64 results on '"Ioan-Cristian Trelea"'
Search Results
52. An interactive tool for freeze-drying cycle optimization based on product quality criteria
- Author
-
Ioan-Cristian Trelea, Stéphanie Passot, Fernanda Fonseca, Michèle Marin, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G), and ProdInra, Migration
- Subjects
[SDV] Life Sciences [q-bio] ,[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering ,[SDV]Life Sciences [q-bio] ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,[SDV.IDA] Life Sciences [q-bio]/Food engineering ,freeze-drying cycle ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2005
53. Examining the current status of Process Analytical Technology applied to lyophilization: Instrumentation, kinetics, quality criteria and risks area in the cycle
- Author
-
Stéphanie Passot, Fernanda Fonseca, Ioan-Cristian Trelea, Michèle Marin, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G), and ProdInra, Migration
- Subjects
Process Analytical Technology ,[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering ,lyophilization ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2004
54. Optimal operating conditions calculation for a pork meat dehydration–impregnation–soaking process
- Author
-
Antoine Collignan, Bertrand Broyart, A. Olmos, Gilles Trystram, Isabelle Poligne, Ioan-Cristian Trelea, Génie industriel alimentaire (GENIAL), Institut National de la Recherche Agronomique (INRA)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Institut National Agronomique Paris-Grignon (INA P-G)-Ecole Nationale Supérieure des Industries Agricoles et alimentaires, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, MRST, Chambre de Commerce et d'Industrie de la Réunion (CCI Réunion), and Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
- Subjects
optimal ,Optimization problem ,Viande séchée ,[SDV]Life Sciences [q-bio] ,Flavour ,rendement ,02 engineering and technology ,Viande porcine ,batch ,Immersion ,0202 electrical engineering, electronic engineering, information engineering ,dynamic optimization ,Solution ,Process engineering ,Mathematics ,dynamic ,Process (computing) ,04 agricultural and veterinary sciences ,040401 food science ,Durée ,020201 artificial intelligence & image processing ,Schedule ,osmotic drying ,Méthode d'optimisation ,Raw material ,0404 agricultural biotechnology ,Q02 - Traitement et conservation des produits alimentaires ,pork meat ,Q04 - Composition des produits alimentaires ,Sequential quadratic programming ,business.industry ,modeling ,Séchage ,Yield (chemistry) ,Séchage osmotique ,business ,Constant (mathematics) ,control ,Food Science - Abstract
Mass yield and operating time for a pork meat dehydration–impregnation–soaking (DIS) process were optimized using a coupled genetic algorithm/sequential quadratic programming method in order to obtain the optimal operating conditions: temperature and soaking solution concentrations. The DIS process was simulated by a neural network model. The non-linear optimization problem was constrained to ensure the main product characteristics: stability indicated by the water activity target and flavour characterized by the phenol gain target. The climatic conditions, the model validity region, the raw material costs and the operator working schedule were taken into account. Optimal solutions are discussed for three different batch configurations: single-stage processing under constant conditions, single-stage processing under varying temperature and two-stage processing under constant conditions. The most convenient operation resulted in a two-stage soaking process because of time, energy and cost savings, control convenience, product cooling anticipation and a reasonably high mass yield.
- Published
- 2004
- Full Text
- View/download PDF
55. Dynamic optimal control of batch rice drying process
- Author
-
Ioan-Cristian Trelea, Francis Courtois, A. Olmos, Gilles Trystram, Catherine Bonazzi, Génie industriel alimentaire (GENIAL), Institut National de la Recherche Agronomique (INRA)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Institut National Agronomique Paris-Grignon (INA P-G)-Ecole Nationale Supérieure des Industries Agricoles et alimentaires, Génie et Microbiologie des Procédés Alimentaires (GMPA), and Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G)
- Subjects
séchage ,0106 biological sciences ,Mathematical optimization ,Engineering ,plante céréaliere ,optimisation ,acceptabilité ,General Chemical Engineering ,[SDV]Life Sciences [q-bio] ,Initialization ,01 natural sciences ,GeneralLiterature_MISCELLANEOUS ,optimal control ,modèle mathématique ,0404 agricultural biotechnology ,grain breakage ,Robustness (computer science) ,010608 biotechnology ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,dynamic optimization ,Relative humidity ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Physical and Theoretical Chemistry ,grain ,Process engineering ,Water content ,Sequential quadratic programming ,2. Zero hunger ,business.industry ,Final product ,04 agricultural and veterinary sciences ,Optimal control ,040401 food science ,paddy rice drying ,oryza sativa ,Air temperature ,business ,sequential quadratic programming - Abstract
25 ref.; International audience; The drying of paddy rice may result in quality degradation, expressed as a head kernel yield, leading to significant commercial depreciation of the product. A mathematical model of the drying and of the quality degradation process was combined with a dynamic optimization algorithm to determine the drying conditions (air temperature and relative humidity as functions of time) that ensured the highest possible final product quality for a specified drying time and a specified final moisture content. The robustness of the optimal drying strategy with respect to the initial state of the product, to the model parameters and to the initialization of the optimization algorithm was verified. The compromise between the highest achievable final quality and the allowed total drying time was studied. The combination of simulation and optimization yielded a new insight in the rice drying process and in the quality preservation strategies.
