95 results on '"IGRF"'
Search Results
52. Sequential modelling of the Earth's core magnetic field
- Author
-
Matthias Holschneider, Vincent Lesur, Guillaume Ropp, Julien Baerenzung, Institut de Physique du Globe de Paris (IPGP), and Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Computer science ,lcsh:Geodesy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Strong prior ,010502 geochemistry & geophysics ,01 natural sciences ,0105 earth and related environmental sciences ,lcsh:QB275-343 ,Series (mathematics) ,lcsh:QE1-996.5 ,lcsh:Geography. Anthropology. Recreation ,Geology ,Kalman filter ,Field (geography) ,IGRF ,Magnetic field ,Secular variation ,lcsh:Geology ,Earth's magnetic field ,lcsh:G ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,International Geomagnetic Reference Field ,Algorithm ,Geomagnetic field - Abstract
We describe a new, original approach to the modelling of the Earth’s magnetic field. The overall objective of this study is to reliably render fast variations of the core field and its secular variation. This method combines a sequential modelling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable as the description of the different sources and the prior information used are realistic. Finally, we used a slightly different version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic Reference Field.
- Published
- 2020
- Full Text
- View/download PDF
53. The HF Channel EM Parameters Estimation Under a Complex Environment Using the Modified IRI and IGRF Model.
- Author
-
Yan, Zhao-wen, Wang, Gang, Tian, Guo-liang, Li, Wei-min, Su, Dong-lin, and Rahman, Toyobur
- Subjects
- *
IONOSPHERE , *ELECTROMAGNETISM , *PARAMETER estimation , *RAY tracing algorithms , *THICKNESS measurement , *MATHEMATICAL models , *PREDICTION models , *ELECTRON distribution - Abstract
The international reference ionosphere (IRI) model is a generally accepted standard ionosphere model. It describes the ionosphere environment in quiet state and predicts the ionosphere parameters within a certain precision. In this communication, we have made a breakthrough in the application of the IRI model by modifying the model for Chinese region. Construct the ionosphere parameters foF2 and M(3000)F2 by using the Chinese Reference Ionosphere (CRI) coefficients, appropriately increase hmE, hmF2 height, reduce the thickness of F layer, validate the parameter by the measured values and solve the electron concentration distribution with QPS (quasi-parabolic segments). In this communication, 3D ray tracing algorithm was constructed based on the modified IRI model and IGRF geomagnetic field model. In short-wave detection, it can be used to predict the electromagnetic parameters of the receiving point, such as, the receiving area, maximum available frequency and the distribution of the group delay etc., which can help to determine the suitability of the communication. As an example, we estimated the short wave EM parameters around Qingdao in the detection from Zhengzhou to Qingdao using the modified IRI and IGRF model and provided technical support for the communication between the two cities. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
54. Magnetic Survey of Taiwan and Its Preliminary Interpretations.
- Author
-
Horng-Yuan Yen, Chieh-Hung Chen, Hsien-Hsiang Hsieh, Ching-Ren Lin, Yih-Hsiung Yeh, Yi-Ben Tsai, Jann-Yeng Liu, Guey-Kuen Yu, and Yi-Ru Chen
- Subjects
- *
MAGNETOMETRY in archaeology , *STRUCTURAL geology , *MAGNETIC anomalies , *MOUNTAINS - Abstract
To achieve an improved over all understanding of the tectonics of Taiwan, an island-wide magnetic survey, especially in the mostly in accessible mountain ranges, was carried out from July 2003 to February 2004. In total, 6063 magnetic points were surveyed at an average spacing of 2 km. After data reductions, a new magnetic anomaly map of Taiwan was constructed. The map shows the range of magnetic anomalies mostly distributing between -400 to 400 nT. Anomalies in the southern part of Taiwan are much higher than those in the north whilst anomalies in the western plains area are higher than those of the mountain ranges. High-frequency magnetic anomalies, generally more complex and localized, are found in west central (south of 24°N) and south western Taiwan. Smooth and gentle magnetic anomalies lie over a major part of the mountain ranges, except in the southern segment of the Central Range. According to the amplitude of magnetic anomalies and their cover age, this implies that a broad extrusive ultramafite body could exist beneath the southern segment of the Central Range. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
55. New model alternatives for improving the representation of the core magnetic field of Antarctica.
- Author
-
Gaya-Piqué, Luis R., Ravat, Dhananjay, De Santis, Angelo, and Torta, J. Miquel
- Subjects
MAGNETIC anomalies ,GEOMAGNETIC secular variation ,GEOMAGNETISM ,GEOPHYSICS ,MAGNETISM ,MAGNETIC fields ,MAGNETOMETRY in archaeology ,MAPS - Abstract
Use of the International Geomagnetic Reference Field Model (IGRF) to construct magnetic anomaly maps can lead to problems with the accurate determination of magnetic anomalies that are readily apparent at the edges of local or regional magnetic surveys carried out at different epochs. The situation is severe in areas like Antarctica, where ionospheric activity is intense and only a few ground magnetic observatories exist. This makes it difficult to properly separate from ionospheric variations the secular variation of the core magnetic field. We examine two alternatives to the piecewise-continuous IGRF core magnetic field in Antarctica for the last 45 years: the present global Comprehensive Model (CM4) and the new version of the Antarctic Reference Model (ARM). Both these continuous models are better at representing the secular variation in Antarctica than the TGRF. Therefore, their use is recommended for defining the crustal magnetic field of Antarctica (e.g. the next generation of the Antarctic Digital Magnetic Anomaly Map). [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
56. The 10th-Generation International Geomagnetic Reference Field.
- Subjects
- *
GEOMAGNETISM , *GEOPHYSICS , *UPPER atmosphere , *MAGNETIC fields , *ARTIFICIAL satellites , *EARTH (Planet) - Abstract
The International Association of Geomagnetism and Aeronomy (IAGA) on 2004 December 12 has released the 10th-Generation International Geomagnetic Reference Field—the latest version of a standard mathematical description of the Earth's main magnetic field used widely in studies of the Earth's deep interior, its crust, ionosphere and magnetosphere. The coefficients were finalized by a task force of IAGA. The IGRF is the product of a large collaborative effort between magnetic field modellers and the institutes involved in collecting and disseminating magnetic field data from satellites and observatories around the world. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
