
- Subjects
- *
DENSITY functional theory , *ELECTRIC fields - Abstract
We review the concept of ultranonlocality in density functional theory and the relation between ultranonlocality, the derivative discontinuity of the exchange energy, and the static electric response in extended molecular systems. We present the construction of a new meta-generalized gradient approximation for exchange that captures the ultranonlocal response to a static electric field in very close correspondence to exact exchange, yet at a fraction of its computational cost. This functional, in particular, also captures the dependence of the response on the system size. The static electric polarizabilities of hydrogen chains and oligo-acetylene molecules calculated with this meta-GGA are quantitatively close to the ones obtained with exact exchange. The chances and challenges associated with the construction of meta-GGAs that are intended to combine a substantial derivative discontinuity and ultranonlocality with an accurate description of electronic binding are discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
81. Analysis of tunnel excavation based on linear DFN-FEM modelling
- Author
-
Martin Lebeda and Petr Kabele
- Subjects
fractured rock mass ,discrete fracture network (DFN) ,finite element method (FEM) ,averaging procedure ,Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
Simulations of tunnel excavations have to take into account the natural occurrence of joints and faults in the surrounding rock mass, which dominantly control its mechanical response. In this paper, we present work in progress toward 3D finite element analysis of excavation using equivalent rock-mass properties derived from stochastically generated discrete fracture networks (DFNs). The equivalent stiffness is determined by volume averaging. Presently, we solve the problem linearly for an incremental change of the stress state. The fracture’s stiffness is assumed to depend on the initial normal stress acting in direction normal to it. However, within the solved incremental step, we assume the fracture’s stiffness to be constant. This assumption is acceptable for small stress changes. Since the fractures represented in the DFN model have preferred directions, the equivalent stiffness is anisotropic.
- Published
- 2023
- Full Text
- View/download PDF
82. Calibration of high voltages at the ppm level by the difference of $^{83\mathrm{m}}$Kr conversion electron lines at the KATRIN experiment
- Author
-
Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Fischer, S., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Neumann, H., Niemes, S., Off, A., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at -18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two $^{83\mathrm{m}}$Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN's commissioning measurements in July 2017. The measured scale factor $M=1972.449(10)$ of the high-voltage divider K35 is in agreement with the last PTB calibration four years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider., Comment: 7 pages, 5 figures
- Published
- 2018
- Full Text
- View/download PDF
83. First transmission of electrons and ions through the KATRIN beamline
- Author
-
Arenz, M., Baek, W. -J., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Berlev, A., Besserer, U., Blaum, K., Bode, T., Bornschein, B., Bornschein, L., Brunst, T., Buzinsky, N., Chilingaryan, S., Choi, W. Q., Deffert, M., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Fischer, S., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gil, W., Glück, F., Ureña, A. Gonzalez, Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Haußmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillesheimer, D., Howe, M. A., Huber, A., Jansen, A., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Kraus, M., Kuckert, L., Lasserre, T., Lebeda, O., Letnev, J., Lokhov, A., Machatschek, M., Marsteller, A., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Naumann, U., Neumann, H., Niemes, S., Off, A., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Priester, F., Ranitzsch, P. C. -O., Rest, O., Robertson, R. G. H., Roccati, F., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schimpf, L., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Seitz-Moskaliuk, H., Sentkerestiová, J., Sibille, V., Slezák, M., Steidl, M., Steinbrink, N., Sturm, M., Suchopar, M., Suesser, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., and Zadoroghny, S.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium beta decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of Autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous Kr-83m was injected into the KATRIN source section, and a condensed Kr-83m source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus., Comment: Minor updates; as published in JINST
- Published
- 2018
- Full Text
- View/download PDF
84. Influence of nitrogen interstitials in α-titanium and nitrogen vacancies in δ-titanium nitride on lattice parameters and bulk modulus - computational study