- Published
- 2002
56. Indirect measurement and control of moisture content during dehydration performed by frying
- Author
-
Adriana Pulido Diaz, Ioan-Cristian Trelea, Francis Courtois, Gilles Trystram, Anne-Lucie Raoult-Wack, Ingénierie Procédés Aliments (GENIAL), Institut National de la Recherche Agronomique (INRA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-AgroParisTech-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Centro Agronómico Tropical de Investigación y Enseñanza - Tropical Agricultural Research and Higher Education Center (CATIE), Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Conservatoire National des Arts et Métiers [CNAM] (CNAM)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Center for Tropical Agricultural Research and Education (CATIE), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Science des Aliments, Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Industries Agricoles et alimentaires, AMIS Advanced Methods for Innovation in Science, and Hospital Universitario del Valle (HUV)
- Subjects
0209 industrial biotechnology ,Engineering ,Friture ,General Chemical Engineering ,Oil bath ,[SDV]Life Sciences [q-bio] ,Control (management) ,Teneur en eau ,02 engineering and technology ,[SPI]Engineering Sciences [physics] ,020901 industrial engineering & automation ,0404 agricultural biotechnology ,Q02 - Traitement et conservation des produits alimentaires ,Control ,Immersion ,Immersion (virtual reality) ,medicine ,Mesure ,Food material ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Dehydration ,Physical and Theoretical Chemistry ,Process engineering ,Water content ,Short duration ,Drying ,Measurement ,business.industry ,Environmental engineering ,04 agricultural and veterinary sciences ,medicine.disease ,040401 food science ,Produit alimentaire ,Séchage ,Scientific method ,Frying ,business - Abstract
International audience; Frying is one of the way for performing drying of food material that permits to obtain very short duration. However the control of such operation is difficult because of the immersion of product into hot oil bath that imply difficult or impossible sensors implementation. Such problems are encoutered for Dehydration Soaking Process (DISP). In the case of Batch drying using frying of food stuffs, an original approach is presented. An indirect measurement of moisture content is performed as a combination of easy to do oil bath temperature mesasurement and an estimator. Validation is provided and performance is well established. Because of the ability of moisture content real time measurements, a control strategy is studied and put into practice. An optimal predictive controller is proprosed, able to put into practice several kind of control objectives. Results are discussed and extension of the strategy is introduced
- Published
- 1999
- Full Text
- View/download PDF
57. Nonlinear predictive optimal control of a batch refrigeration process
- Author
-
Ioan-Cristian Trelea, Gilles Trystram, Graciela Alvarez, Génie des procédés frigorifiques (UR GPAN), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), ENSIA MASSY, Partenaires IRSTEA, and Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
- Subjects
Optimality criterion ,CEMAGREF ,Computer science ,General Chemical Engineering ,Process (computing) ,Refrigeration ,04 agricultural and veterinary sciences ,Optimal control ,GPAN ,040401 food science ,Term (time) ,Nonlinear system ,0404 agricultural biotechnology ,Control theory ,Robustness (computer science) ,[SDE]Environmental Sciences ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Constant (mathematics) ,Food Science - Abstract
International audience; A predictive optimal control algorithm for a fruit refrigeration process is described. The future inlet air temperature profile is optimized on line, taking into account the most recent process measurements, and thus introducing feedback. The optimality criterion is directly based on economic costs. Technological and product quality constraints are included. The future control profile optimization requires long term predictions of process variables evolution, achieved using a physical model of the plant. The model is adjusted on line in order to account for unmeasured disturbances and poorly known product properties. Both the optimality criterion and the plant model are nonlinear. The approach is experimentally validated on a pilot scale refrigeration plant. Economic benefits from using an optimal, rather than a traditional constant temperature profile are discussed, revealing the importance of the process configuration. Robustness of the control algorithm with respect to modeling errors, measured and unmeasured disturbances, and temporary plant failures is demonstrated.; Un algorithme de contrôle optimal prédictif d'un procédé de réfrigération des fruits est décrit. La future courbe de température d'entrée de l'air est optimisée en ligne en tenant compte des mesures de process les plus récentes et en introduisant de ce fait un retour d'informations. Le critère d'optimalité est directement fondé sur les coûts économiques. Les contraintes de qualité du produit et les contraintes technologiques sont comprises. L'optimisation à venir de la courbe de contrôle requiert des prévisions à long terme de l'évolution des variables de process obtenue à l'aide d'un modèle physique de l'installation. Le modèle est ajusté en ligne afin de tenir compte des perturbations non mesurées et des propriétés de produit mal connues. Le critère d'optimalité et le modèle d'installation sont tous deux non-linéaires. L'approche est validée du point de vue expérimental sur une installation de réfrigération à l'échelle pilote. Les avantages économiques découlant de l'utilisation d'une courbe de température optimale plutôt que d'une courbe de température constante traditionnelle sont abordés, ce qui révèle l'importance de la configuration du process. La robustesse de l'algorithme de contrôle par rapport aux erreurs de modélisation, aux perturbations mesurées et non mesurées et les pannes temporaires de l'installation est démontrée.