57. NOC model of the earth’s main magnetic field.
- Author
-
Xu, Wenyao
- Abstract
The method of natural orthogonal components (NOC) is used to analyze the earth’s main magnetic field IGRF 1900–2000, and the NOC model of the field is established. The first step of the analysis is to calculate eigen modes of the field from the Gauss coefficients of IGRF 1900–2000. Then the magnetic field for each epoch is expanded in a series at the basic function set constructed by the eigen modes, and the intensity coefficients of the eigen modes are calculated. Test of the convergency and stability of the NOC model shows that the model has very short series and much rapid convergency in comparison with the conventional spherical harmonic models of IGRF. Comparison of the eigen modes obtained from different IGRF model groups indicates that the low-degree eigen modes are rather stable, while the high-degree modes show a relatively large variability. The physical meaning of the eigen modes in the NOC model is discussed, and an interesting relationship is found between the spatial structure of the main field and its secular variation. [ABSTRACT FROM AUTHOR]
- Published
- 2003
- Full Text
- View/download PDF
58. Main field and secular variation candidate models for the 12th IGRF generation after 10 months of Swarm measurements
- Author
-
Saturnino, Diana, Langlais, Benoit, Civet, François, Thébault, Erwan, and Mandea, Mioara
- Published
- 2015
- Full Text
- View/download PDF
59. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model
- Author
-
Finlay, Christopher C, Olsen, Nils, and Tøffner-Clausen, Lars
- Published
- 2015
- Full Text
- View/download PDF
60. NOAA/NGDC candidate models for the 12th generation International Geomagnetic Reference Field
- Author
-
Alken, Patrick, Maus, Stefan, Chulliat, Arnaud, and Manoj, Chandrasekharan
- Published
- 2015
- Full Text
- View/download PDF
61. International Geomagnetic Reference Field: the 12th generation
- Author
-
Thébault, Erwan, Finlay, Christopher C, Beggan, Ciarán D, Alken, Patrick, Aubert, Julien, Barrois, Olivier, Bertrand, Francois, Bondar, Tatiana, Boness, Axel, Brocco, Laura, Canet, Elisabeth, Chambodut, Aude, Chulliat, Arnaud, Coïsson, Pierdavide, Civet, François, Du, Aimin, Fournier, Alexandre, Fratter, Isabelle, Gillet, Nicolas, Hamilton, Brian, Hamoudi, Mohamed, Hulot, Gauthier, Jager, Thomas, Korte, Monika, Kuang, Weijia, Lalanne, Xavier, Langlais, Benoit, Léger, Jean-Michel, Lesur, Vincent, Lowes, Frank J, Macmillan, Susan, Mandea, Mioara, Manoj, Chandrasekharan, Maus, Stefan, Olsen, Nils, Petrov, Valeriy, Ridley, Victoria, Rother, Martin, Sabaka, Terence J, Saturnino, Diana, Schachtschneider, Reyko, Sirol, Olivier, Tangborn, Andrew, Thomson, Alan, Tøffner-Clausen, Lars, Vigneron, Pierre, Wardinski, Ingo, and Zvereva, Tatiana
- Published
- 2015
- Full Text
- View/download PDF
62. A 2015 International Geomagnetic Reference Field (IGRF) candidate model based on Swarm’s experimental absolute magnetometer vector mode data
- Author
-
Vigneron, Pierre, Hulot, Gauthier, Olsen, Nils, Léger, Jean-Michel, Jager, Thomas, Brocco, Laura, Sirol, Olivier, Coïsson, Pierdavide, Lalanne, Xavier, Chulliat, Arnaud, Bertrand, François, Boness, Axel, and Fratter, Isabelle
- Published
- 2015
- Full Text
- View/download PDF
63. Evaluation of candidate geomagnetic field models for IGRF-12
- Author
-
Thébault, Erwan, Finlay, Christopher C., Alken, Patrick, Beggan, Ciaran D., Canet, Elisabeth, Chulliat, Arnaud, Langlais, Benoit, Lesur, Vincent, Lowes, Frank J., Manoj, Chandrasekharan, Rother, Martin, and Schachtschneider, Reyko
- Published
- 2015
- Full Text
- View/download PDF
64. The BGS magnetic field candidate models for the 12th generation IGRF
- Author
-
Hamilton, Brian, Ridley, Victoria A, Beggan, Ciarán D, and Macmillan, Susan
- Published
- 2015
- Full Text
- View/download PDF
65. The 10th generation international geomagnetic reference field
- Author
-
Maus, S., Macmillan, S., Chernova, T., Choi, S., Dater, D., Golovkov, V., Lesur, V., Lowes, F., Lühr, H., Mai, W., McLean, S., Olsen, N., Rother, M., Sabaka, T., Thomson, A., and Zvereva, T.
- Subjects
- *
GEOMAGNETISM , *MAGNETIC fields , *UPPER atmosphere , *MAGNETICS - Abstract
Abstract: The International Association of Geomagnetism and Aeronomy (IAGA) on 12 December 2004 released the 10th generation International Geomagnetic Reference Field (IGRF)—the latest version of a standard mathematical description of the Earth''s main magnetic field and used widely in studies of the Earth''s deep interior, its crust, ionosphere and magnetosphere. The coefficients were finalised by a task force of IAGA. The IGRF is the product of a large collaborative effort between magnetic field modellers and the institutes involved in collecting and disseminating magnetic field data from satellites and observatories around the world. [Copyright &y& Elsevier]
- Published
- 2005
- Full Text
- View/download PDF
66. Challenges related to magnetics and navigation within directional drilling
- Author
-
Kular, Sandeep Singh
- Subjects
well technology ,IIFR ,petroleumsteknologi ,MWD ,geomagnetic field ,Technology: 500::Rock and petroleum disciplines: 510::Petroleum engineering: 512 [VDP] ,magnetometers ,decision-making ,petroleum engineering ,drilling ,IGRF - Abstract
Master's thesis in Petroleum engineering Magnetic distortion of magnetometer readings affects the accuracy and efficiency of the wellbore positioning operations, which in turn degrades the industrial viability of the magnetic measurements while drilling survey instrument. Magnetic disturbances to the geomagnetic field reduces the wellbore positional accuracy and leads to uncertainties in the decision- making process. This master project provides an overview of the industrial limitations of magnetometers, highlights and maps the magnetic elements that affect the sensor readings. This leads to additional difficulties and uncertainties in the decision- making process, which is included. The robustness and industrial capabilities of the interpolation in- field referencing method has been validated through presentation of case studies, mapping of its features and applications, comparison with other geomagnetic referencing techniques and analysis. This work concludes that the interpolation in- field referencing technique increases the accuracy of wellbore positioning and improves decision- making during drilling operations. However, limitations and shortfalls of the interpolation in- field referencing method were also recognized. These need to be addressed and corrected in order to reaffirm the industrial use of this survey method over competitive survey systems.