- Author
-
Lebeda, Miroslav, Vlčák, Petr, and Drahokoupil, Jan
- Published
- 2022
- Full Text
- View/download PDF
85. Measurement of the natDy(p,x) nuclear reactions cross-sections
- Author
-
Červenák, Jaroslav and Lebeda, Ondřej
- Published
- 2022
- Full Text
- View/download PDF
86. Pathotypes and races of Pseudoperonospora cubensis: Two concepts of virulence differentiation.
- Author
-
Lebeda, Aleš, Křístková, Eva, and Sedláková, Božena
- Subjects
- *
HOST plants , *MUSKMELON , *PHENOTYPES , *GENOTYPES , *SPECIES - Abstract
Pseudoperonospora cubensis, causal agent of cucurbit downy mildew, is a common and highly variable pathogen of cucurbit vegetables. Pathogen virulence can be considered on two different levels, that is, pathotypes and races. Pathotypes characterize the interactions between pathogen isolates and the set of genotypes represented by different species and/or genera of the host plant family. Races are characterized by the interactions between pathogen isolates and the set of genotypes (e.g., cultivars, lines, accessions) of one host species (or very closely related species). Differential sets for pathotype and/or race determination are composed of distinct (different) genotypes. Until recently, only differentiation of pathotypes was used to characterize P. cubensis. Most recent research of virulence variation in P. cubensis populations in the Czech Republic working with the Cucumis melo differential set demonstrated the existence of a large number of races of this pathogen. The differential capacity of this set was primarily created for the determination and denomination of virulence phenotypes/races of cucurbit powdery mildew (Golovinomyces orontii, Podosphaera xanthii). However, this set is also efficient for differentiating virulence phenotypes in P. cubensis. This means that one set of C. melo differential genotypes can be used for two independent plant–pathogen systems: cucurbit powdery mildew and cucurbit downy mildew. Results showed that isolates of P. cubensis developing identical virulence reaction patterns at the level of pathotype, develop different reaction patterns at the level of races and vice versa. It is demonstrated and explained that pathotypes and races are two different categories for the assessment of virulence variation, which should be clearly defined, recognized and used within international scientific and breeding communities. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
87. Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment
- Author
-
Arenz, M, Baek, W-J, Bauer, S, Beck, M, Beglarian, A, Behrens, J, Berendes, R, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buglak, W, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Furse, D, Gil, W, Glück, F, Ureña, A Gonzalez, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PC-O, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, and Schönung, K
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The KATRIN experiment aims to determine the effective electron neutrino mass with a sensitivity of 0.2eV/c2 (%90 CL) by precision measurement of the shape of the tritium β -spectrum in the endpoint region. The energy analysis of the decay electrons is achieved by a MAC-E filter spectrometer. A common background source in this setup is the decay of short-lived isotopes, such as 219Rn and 220Rn , in the spectrometer volume. Active and passive countermeasures have been implemented and tested at the KATRIN main spectrometer. One of these is the magnetic pulse method, which employs the existing air coil system to reduce the magnetic guiding field in the spectrometer on a short timescale in order to remove low- and high-energy stored electrons. Here we describe the working principle of this method and present results from commissioning measurements at the main spectrometer. Simulations with the particle-tracking software Kassiopeia were carried out to gain a detailed understanding of the electron storage conditions and removal processes.
- Published
- 2018
88. The KATRIN superconducting magnets: Overview and first performance results
- Author
-
Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Formaggio, JA, Frankle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Urena, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalik, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, Seitz-Moskaliuk, H, Sentkerestiová, J, and Sibille, V
- Subjects
Acceleration cavities and magnets superconducting ,Control systems ,Cryogenics ,Spectrometers ,Nuclear & Particles Physics ,Other Physical Sciences ,Physical Sciences ,Engineering - Abstract
The KATRIN experiment aims for the determination of the effective electron anti-neutrino mass from the tritium beta-decay with an unprecedented sub-eV sensitivity. The strong magnetic fields, designed for up to 6 T, adiabatically guide β-electrons from the source to the detector within a magnetic flux of 191 Tcm2. A chain of ten single solenoid magnets and two larger superconducting magnet systems have been designed, constructed, and installed in the 70-m-long KATRIN beam line. The beam diameter for the magnetic flux varies from 0.064 m to 9 m, depending on the magnetic flux density along the beam line. Two transport and tritium pumping sections are assembled with chicane beam tubes to avoid direct "line-of-sight" molecular beaming effect of gaseous tritium molecules into the next beam sections. The sophisticated beam alignment has been successfully cross-checked by electron sources. In addition, magnet safety systems were developed to protect the complex magnet systems against coil quenches or other system failures. The main functionality of the magnet safety systems has been successfully tested with the two large magnet systems. The complete chain of the magnets was operated for several weeks at 70% of the design fields for the first test measurements with radioactive krypton gas. The stability of the magnetic fields of the source magnets has been shown to be better than 0.01% per month at 70% of the design fields. This paper gives an overview of the KATRIN superconducting magnets and reports on the first performance results of the magnets.
