51. Utilizing murine inducible telomerase alleles in the studies of tissue degeneration/regeneration and cancer.
- Author
-
Shingu T, Jaskelioff M, Yuan L, Ding Z, Protopopov A, Kost-Alimova M, and Hu J
- Subjects
- Animals, Cells, Cultured, Female, Gene Knock-In Techniques methods, In Situ Hybridization, Fluorescence, Male, Mice, Mice, Inbred C57BL, Neoplasms pathology, Neural Stem Cells cytology, Neural Stem Cells enzymology, Telomere metabolism, Alleles, Neoplasms genetics, Regeneration genetics, Telomerase genetics
- Abstract
Telomere dysfunction-induced loss of genome integrity and its associated DNA damage signaling and checkpoint responses are well-established drivers that cause tissue degeneration during ageing. Cancer, with incidence rates greatly increasing with age, is characterized by short telomere lengths and high telomerase activity. To study the roles of telomere dysfunction and telomerase reactivation in ageing and cancer, the protocol shows how to generate two murine inducible telomerase knock-in alleles 4-Hydroxytamoxifen (4-OHT)-inducible TERT-Estrogen Receptor (mTERT-ER) and Lox-Stopper-LoxTERT (LSL-mTERT). The protocol describes the procedures to induce telomere dysfunction and reactivate telomerase activity in mTERT-ER and LSL-mTERT mice in vivo. The representative data show that reactivation of telomerase activity can ameliorate the tissue degenerative phenotypes induced by telomere dysfunction. In order to determine the impact of telomerase reactivation on tumorigenesis, we generated prostate tumor model G4 PB-Cre4 Pten(L/L) p53(L/L) LSL-mTERT(L/L) and thymic T-cell lymphoma model G4 Atm(-/-) mTERT(ER/ER). The representative data show that telomerase reactivation in the backdrop of genomic instability induced by telomere dysfunction can greatly enhance tumorigenesis. The protocol also describes the procedures used to isolate neural stem cells (NSCs) from mTERT-ER and LSL-mTERT mice and reactivate telomerase activity in NSCs in vitro. The representative data show that reactivation of telomerase can enhance the self-renewal capability and neurogenesis in vitro. Finally, the protocol describes the procedures for performing telomere FISH (Fluorescence In Situ Hybridization) on both mouse FFPE (Formalin Fixed and Paraffin Embedded) brain tissues and metaphase chromosomes of cultured cells.
- Published
- 2015
- Full Text
- View/download PDF