- Published
- 2016
67. In-orbit offline estimation of the residual magnetic dipole biases of the POPSAT-HIP1 nanosatellite
- Author
-
Y. L. Brama, G. Manzoni, Stefano Seriani, Paolo Gallina, Seriani, Stefano, Brama, Y. L., Gallina, Paolo, and Manzoni, G.
- Subjects
Engineering ,Residual magnetic moment ,Magnetometer ,Cubesat ,Aerospace Engineering ,Nanosatellite ,02 engineering and technology ,010502 geochemistry & geophysics ,Residual ,01 natural sciences ,law.invention ,Igrf ,Attitude control ,Control theory ,law ,0202 electrical engineering, electronic engineering, information engineering ,0105 earth and related environmental sciences ,Genetic algorithm ,Magnetic field ,Spacecraft ,business.industry ,020208 electrical & electronic engineering ,Transmitter ,Physics::Space Physics ,Orbit (dynamics) ,Satellite ,business ,Magnetic dipole - Abstract
The nanosatellite POPSAT-HIP1 is a Cubesat-class spacecraft launched on the 19th of June 2014 to test cold-gas based micro-thrusters; it is, as of April 2015, in a low Earth orbit at around 600 km of altitude and is equipped, notably, with a magnetometer. In order to increment the performance of the attitude control of nanosatellites like POPSAT, it is extremely useful to determine the main biases that act on the magnetometer while in orbit, for example those generated by the residual magnetic moment of the satellite itself and those originating from the transmitter. Thus, we present a methodology to perform an in-orbit offline estimation of the magnetometer bias caused by the residual magnetic moment of the satellite (we refer to this as the residual magnetic dipole bias, or RMDB). The method is based on a genetic algorithm coupled with a simplex algorithm, and provides the bias RMDB vector as output, requiring solely the magnetometer readings. This is exploited to compute the transmitter magnetic dipole bias (TMDB), by comparing the computed RMDB with the transmitter operating and idling. An experimental investigation is carried out by acquiring the magnetometer outputs in different phases of the spacecraft life (stabilized, maneuvering, free tumble). Results show remarkable accuracy with an RMDB orientation error between 3.6 ° and 6.2 ° , and a module error around 7 % . TMDB values show similar coherence values. Finally, we note some drawbacks of the methodologies, as well as some possible improvements, e.g. precise transmitter operations logging. In general, however, the methodology proves to be quite effective even with sparse and noisy data, and promises to be incisive in the improvement of attitude control systems.
- Published
- 2016
68. Investigation And Development Of Nontraditional Approach For Attitude Estimation Of Small Satellites
- Author
-
Çilden, Demet, Hacızade, Cengiz, Uçak ve Uzay Mühendisliği, and Aerospace Engineering
- Subjects
magnetic field models ,IGRF ,Tsyganenko ,attitude determination ,extraterrestial magnetic field effects ,small satellite ,attitude estimation ,magnetometer ,sun sensor ,rate gyro ,extended Kalman filter ,nontraditional approach ,implementation ,manyetik alan modelleri ,yönelim belirleme ,dünya dışı manyetik alan etkileri ,küçük uydu ,yönelim kestirimi ,manyetometre ,güneş algılayıcısı ,açısal hız ölçer ,genişletilmiş Kalman süzgeci ,geleneksel olmayan yaklaşım ,uygulama ve test - Abstract
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016, Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2016, Küçük uydular kütle, boyut ve maliyet açısından uygun olduklarından uzay görevlerinde uzun bir zamandır, birçok amaçla kullanılmaktadırlar. Bu amaçlar doğrultusunda, küçük uyduların yönelme belirleme, kestirim ve kontrolü için hem birçok firma ve üniversite tarafından doğruluğu eskiye oranla yüksek, maliyeti, kütle ve boyutları uygun algılayıcılar ve eyleyiciler geliştirilmekte, hem de çeşitli yöntemler ve algoritmalar geliştirilerek öncelikle simülasyon düzeyinde daha sonrasında da uygulamalı olarak görevlerde kullanılması sağlanmaktadır. Böylece bilimsel çalışmalar sürekli olarak bu gelişime katkı sağlamaktadırlar. Düşük irtifada seyir halinde olan bir uydunun, hem yönelim saptama hem de yönelim kontrolü için manyetik alan bilgisinden yararlanması tercih edilmektedir çünkü düşük irtifalarda manyetik alan büyüklüğü, yüksek irtifalara göre çok daha güçlüdür. Bunun yanında özellikle güneş senkron yörüngelerde güneşe yönelme vektörü de sıklıkla tercih edilmektedir. Mevcut güneş algılayıcılar arasında boyut, kütle, doğruluk gibi kriterler için birçok seçenek de mevcuttur. Bu çalışmada, küçük uydularda sıklıkla kullanılan manyetometre ve güneş sensörü temel alınarak yönelim belirleme ve kestirme yöntemleri kullanılmıştır. Manyetometre piyasadan hazır temin edilebilen, ucuz ve düşük irtifalardaki uydular için çokça tercih edilen bir algılayıcıdır. Çalışmada, manyetik alan modelleri karşılaştırılarak modele dayanan algoritmaların doğruluğunu da artırmak amaçlanmıştır. IGRF modeli uydu görevlerinde temel olarak kullanılan bir manyetik alan modelidir. Bu çalışmada, 12. nesil (2015-2020 yıl aralığı) ve 13. dereceden manyetik alan katsayılarını içeren model paketi kullanılmıştır. Küçük bir uyduda kullanılan manyetometre Dünya dışı manyetik alanı sezdiğinde bu etkileri göz önüne almayan modellerden sonuçları uzaklaşmaya başlar. Bu durumda, algoritma algılayıcıda bir sorun olduğu çıkarımında bulunabilir. Bunu elimine edebilmek için, tezde, bu etkileri de içeren, empirik bir model olan T89 manyetik alan modeli, uydu projelerinde sıklıkla kullanılan IGRF ile karşılaştırılmıştır. Bu karşılaştırma yapılırken modellerin doğrulamasını yapmak adına, doğruluğu yüksek manyetometreler kullanan uydu görevleri seçilerek bu alglayıcılardan alınan sensör verileri kullanılmıştır. Beklenildiği gibi T89 modeli manyetik alan vektör sonuçları IGRF’inkine göre, gerçek uydu veri sonuçlarına daha yakın çıkmaktadır. Fakat, bu fark düşük irtifadaki manyetik alanın kuvvetli olması nedeniyle etkisi yüksek olmayacak mertebededir. Modellerin verifikasyonu tamamlandıktan sonra bu modellerin uydu yönelimine etkisi incelenmiştir. Bunun için tek-kare (single-frame) yöntemlerinden tekil değer ayrışımı (SVD) kullanılmıştır. Güneşe yönelme vektörü ve iki farklı model içeren manyetik alan vektörü ile uydunun yönelimi belirlenmiş, hata sonuçlarına göre Dünya dışı manyetik alanın dikkate alınmasının uyduyu ne derecede etkilediği incelenmiştir. Fakat modellerin verifikasyonunu yaparken elde edilen sonuçtan da