- Published
- 1998
58. Modelling of pH, dry matter and mineral content of curds during soft cheese drainage.
- Author
-
Daniel Picque, Ioan Cristian Trelea, Yves Gauzere, Bernard Mietton, and Georges Corrieu
- Published
- 2004
59. Influence of culture conditions on the technological properties of Carnobacterium maltaromaticum CNCM I‐3298 starters
- Author
-
Ioan-Cristian Trelea, Cristian Puentes, P. Peteuil, Fernanda Fonseca, Sophie Keravec, Amélie Girardeau, Génie et Microbiologie des Procédés Alimentaires (GMPA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, CRYOLOG S.A, European Project: 777657,H2020-EU.1.3.3. - Stimulating innovation by means of cross-fertilisation of knowledge,777657,MSCA-RISE(2018), and AgroParisTech-Institut National de la Recherche Agronomique (INRA)
- Subjects
Central composite design ,Harvest time ,[SDV]Life Sciences [q-bio] ,Cell Culture Techniques ,time‐temperature integrator ,Applied Microbiology and Biotechnology ,Fight-or-flight response ,03 medical and health sciences ,Broad spectrum ,Food science ,broad spectrum ,030304 developmental biology ,0303 health sciences ,Microbial Viability ,030306 microbiology ,Chemistry ,Temperature ,Carnobacterium maltaromaticum ,General Medicine ,Culture Media ,Stationary phase ,Fermentation ,Carnobacterium ,shelf‐life of biological ,Biotechnology - Abstract
Aim The aim of this study is to investigate the effect of a broad spectrum of culture conditions on the acidification activity and viability of Carnobacterium maltaromaticum CNCM I-3298, the main technological properties that determine the shelf-life of biological time-temperature integrator (TTI) labels. Methods and results Cells were cultivated at different temperatures (20-37°C) and pH (6-9·5) according to a modified central composite design and harvested at increasing times up to 10 h of stationary phase. Acidification activity and viability of freeze-thawed concentrates were assessed in medium mimicking the biological label. Acidification activity was influenced by all three culture conditions, but pH and harvest time were the most influential. Viability was not significantly affected by the tested range of culture conditions. Conclusions Carnobacterium maltaromaticum CNCM I-3298 must be cultivated at 20°C, pH 6 and harvested at the beginning of stationary phase to exhibit fastest acidification activities. However, if slower acidification activities are pursued, the recommended culture conditions are 30°C, pH 9·5 and a harvest time between 4-6 h of stationary phase. Significance and impact of the study Quantifying the impact of fermentation temperature, pH and harvest time has led to a predictive model for the production of biological TTI covering a broad range of shelf-lives.
- Full Text
- View/download PDF
60. Lyophilisation of pellets : experimental and modelling study
- Author
-
Stéphanie Passot, Ioan-Cristian Trelea, Fernanda Fonseca, Génie et Microbiologie des Procédés Alimentaires (GMPA), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
lyophilisation ,[SDV]Life Sciences [q-bio] ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,pellets ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
61. User-friendly modeling of the freeze-drying process
- Author
-
Stéphanie Passot, Fernanda Fonseca, Michèle Marin, Ioan-Cristian Trelea, Génie et Microbiologie des Procédés Alimentaires (GMPA), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,ComputingMilieux_MISCELLANEOUS ,freeze-drying process - Abstract
International audience
62. An interactive tool for freeze-drying cycle optimisation based on product quality criteria
- Author
-
Ioan-Cristian Trelea, Stéphanie Passot, Fernanda Fonseca, Michele Marin, Génie et Microbiologie des Procédés Alimentaires (GMPA), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
interactive tool ,quality criteria ,[SDV]Life Sciences [q-bio] ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,freeze-drying cycle optimisation ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
63. Freezing : a critical step for freeze-drying cycle development and product stability
- Author
-
Stéphanie Passot, Ioan-Cristian Trelea, Stéphanie Cenard, Fernanda Fonseca, Génie et Microbiologie des Procédés Alimentaires (GMPA), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV]Life Sciences [q-bio] ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,freeze-drying cycle ,freezing ,ComputingMilieux_MISCELLANEOUS - Abstract
Communication orale sur invitation; International audience
64. Impact of freezing, especially the controlled nucleation, on protein freeze-drying efficiency
- Author
-
Stéphanie Passot, Fernanda Fonseca, Ioan-Cristian Trelea, Michèle Marin, Génie et Microbiologie des Procédés Alimentaires (GMPA), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
nucleation ,[SDV]Life Sciences [q-bio] ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,impact of freezing ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,protein freeze-drying ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.