51. Effects of Perfluorooctane Sulfonate on Cerebellar Cells via Inhibition of Type 2 Iodothyronine Deiodinase Activity.
- Author
-
Fujiwara Y, Miyasaka Y, Ninomiya A, Miyazaki W, Iwasaki T, Ariyani W, Amano I, and Koibuchi N
- Subjects
- Animals, Rats, Purkinje Cells, RNA, Messenger, Iodide Peroxidase genetics, Cerebellum
- Abstract
Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10
-7 M PFOS suppressed thyroxine (T4 )-, but not triiodothyronine (T3 )-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRβ1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.- Published
- 2023
- Full Text
- View/download PDF