beklendiği gibi bu etkileri model içerisine dahil etmek, yönelim sonuçlarını yüksek mertebede etkilememektedir. Bunun nedeni manyetik alanın bu irtifalarda güçlü olmasından kaynaklanmaktadır (~550 km). Eğer bu irtifa artırıldığında -uyduların manyetometreyi yönelim sensörü olarak kullanabildiği yükseklikler- yönelim de bu farktan daha fazla etkilenmektedir. Ayrıca manyetik olarak Güneş’in aktif ve sessiz olduğu günler de önem taşımaktadır. Bu nedenle, T89 modelinde bu değişkeni tanımlayacak bir indis de kullanılmaktadır. Dünya’nın çekirdeğinden kaynaklanan etkileri göz önüne alan ve yalnızca küresel harmonikleri kullanarak hesap yapan manyetik alan modelleri için girişte hem yörünge verileri (pozisyon) hem de anlık zaman bilgisi girdi olarak verilmelidir. Bunun için SGP4 modeli kullanılarak, yalnızca TLE ve zaman verisi girdisi ile uydunun pozisyonu anlık olarak belirlenmiştir. Ölçme cihazları olarak manyetometreler, ataletsel algılayıcılar (jiroskoplar) ele alınmıştır. Güneş-Manyetik Alan temelli yönelme belirleme algoritması oluşturulacak ve farklı yönelme sensörlerinden elde edilen bilgiler Kalman süzgeci kullanılarak tümleştirilmiştir. Yönelme sensörlerinin ölçümlerinde uyduya etkileyen bozucular nedeniyle (uydu fırlatılması süresince oluşan ve uyduda bulunan elektrik devreleri nedeniyle oluşan) kayma (bias) mevcuttur. Söz edilen manyetik alan vektörü, güneşe yönelme vektörü tek-kare yöntemler kullanılarak uydunun yöneliminin bulunmasını sağlamıştır. Bunun yanında, ufuk sensörü de bu incelemeye dahil olmuştur. Ardından bu yöntemlerin sonuçlarını (yönelme açıları ve varyans değerleri) girdi olarak kullanan Kalman süzgecinin tasarımı incelenmiştir. Bu entegrasyon işlemi ile geleneksel olmayan bir yapı oluşturulmuştur. Bu yapı kendiliğinden adaptif bir durumdadır çünkü SVD’den alınan ölçüm hatası varyansını EKF doğrudan kullanabilmektedir. Bu hata varyansı ile de filtre, kazancını ayarlayabilmekte, böylece daha doğru sonuçlar vererek yönelim kestirimi doğruluğunu yükseltmektedir. Öncelikle, jiroskop kullanmayan bir uydu modeli ile geleneksel olmayan algoritma içerisinde hem yönelim hem de açısal hızlar kestirilmiştir. Daha sonra, manyetometre ve güneş sensörünün yanında jiroskobun da yönelim sensörü olarak seçiliği bir uydu ele alınmıştır. Kayma (bias) var olmadığı ve var olduğu durumlar için incelemeler yapımıştır. Daha gerçekçi sonuçların eldesi için kayma (bias) de dahil edilerek, kaymaların kestirilmesi mümkün hale getirilmiştir. Çalışmada, manyetometrelernin başlangıçta kalibre edildiği varsayılmıştır. Güneş’in görülmediği, karanlık (eclipse) periyotta ise öngörme tavsiye edilmiş ve kullanılan algoritmaya uygulanmıştır. Öngörme algoritmasının dezavantajlarından biri, eklips zaman aralığının uzaması ile sonuçlardaki hatanın birikiminin de meydana gelmesidir. Bu nedenle, bu zaman diliminde, bahsi geçen algılayıcılara sahip uydular için, yalnızca manyetometre veya manyetometre ve jiroskop verilerini kullanan bir yönteme geçilmesi tavsiye edilmektedir. Böylece farklı yöntemler arasında anahtarlama (switching) yapılarak yönelim sonuçlarının geliştirilmesi amaçlanmıştır. Bu çalışmada da, kısa eklips aralığı için öngörme, diğer zamanlarda ise geleneksel olmayan, tümleştirilmiş SVD/EKF yöntemleri kullanılarak optimum yönelim kestirimi gerçekleştirilmiştir. Gereken tüm algoritmalar MATLAB paket programı kullanılarak tasarlanmış ve bilgisayarda simülasyonları bu yazılım sayesinde gerçekleştirilmiştir. Söz konusu algoritmaların doğrulanması için var olan test düzeneği kullanılmıştır. Test düzeneğinde yer alan sensörden (3 eksenli manyetometre) elde edilen sonuçlar, algoritma içerisinde koşturulmuş ve simülasyonların da bu şekilde test platformuna uygulanması fırsatı bulunmuştur. Manyetometre verileri ve manyetik alan modelinin yanında, güneşe yönelme vektörü de modellenerek iki ve ikiden fazla vektör kullanımına dayalı yöntemler, burada SVD yöntemi, test düzeneği sonuçları kullanılarak test edilmiştir. Sonuçlar da geliştirilen algoritmaların beklenildiği seviyede bir yönelim bilgisi verdiğini desteklemektedirler., IGRF (International Geomagnetic Reference Field) and Tsyganenko’s T89 magnetic field models are the selected models for the comparative study. These models can be one of the input vector separately besides the Sun direction to Singular Value Decomposition (SVD) method. Extraterrestrial effects coming from the Sun and/or interplanetary rays are the main consideration for estimating the magnetic field components close to the actual results. T89 model that uses an index changing with the external effects needs a model (IGRF) simulating the terrestrial magnetic field changes. Proposed models give the results in an acceptable limit with respect to the measurement data. Moreover, T89 model is the best-fit model if the absolute errors for the attitude angles are calculated. The difference between the defined models can be ignored with decreasing altitude but also become important on the higher orbits. This research also describes the development of nontraditional attitude determination system that can rely on sensor measurements which are magnetometer, sun sensor and rate gyros. Vectors coming from the selected sensor data and developed models can be placed in Wahba’s problem. The system uses SVD method to minimize the Wahba’s loss function and determine the attitude of the satellite. In order to obtain the attitude of the satellite with desired accuracy an extended Kalman filter (EKF) for satellite’s angular motion parameter estimation is designed. The SVD and EKF algorithms are integrated for estimation of the attitude angles and angular velocities. The nontraditional method is compared with the traditional approach which uses the same sensors as magnetometer and sun sensor in addition to the gyros. In the eclipse period, algorithm is switched into the prediction phase for better attitude estimation of the satellite; therefore, satellite’s attitude angles when no data coming from the sun sensor are improved. Magnetometers are assumed to be calibrated before the nontraditional technique is applied on the satellite. All the necessary algorithms are designed in the MATLAB package program and the simulations are performed using that software. The test platform has been used for the verification of the algorithms presented. The algorithms are implemented on the test platform using the magnetic field sensor data in the single-frame method., Yüksek Lisans, M.Sc.