- Published
- 2018
89. Calibration of high voltages at the ppm level by the difference of 83mKr conversion electron lines at the KATRIN experiment
- Author
-
Arenz, M, Baek, W-J, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Fischer, S, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, A Gonzalez, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PC-O, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, and Seitz-Moskaliuk, H
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two 83 mKr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2017. The measured scale factor M= 1972.449 (10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.
- Published
- 2018
90. Calibration of high voltages at the ppm level by the difference of 83 m Kr conversion electron lines at the KATRIN experiment
- Author
-
Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Fischer, S, Formaggio, JA, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Ureña, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Neumann, H, Niemes, S, Off, A, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, Schönung, K, Schrank, M, and Seitz-Moskaliuk, H
- Subjects
Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at − 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two 83 mKr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN’s commissioning measurements in July 2017. The measured scale factor M= 1972.449 (10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.
- Published
- 2018
91. First transmission of electrons and ions through the KATRIN beamline
- Author
-
Arenz, M, Baek, WJ, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Berlev, A, Besserer, U, Blaum, K, Bode, T, Bornschein, B, Bornschein, L, Brunst, T, Buzinsky, N, Chilingaryan, S, Choi, WQ, Deffert, M, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Fischer, S, Formaggio, JA, Frankle, FM, Franklin, GB, Friedel, F, Fulst, A, Gil, W, Glück, F, Urena, AG, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Harms, F, Haußmann, N, Heizmann, F, Helbing, K, Herz, W, Hickford, S, Hilk, D, Hillesheimer, D, Howe, MA, Huber, A, Jansen, A, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Kopmann, A, Korzeczek, M, Kovalik, A, Krasch, B, Kraus, M, Kuckert, L, Lasserre, T, Lebeda, O, Letnev, J, Lokhov, A, Machatschek, M, Marsteller, A, Martin, EL, Mertens, S, Mirz, S, Monreal, B, Naumann, U, Neumann, H, Niemes, S, Off, A, Ortjohann, HW, Osipowicz, A, Otten, E, Parno, DS, Pollithy, A, Poon, AWP, Priester, F, Ranitzsch, PCO, Rest, O, Robertson, RGH, Roccati, F, Rodenbeck, C, Röllig, M, Röttele, C, Ryšavý, M, Sack, R, Saenz, A, Schimpf, L, Schlösser, K, Schlösser, M, and Schönung, K
- Subjects
Ion sources (positive ions ,negative ions ,electron cyclotron resonance (ECR) ,electron beam (EBIS)) ,Detector control systems ,Beam-line instrumentation ,Spectrometers ,Ion sources (positive ions ,negative ions ,electron cyclotron resonance ,electron beam (EBIS)) ,Nuclear & Particles Physics ,Other Physical Sciences ,Physical Sciences ,Engineering - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment is a large-scale effort to probe the absolute neutrino mass scale with a sensitivity of 0.2 eV (90% confidence level), via a precise measurement of the endpoint spectrum of tritium β-decay. This work documents several KATRIN commissioning milestones: the complete assembly of the experimental beamline, the successful transmission of electrons from three sources through the beamline to the primary detector, and tests of ion transport and retention. In the First Light commissioning campaign of autumn 2016, photoelectrons were generated at the rear wall and ions were created by a dedicated ion source attached to the rear section; in July 2017, gaseous 83mKr was injected into the KATRIN source section, and a condensed 83mKr source was deployed in the transport section. In this paper we describe the technical details of the apparatus and the configuration for each measurement, and give first results on source and system performance. We have successfully achieved transmission from all four sources, established system stability, and characterized many aspects of the apparatus.
- Published
- 2018
92. PLAN: Variance-Aware Private Mean Estimation.
- Author
-
Martin Aumüller 0001, Christian Janos Lebeda, Boel Nelson, and Rasmus Pagh
- Published
- 2023
- Full Text
- View/download PDF
93. Differentially Private Sparse Vectors with Low Error, Optimal Space, and Fast Access.
- Author
-
Martin Aumüller 0001, Christian Janos Lebeda, and Rasmus Pagh
- Published
- 2021
- Full Text
- View/download PDF
94. Phytoplankton Survival in Hindgut of Invasive Silver Carp (Hypophthalmichthys molitrix)
- Author
-
Tumolo, B.B., Richardson, B.M., Lebeda, D.D., and Flinn, M.B.
