Stefano Debei, Maria Antonieta Barucci, Holger Sierks, Philippe Lamy, Björn Davidsson, R. Moissl-Fraund, Cecilia Tubiana, Cesare Barbieri, J. J. Lopez Moreno, S. Höfner, Rafael Rodrigo, J.-R. Kramm, Michael F. A'Hearn, Marco Fulle, Colin Snodgrass, Luisa Lara, Michael Küppers, Sonia Fornasier, A.-T. Auger, Francesco Marzari, J. Knollenberg, Gabriele Cremonese, Pedro J. Gutiérrez, Ekkehard Kührt, Monica Lazzarin, Wing-Huen Ip, Laurent Jorda, Maurizio Pajola, Carsten Güttler, Mohamed Ramy El-Maarry, Jean-Baptiste Vincent, H. U. Keller, Hans Rickman, M. De Cecco, Detlef Koschny, Nicolas Thomas, C. Feller, F. La Forgia, Nilda Oklay, V. Da Deppo, Olivier Groussin, Ivano Bertini, Jean-Loup Bertaux, Géza Kovács, Giampiero Naletto, Stefano Mottola, Matteo Massironi, Stubbe F. Hviid, Department of Physics and Astronomy [Uppsala], Uppsala University, Max-Planck-Institut für Sonnensystemforschung (MPS), Max-Planck-Gesellschaft, Dipartimento di Fisica e Astronomia 'Galileo Galilei', Universita degli Studi di Padova, Centro di Ateneo di Studi e Attività Spaziali 'Giuseppe Colombo' (CISAS), Space Research Centre of Polish Academy of Sciences (CBK), Polska Akademia Nauk = Polish Academy of Sciences (PAN), Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Physikalisches Institut [Bern], Universität Bern [Bern], Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut für Geophysik und Extraterrestrische Physik [Braunschweig] (IGEP), Technische Universität Braunschweig = Technical University of Braunschweig [Braunschweig], Dipartimento di Geoscienze [Padova], School of Physical Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Research and Scientific Support Department, ESTEC (RSSD), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA)-European Space Agency (ESA), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), CNR Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche [Roma] (CNR), University of Trento [Trento], Department of Industrial Engineering [Padova], Université Paris Diderot - Paris 7 (UPD7), INAF - Osservatorio Astronomico di Trieste (OAT), DLR Institute of Planetary Research, German Aerospace Center (DLR), Institute of Astronomy [Taiwan] (IANCU), National Central University [Taiwan] (NCU), Operations Department (ESAC), European Space Astronomy Centre (ESAC), Department of Information Engineering [Padova] (DEI), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Università degli Studi di Padova = University of Padua (Unipd), Universität Bern [Bern] (UNIBE), Agence Spatiale Européenne = European Space Agency (ESA)-Agence Spatiale Européenne = European Space Agency (ESA), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), ITA, USA, GBR, FRA, DEU, ESP, TWN, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Gauss Professor Akademie der Wissenschaften zu Göttingen, International Space Science Institute [Bern] (ISSI), Agence Spatiale Européenne = European Space Agency (ESA), DLR Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), CNR Istituto di Fotonica e Nanotecnologie [Padova] (IFN), California Institute of Technology (CALTECH)-NASA, European Space Agency (ESA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), and Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA)
We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims. Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods. We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results. We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these observed properties, and additionally explains the presence of extensive layering on 67P/Churyumov-Gerasimenko (and on 9P/Tempel 1 observed by Deep Impact), its bi-lobed shape, the extremely slow growth of comet nuclei as evidenced by recent radiometric dating, and the low collision probability that allows primordial nuclei to survive the age of the solar system. Conclusions. We conclude that observed comet nuclei are primordial rubble piles, and not collisional rubble piles. We argue that TNOs formed as a result of streaming instabilities at sizes below ~400 km and that ~350 of these grew slowly in a low-mass primordial disk to the size of Triton, Pluto, and Eris, causing little viscous stirring during growth. We thus propose a dynamically cold primordial disk, which prevented medium-sized TNOs from breaking into collisional rubble piles and allowed the survival of primordial rubble-pile comets. We argue that comets formed by hierarchical agglomeration out of material that remained after TNO formation, and that this slow growth was a necessity to avoid thermal processing by short-lived radionuclides that would lead to loss of supervolatiles, and that allowed comet nuclei to incorporate ~3 Myr old material from the inner solar system.