- Published
- 2016
69. Prediction of Group Delay Distribution Around Receiving Point Using Modified IRI Model and IGRF Model
- Author
-
Dapeng Yu, Zhaowen Yan, Toyobur Rahman, Gang Wang, and Weimin Li
- Subjects
ray tracing ,Meteorology ,Mechanical Engineering ,Electron concentration ,Aerospace Engineering ,Geodesy ,International Reference Ionosphere ,IGRF ,group delay ,Distribution (mathematics) ,IRI ,short-wave communication ,Physics::Space Physics ,Point (geometry) ,Ray tracing (graphics) ,International Geomagnetic Reference Field ,Ionosphere ,Mathematics ,Group delay and phase delay - Abstract
The international reference ionosphere (IRI) model is generally accepted standard ionosphere model. It describes the ionosphere environment in quiet state and predicts the ionosphere parameters within a certain precision. In this paper, we have made a breakthrough in the application of the IRI model by modifying the model for regions of China. The main objectives of this modification are to construct the ionosphere parameters foF2 and M (3000) F2 by using the Chinese reference ionosphere (CRI) coefficients, appropriately increase hmE and hmF2 height, reduce the thickness of F layer, validate the parameter by the measured values, and solve the electron concentration distribution with quasi-parabolic segment (QPS). In this paper, 3D ray tracing algorithm is constructed based on the modified IRI model and international geomagnetic reference field (IGRF) model. In short-wave propagation, it can be used to predict the electromagnetic parameters of the receiving point, such as the receiving area, maximum useable frequency (MUF) and the distribution of the group delay etc., which can help to determine the suitability of the communication. As an example, we estimate the group delay distributions around Changchun in the detection from Qingdao to Changchun using the modified IRI model and IGRF model, and provide technical support for the short-wave communication between the two cities.
- Published
- 2011
- Full Text
- View/download PDF
70. IGRF candidate models at times of rapid changes in core field acceleration
- Author
-
Stefan Maus, Benoit Langlais, Arnaud Chulliat, Gauthier Hulot, Erwan Thébault, Michel Menvielle, Aude Chambodut, Institut de Physique du Globe de Paris (IPGP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), NOAA National Geophysical Data Center (NGDC), National Oceanic and Atmospheric Administration (NOAA), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Temporal extrapolation ,Core field acceleration ,010504 meteorology & atmospheric sciences ,Modeling ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Spherical harmonics ,Geology ,010502 geochemistry & geophysics ,Geodesy ,01 natural sciences ,Main field ,IGRF ,Secular variation ,Geomagnetic jerk ,Magnetic field ,Root mean square ,symbols.namesake ,Quadratic equation ,Space and Planetary Science ,Taylor series ,symbols ,A priori and a posteriori ,0105 earth and related environmental sciences - Abstract
International audience; We submit three candidate models following the call for IGRF-11. We apply a simple modeling approach in spherical harmonics based on a quadratic Taylor expansion for the internal field time variations. We use the Dst magnetic index as a proxy for the external field variations. In order to compensate for the limitations incurred by such a conventional approach, we focus on the optimal selection of satellite data in space and time. We also show that some a priori knowledge about the core field state helps us to avoid the pitfall encountered in the case of rapid changes of core field accelerations. Indeed, various acceleration events of relevance for the IGRF 11th occurred between 2003 and 2010, one of them being a geomagnetic jerk. They could entail disagreements between IGRF candidate models for the secular variation (SV) if data prior to 2008 are used. Our SV and main field (MF) candidate models have a root mean square uncertainty less than 6 nT/yr and 8 nT, respectively, with respect to the modeled magnetic field contributions. These values correspond to the intrinsic error associated with truncating SV and MF models to spherical harmonic degree 8 and 13, respectively, as requested for IGRF models.
- Published
- 2010
- Full Text
- View/download PDF
71. International Geomagnetic Reference Field: the 12th generation
- Author
-
Weijia Kuang, Valeriy G. Petrov, Aimin Du, Reyko Schachtschneider, Tatiana I. Zvereva, Ciaran Beggan, Stefan Maus, Vincent Lesur, Isabelle Fratter, Laura Brocco, Martin Rother, Olivier Sirol, Mohamed Hamoudi, Gauthier Hulot, Susan Macmillan, Arnaud Chulliat, Aude Chambodut, Terence J. Sabaka, Pierre Vigneron, F. J. Lowes, Benoit Langlais, Alan Thomson, T. Bondar, Andrew Tangborn, Alexandre Fournier, Ingo Wardinski, Xavier Lalanne, Julien Aubert, Elisabeth Canet, Diana Saturnino, Patrick Alken, François Civet, Brian Hamilton, Monika Korte, Jean-Michel Leger, François Bertrand, Nils Olsen, Lars Tøffner-Clausen, Erwan Thébault, Pierdavide Coïsson, Nicolas Gillet, Christopher C. Finlay, Olivier Barrois, Victoria Ridley, Mioara Mandea, Thomas Jager, A. Boness, Chandrasekharan Manoj, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Space Institute [Lyngby] (DTU Space), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), British Geological Survey [Edinburgh], British Geological Survey (BGS), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), NOAA Aeronomy Laboratory, National Oceanic and Atmospheric Administration (NOAA), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre (ISTerre), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Russian Academy of Sciences [Moscow] (RAS), Earth and Planetary Magnetism Group [Zürich], Institut für Geophysik [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Institut de physique du globe de Strasbourg (IPGS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Geology and Geophysics [Beijing] (IGG), Chinese Academy of Sciences [Beijing] (CAS), Centre National d'Études Spatiales [Toulouse] (CNES), German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), Département de Géophysique, Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger] (USTHB), GeoForschungsZentrum - Helmholtz-Zentrum Potsdam (GFZ), Planetary Geodynamics Laboratory [Greenbelt], NASA Goddard Space Flight Center (GSFC), School of Chemistry [Newcastle], Newcastle University [Newcastle], Centre National d’Études Spatiales [Paris] (CNES), Joint Center for Earth Systems Technology [Baltimore] (JCET), NASA Goddard Space Flight Center (GSFC)-University of Maryland [Baltimore County] (UMBC), University of Maryland System-University of Maryland System, Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Technical University of Denmark [Lyngby] (DTU), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF), Laboratoire d'Electronique et des Technologies de l'Information (CEA-LETI), Université Grenoble Alpes (UGA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Université des Sciences et de la Technologie Houari Boumediene [Alger] (USTHB), University of Maryland [Baltimore County] (UMBC), University of Maryland System-University of Maryland System-NASA Goddard Space Flight Center (GSFC), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), and Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
- Subjects
Magnetic declination ,010504 meteorology & atmospheric sciences ,Field (physics) ,Epoch (reference date) ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Aeronomy ,Spherical harmonics ,Geology ,Geophysics ,Geomagnetism ,010502 geochemistry & geophysics ,Geodesy ,01 natural sciences ,7. Clean energy ,IGRF Correspondence/Findings ,Magnetic field ,Secular variation ,IGRF ,13. Climate action ,Space and Planetary Science ,Field modeling ,International Geomagnetic Reference Field ,0105 earth and related environmental sciences - Abstract
International audience; The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth's magnetic field.