- Subjects
El Al Israel Airlines Ltd. ,Biogeochemical cycles ,Fishes ,Food chains (Ecology) ,Ecosystems ,Airlines ,Carp ,Biological sciences ,Earth sciences - Abstract
The ability of organisms to survive ingestion and digestion by their predators, or endozoochory, is a fascinating ecological phenomenon that can facilitate predator-mediated dispersal of prey and alter interaction strengths within ecological networks. However, the role of endozoochory in the context of invasive species is considered less often. Throughout the United States, Silver Carp (Hypophthalmichthys molitrix) are prolific invaders that often alter food web structure of recipient ecosystems through the consumption of basal resources. Despite the biogeochemical and food web effects of Silver Carp, there is limited understanding of plankton prey survival after Silver Carp consumption and digestion, and even less known about the ecological effects of selective diets and potential survival. In this studs', we quantify hindgut contents of Silver Carp collected from Kentucky Lake, Kentucky, Tennessee River Valley, United States. We found the majority (83%) of phytoplankters within hindguts of Silver Carp showed little digestion prior to egesdon. Our study suggests digestion limitations of Silver Carp may have important ecological implications for invaded environments. These results may be applicable in understanding how this rapidly spreading invasive fish can influence food web dynamics and biogeochemical cycles pertinent to toxic algal blooms within recently invaded ecosystems, and forecasting invasion in the near future., INTRODUCTION Predation is a constraint for almost all organisms and can be important in determining ecosystem energy flow (Carpenter et al., 1985; Creel and Christianson, 2008). Therefore, the ability of [...]
- Published
- 2022
95. Reflexion und Analyse von Praxisphasen in der pflegepädagogischen Lehrer*innenbildung
- Author
-
Roland Brühe and Dorothee Lebeda
- Subjects
Beratung ,Pflegepädagogik ,beratende Begleitung ,Berufsbildende Schule ,Kasuistik ,Selbsterfahrung ,Education (General) ,L7-991 - Abstract
Praxisphasen in der (Pflege-)Lehrer*innenausbildung erfordern ein spezifisches Format der Reflexion, um sowohl die Rollenfindung als auch die Betrachtung der berufspraktischen Handlungsprobleme im Studienprozess zu verstehen und zu entwickeln. Im Lichte dieser Überzeugung wurden im Studienprogramm Pflegepädagogik an der Katholischen Hochschule NRW in Köln unterschiedliche Seminare entworfen, in denen sich eine beratende Begleitung realisieren lässt, die diesen Lernprozess fördern kann. Diese Seminare werden nun kontinuierlich angeboten und evaluiert. Wir stellen in diesem Beitrag zwei Beispiele der Seminargestaltung vor: zunächst den Seminartyp der „Lehrer*innenbezogenen Selbsterfahrung“, in dem die Entwicklung der Berufsrolle als Pflegelehrer*in im Vordergrund steht. Dabei wird insbesondere dem Prozess der Entwicklung bzw. der Transformation der Rolle beruflich Pflegender zu professionell Lehrenden Aufmerksamkeit gewidmet. Im Beispiel arbeiten die Studierenden mit den eigenen Biographien und ihren beruflichen Erfahrungen, die gemeinsam als Erzeuger eines beruflichen Habitus gelten. Dieses reflexive Format in Kleingruppen bietet sowohl ein Transformationsangebot als auch die Förderung von Empathie, denn diese ist unmittelbar verbunden mit der Erfahrung von Anerkennung und Wertschätzung in einer Gruppe. In einem zweiten Beispiel stellen wir die Ausgestaltung eines „Kasuistischen Seminars“ vor, in dem es um die analytische Rekonstruktion eines Arbeitspapiers geht, das die Studierenden aus ihren Praxiseinsätzen mitgebracht haben. Über die unterschiedlichen methodischen Herangehens- und Betrachtungsweisen lernen die Studierenden, sich analysierend von ihren bisherigen Rollen zu distanzieren, neue Sinnstrukturen zu erkennen und alternative Denkstile zu entwickeln bzw. zuordnen zu können.