- Published
- 2015
- Full Text
- View/download PDF
72. Evaluation of candidate geomagnetic field models for IGRF-12
- Author
-
Martin Rother, Christopher C. Finlay, Vincent Lesur, Ciaran Beggan, Reyko Schachtschneider, Elisabeth Canet, Chandrasekharan Manoj, Erwan Thébault, Patrick Alken, F. J. Lowes, Benoit Langlais, Arnaud Chulliat, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), National Space Institute [Lyngby] (DTU Space), Technical University of Denmark [Lyngby] (DTU), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado [Boulder]-National Oceanic and Atmospheric Administration (NOAA), British Geological Survey [Edinburgh], British Geological Survey (BGS), Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), School of Chemistry [Newcastle], and Newcastle University [Newcastle]
- Subjects
Task force ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Geology ,Spectral domain ,Geomagnetism ,Geodesy ,Field (geography) ,Secular variation ,IGRF ,Earth's magnetic field ,Space and Planetary Science ,Physical space ,Field modeling ,Earth Sciences ,Geological survey ,International Geomagnetic Reference Field ,ComputingMilieux_MISCELLANEOUS - Abstract
Background The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical harmonic main field models for epochs 2010.0 (DGRF-2010) and 2015.0 (IGRF-2015) and predictive linear secular variation for the interval 2015.0-2020.0 (SV-2010-2015). Findings The models were derived from weighted averages of candidate models submitted by ten international teams. Teams were led by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Each candidate model was carefully evaluated and compared to all other models and a mean model using well-defined statistical criteria in the spectral domain and maps in the physical space. These analyses were made to pinpoint both troublesome coefficients and the geographical regions where the candidate models most significantly differ. Some models showed clear deviation from other candidate models. However, a majority of the task force members appointed by IAGA thought that the differences were not sufficient to exclude models that were well documented and based on different techniques. Conclusions The task force thus voted for and applied an iterative robust estimation scheme in space. In this paper, we report on the evaluations of the candidate models and provide details of the algorithm that was used to derive the IGRF-12 product., Earth, Planets and Space, 67 (1), ISSN:1343-8832, ISSN:1880-5981
- Published
- 2015
- Full Text
- View/download PDF
73. IGRF candidate models at times of rapid changes in core field acceleration
- Author
-
Thébault, Erwan, Chulliat, Arnaud, Maus, Stefan, Hulot, Gauthier, Langlais, Benoit, Chambodut, Aude, and Menvielle, Michel
- Published
- 2010
- Full Text
- View/download PDF
74. Prediction of geomagnetic field with data assimilation: a candidate secular variation model for IGRF-11
- Author
-
Kuang, Weijia, Wei, Zigang, Holme, Richard, and Tangborn, Andrew
- Published
- 2010
- Full Text
- View/download PDF
75. The BGS magnetic field candidate models for the 11th generation IGRF
- Author
-
Hamilton, Brian, Macmillan, Susan, and Thomson, Alan
- Published
- 2010
- Full Text
- View/download PDF
76. The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2
- Author
-
Lesur, V., Wardinski, I., Hamoudi, M., and Rother, M.
- Published
- 2010
- Full Text
- View/download PDF
77. Candidate models for the IGRF-11th generation making use of extrapolated observatory data
- Author
-
Chambodut, Aude, Langlais, Benoit, Menvielle, Michel, Thébault, Erwan, Chulliat, Arnaud, and Hulot, Gauthier
- Published
- 2010
- Full Text
- View/download PDF
78. Testing IGRF-11 candidate models against CHAMP data and quasi-definitive observatory data
- Author
-
Chulliat, Arnaud and Thébault, Erwan
- Published
- 2010
- Full Text
- View/download PDF
79. 地磁場モデルの誤差検討
- Author
-
Natl. Space Development Agency of Japan, 宇宙開発事業団, Natl. Space Development Agency of Japan, and 宇宙開発事業団
- Abstract
The accuracy of geomagnetic field models was studied in this report. The first-order model (a dipole model) of International Geomagnetic Reference Field (IGRF) has so far been used in wheel unloading etc. of Earth orbiting satellites. The maximum errors in the dipole model reach about 30 deg. Since magnetic sensors are used as a main sensor of the attitude control system of a piggyback satellite, the error of 30 deg is not acceptable. In this study, the accuracy improvement of geomagnetic field models was investigated by using higher-order IGRF models. The maximum errors were found to be 16.4 deg with the second-order model, 6.4 deg with the third-order model, and 3.5 deg with the fourth-order model, indicating the improving trend of the accuracy with the increasing order of models. Improvement in the accuracy by models with orders higher than five was not so appreciable as expected from the increase in the amount of computation. Therefore, the use of the third-order or fourth-order model of IGRF1995 was recommended as the geomagnetic field model of a piggyback satellite., 本資料では地磁場モデルの誤差検討を行う。これまで地磁場モデルとしては、国際標準地磁気モデル(IGRF)の1次モデル(ダイポールモデル)が、地球周回衛星のホイールアンローディングなどに使用されてきた。ダイポールモデルはモデルの誤差が最大30度前後となる。ピギーバック衛星では、磁気センサを姿勢制御系のメインセンサとして使用するため、30度の誤差は許容できない。ここではIGRFの高次モデルを使用することにより、地磁場モデルの精度向上を検討した。その結果、2次モデルを使用すると最大誤差は16.4度、3次モデルでは6.4度、4次モデルでは3.5度とモデルの精度が向上する。また、5次以上では計算量の増加に対し、精度向上があまり望めない。したがって、ピギーバック衛星では地磁場モデルとして、IGRF1995の3次または4次モデルを使用することが望ましい。
- Published
- 2015
80. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model
- Author
-
Finlay, Chris, Olsen, Nils, Tøffner-Clausen, Lars, Finlay, Chris, Olsen, Nils, and Tøffner-Clausen, Lars
- Abstract
We present DTU’s candidate field models for IGRF-12 and the parent field model from which they were derived,CHAOS-5. Ten months of magnetic field observations from ESA’s Swarm mission, together with up-to-date ground observatory monthly means, were used to supplement the data sources previously used to construct CHAOS-4. Theinternal field part of CHAOS-5, from which our IGRF-12 candidate models were extracted, is time-dependent up to spherical harmonic degree 20 and involves sixth-order splines with a 0.5 year knot spacing. In CHAOS-5, comparedwith CHAOS-4, we update only the low-degree internal field model (degrees 1 to 24) and the associated external field model. The high-degree internal field (degrees 25 to 90) is taken from the same model CHAOS-4h, based onlow-altitude CHAMP data, which was used in CHAOS-4.We find that CHAOS-5 is able to consistently fit magnetic field data from six independent low Earth orbit satellites:Ørsted, CHAMP, SAC-C and the three Swarm satellites (A, B and C). It also adequately describes the secular variationmeasured at ground observatories. CHAOS-5 thus contributes to an initial validation of the quality of the Swarmmagnetic data, in particular demonstrating that Huber weighted rms model residuals to Swarm vector field data arelower than those to Ørsted and CHAMP vector data (when either one or two star cameras were operating). CHAOS-5shows three pulses of secular acceleration at the core surface over the past decade; the 2006 and 2009 pulses have previously been documented, but the 2013 pulse has only recently been identified. The spatial signature of the 2013pulse at the core surface, under the Atlantic sector where it is strongest, is well correlated with the 2006 pulse, but anti-correlated with the 2009 pulse.
- Published
- 2015
81. Long-term seafloor geomagnetic station in the northwest Pacific: A possible candidate for a seafloor geomagnetic observatory
- Author
-
Toh, H., Hamano, Y., and Ichiki, M.
- Published
- 2006
- Full Text
- View/download PDF
82. Candidate main-field models for producing the 9th generation IGRF
- Author
-
Mandea, Mioara
- Published
- 2005
- Full Text
- View/download PDF
83. International Geomagnetic Reference Field—the tenth generation
- Author
-
Macmillan, Susan and Maus, Stefan
- Published
- 2005
- Full Text
- View/download PDF
84. The BGS magnetic field candidate models for the 10th generation IGRF
- Author
-
Lesur, Vincent, Macmillan, Susan, and Thomson, Alan
- Published
- 2005
- Full Text
- View/download PDF
85. Secular variation in the geographic location of the dip equator
- Author
-
Rangarajan, G. K.
- Published
- 1994
- Full Text
- View/download PDF
86. The dip equator over Peninsular India and its secular movement
- Author
-
Rangarajan, G. K. and Deka, R. C.
- Published
- 1991
- Full Text
- View/download PDF
87. Predicción lineal de los modelos internacionales de referencia geomagnético 1900-2005
- Author
-
Gianibelli, Julio César
- Subjects
Geomagnetismo ,Energy ,Dipolo magnético ,Magnetic dipole ,Non-dipolar components ,Energia ,Geomagnetism ,Geofísica ,Componentes no dipolares ,IGRF - Abstract
Desde 1900 hasta 2005 se cuenta con los coeficientes del desarrollo en esféricos armónicos del Campo Magnético Terrestre hasta el orden 10 cada 5 años, como base de datos para efectuar una predicción lineal de los modelos del Campo Geomagnético Internacional de Referencia (IGRF), desde el 2010 en adelante. Los modelos para el año 1945 hasta el año 2000 son definitivos, mientras que los modelos de los años 1900 hasta 1940 y 2005, son provisorios. Los primeros se denominan con la sigla DGRF, por Definitive Geomagnetic Reference Field, y los segundos IGRF, por International Geomagnetic Reference Field. El presente trabajo trata de evaluar el comportamiento de cada coeficiente g;j y h. de estos modelos mediante una aproximación lineal de cada uno de ellos, desde el año 1900 hasta el año 2500. El objetivo de este trabajo consiste en estimar en forma simple el peso de las componentes no dipolares más representativas frente a la componente dipolar, en función del tiempo. Estos modelos muestran que en la ventana 1900-2005 y su predicción hasta el 2500, las componentes que transformarán en más complejo el Campo Magnético Terrestre serán las de orden 2, 3, 4, 5, y 6. Las componentes de orden mayor de 7 a 10, son irrelevantes en magnitud. Este simple cálculo, muestra en conclusión que a pesar de minimizarse el efecto dipolar, los procesos del geodínamo se manifiestan en la superficie de la Tierra en los próximos cientos de años de manera más compleja, es decir, multipolar., Since the year 1900 to year 2005 it is have at one's disposal with the coefficients of the spherical harmonics analysis of the Earth's Magnetic Field to the 10th order each 5 years, as a data base wich allows one make a lineal prediction of the International Geomagnetic Reference Field (IGRF) from the year 2010 to farther on. The models of the years from 1945 to 2000 are definitive, while the models of the years from 1900 to 1940, and of the year 2005, are provisory. The formers are denominated with the abbreviation by initials DGRF, wich means Definitive Geomagnetic Reference Field, and the second with the above cited abbreviation by initials IGRF. The present work treats of to rate the behavior of each coefficient gij, hij, in these models bymeans of a linear aproximation of each one of these coefficients, from the year 1900 to the year 2500. The purpose of this work consist in to rate in a simple manner the weight ofthe more representative non dipolar components opposite to the dipolar component, in function of time. These models shows that in the temporal window 1900-2005 and their prediction to the year 2500, the components wich will transform more complex the Geomagnetic Field will be those with 2nd, 3rd, 4th, 5th and 6th orders. The components with a greater order, 7th to 10th, has an irrelevant magnitude. This simple calculation shows as conclusion that in spite of minimize the dipolar effect, the geodynamo processes will manifest on Earth's surface in the next hundreds years in a more complex way, that is in a multipolar form., Material digitalizado en SEDICI gracias a la colaboración de la Facultad de Ciencias Astronómicas y Geofísicas (UNLP)., Asociación Argentina de Geofísicos y Geodestas
- Published
- 2006
88. Sobre la evolución temporal del dipolo y cuadrupolo del campo geomagnético
- Author
-
Gianibelli, Julio César
- Subjects
Cuadrupole ,Geomagnetismo ,cuadrupolo ,variación secular ,dipolo ,Geomagnetism ,Geofísica ,Dipole ,Secular variation ,IGRF - Abstract