- Published
- 2023
- Full Text
- View/download PDF
96. Commissioning of the vacuum system of the KATRIN Main Spectrometer
- Author
-
Arenz, M., Babutzka, M., Bahr, M., Barrett, J. P., Bauer, S., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Besserer, U., Blümer, J., Bodine, L. I., Bokeloh, K., Bonn, J., Bornschein, B., Bornschein, L., Büsch, S., Burritt, T. H., Chilingaryan, S., Corona, T. J., De Viveiros, L., Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Ebenhöch, S., Eitel, K., Ellinger, E., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Felden, A., Fischer, S., Formaggio, J. A., Fränkle, F., Furse, D., Ghilea, M., Gil, W., Glück, F., Urena, A. Gonzalez, Görhardt, S., Groh, S., Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Harms, F., Hauÿmann, N., Heizmann, F., Helbing, K., Herz, W., Hickford, S., Hilk, D., Hillen, B., Höhn, T., Holzapfel, B., Hötzel, M., Howe, M. A., Huber, A., Jansen, A., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Kopmann, A., Kosmider, A., Kovalík, A., Krasch, B., Kraus, M., Krause, H., Krause, M., Kuckert, L., Kuffner, B., La Cascio, L., Lebeda, O., Leiber, B., Letnev, J., Lobashev, V. M., Lokhov, A., Malcherek, E., Mark, M., Martin, E. L., Mertens, S., Mirz, S., Monreal, B., Müller, K., Neuberger, M., Neumann, H., Niemes, S., Noe, M., Oblath, N. S., Off, A., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Plischke, P., Poon, A. W. P., Prall, M., Priester, F., Ranitzsch, P. C. -O., Reich, J., Rest, O., Robertson, R. G. H., Röllig, M., Rosendahl, S., Rupp, S., Rysavy, M., Schlösser, K., Schlösser, M., Schönung, K., Schrank, M., Schwarz, J., Seiler, W., Seitz-Moskaliuk, H., Sentkerestiova, J., Skasyrskaya, A., Slezak, M., Spalek, A., Steidl, M., Steinbrink, N., Sturm, M., Suesser, M., Telle, H. H., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Unru, A., Valerius, K., Venos, D., Vianden, R., Vöcking, S., Wall, B. L., Wandkowsky, N., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wierman, K. L., Wilkerson, J. F., Winzen, D., Wolf, J., Wüstling, S., Zacher, M., Zadoroghny, S., and Zboril, M.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016., Comment: submitted for publication in JINST, 39 pages, 15 figures
- Published
- 2016
- Full Text
- View/download PDF
97. Arbeitsbündnis in der Pflegeberatung
- Author
-
Dorothee Lebeda
- Subjects
General Works - Published
- 2022
- Full Text
- View/download PDF
98. Volební pochybení a podvody ve volebních místnostech. Jak přispět k vyšší integritě voleb v České republice?
- Author
-
Tomáš Lebeda, Pavel Šaradín, Eva Lebedová, Marian Kokeš, and Jakub Lysek
- Subjects
electoral integrity ,election fraud ,election administration ,electoral malpractice ,czech republic ,Political science - Abstract
Electoral integrity is one of the principle conditions of free political competition among parties and candidates. The electoral processes must be transparent and controllable in all its aspects, so that voters can trust the results of the elections. Representatives of every democratic society must therefore minimize such acts that can lead to questioning the vote and the results of the elections. The main aim of our article is to analyze the various types of electoral malpractice and fraud that occur at the polling stations. Based on quantitative and qualitative research, we have created a set of issues that can be identified in the process of election administration at the level of electoral districts. Part of the article is also a set of proposals which are amendments to legal and subordinate standards and will lead to a higher electoral integrity in the Czech Republic.
- Published
- 2021
- Full Text
- View/download PDF
99. Simple new method for labelling of PSMA-11 with 68Ga in NaHCO3
- Author
-
Urbanová, Kamila, Seifert, Daniel, Vinšová, Hana, Vlk, Martin, and Lebeda, Ondřej
- Published
- 2021
- Full Text
- View/download PDF
100. Bremia lactucae populations on cultivated lettuce originate from prickly lettuce and are interconnected with the wild pathosystem
- Author
-
Runge, Fabian, Gärber, Ute, Lebeda, Aleš, and Thines, Marco
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.