Los antecedentes de los desarrollos en esféricos armónicos del Campo Magnético Terrestre se remontan al año 1550 con desarrollo hasta el sexto orden. A partir de 1900 se dispone de modelos de desarrollos hasta el orden 10, dados por los IGRF (Campo Geomagnético Internacional de Referencia) y DGRF (Campo Geomagnético de Referencia Definitivo) editados por la IAGA. En el 2005 el orden del desarrollo se extendió para el modelo IGRF 2005 hasta el orden 14. En el presente trabajo se recopilaron los coeficientes del orden 1 y 2 desde 1550 a la actualidad. Se ajusta la variación temporal de cada coeficiente gij, hij para los órdenes 1 y 2 mediante funciones polinómicas en el intervalo 1550-1900. Desde 1900 hasta 2005 se toman los coeficientes del IGRF e DGRF para generar un conjunto de series temporales en intervalos de 5 años para cada coeficiente. Estas series temporales de cada coeficiente gij(t), hij(t) fueron analizados por medio de un análisis espectral no lineal habiéndose previamente sustraído la tendencia lineal. Se reconstruyen los coeficientes gij, hij de orden 1 y 2 en el intervalo 1550-2005 y se simula desde el año 2010 al 2500 mediante un modelo aditivo anarmónico compuesto por la tendencia y los períodos detectados en el análisis espectral. Los resultados muestran que la energía de la componente cuadrupolar crece notablemente para las épocas posteriores al año 2005 y la estimación del campo observado en superficie posee un aporte del orden del 18 % de la energía correspondiente al efecto cuadrupolar respecto del dipolar. Se concluye que el Campo Geomagnético inicia un proceso de transición de efectos principalmente dipolar a procesos de efectos no dipolares (cuadrupolo) con posibles cambios de posición de los Polos Geomagnéticos., The antecedents of the spherical harmonics analysis of the Earth's Magnetic Field dates from 1550, with a development to the 6th order. From the year 1900 are available models with a development to the 10th order, given by the International Geomagnetic Reference field (IGRF) and the Definitive Geomagnetic Reference Field (DGRF), edited by the International Asociation of Geomagnetism and Aeronomy (IAGA). In the year 2005 the order of spherical harmonics analysis extends to the 14th order for the IGRF model. In the present work are compiled the coefficients gij, hij for the 1st and 2nd order, from 1550 to the present time. To the temporal variation of each coefficient gij(t), hij(t) from the 1st and 2nd order are adjusted by means of polinomials functions in the interval 1550-1900. From 1900 to 2005 the coefficients of IGRF and DGRF are taken to generate a set of temporal series in intervals of 5 years length for each coefficient. For this temporal series of each coefficient, are analyzed by means of a non linear spectral analysis after substracted the lineal tendencies. The coefficients, of 1st and 2nd order in interval 1550-2005 are reconstructed and then simulated from the year 2010 to 2500 by means of an harmonical aditive model composed by the tendencies and the period detected with the spectral analysis. The results shows that the energy of the cuadrupolar component grows notably from the epoch posteriorto year 2005 and the estimation of the surface observed field hold a contribution of the order of 18 % of the energy corresponding to the cuadrupolar effect with respect to the dipolar effect. It is conclude that the geomagnetic field start a process of transition from effects principally dipolar to effects of processes mainly non dipolar with possible change of the positions of the Geomagnetic Poles., Material digitalizado en SEDICI gracias a la colaboración de la Facultad de Ciencias Astronómicas y Geofísicas (UNLP)., Asociación Argentina de Geofísicos y Geodestas
- Published
- 2006
89. Anisotropy in the South Atlantic Anomaly
- Author
-
AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT/DEPT OF ENGINEERING PHYSICS, Easley, Shaun M., AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT/DEPT OF ENGINEERING PHYSICS, and Easley, Shaun M.
- Abstract
From June 2000 through July 2006, the TSX-5 satellite measured proton fluxes in the Earth?s magnetosphere using its CEASE instrument. A review of the satellite data by scientists at AFRL/VSBX revealed an unanticipated, recurring bi-modal structure in histograms of the proton counts. This research identified the bi-modal behavior as anisotropic in nature, and the result of two separate processes. At low altitudes the anisotropy was well described by the classic ?East-West Effect.? Comparisons of the satellite data to simple analytical models are presented. At high altitudes, the anisotropy was the result of the detector measuring protons at different pitch angles when looking east vs. west. The sampled pitch angles were also found to be function of location, leading to a latitudinal variation to this anisotropy. Finally, we also examined a series of unusually high readings that affected some of the statistics in this study. These anomalous counts were found to have a possible solar cycle dependence leading to questions about the suitability of the current timeindependent scheme used to sort the satellite?s data set. Other possible explanations for the anomalous counts are also presented., The original document contains color images.
- Published
- 2007
90. Geomagnetska deklinacija na prostoru Hrvatske na temelju globalnih geomagnetskih modela
- Author
-
Brkić, Mario, Hećimović, Željko, and Bašić, Tomislav
- Subjects
globalni geomagnetski modeli ,IGRF ,WMM ,magnetska deklinacija ,sekularna varijacija ,global geomagnetic models ,magnetic declination ,secular variation - Abstract
Pregledno su prikazani globalni geomagnetski modeli International Geomagnetic Reference Field (IGRF) i World Magnetic Model (WMM). Primjenom razvoja u red sfernih. harmonika, računana je magnetska deklinacija i njezina godišnja promjena na području Hrvatske. Promatrana je nepravilna i spora promjenljiva narav dugovalne komponente Zemljina magnetskog polja za osnovne epohe proteklog stoljeća. Pouzdanost IGRF i WMM-deklinacija procjenjuje se na unutar 1 stupnja, što je zadovoljavajuće za globalne primjene. Za lokalne potrebe nužno veću pouzdanost geomagnetske deklinacije moguće je osigurati jedino kontinuiranim opažanjem i periodičnim izmjerama elemenata Zemljina magnetskog polja., International Geomagnetic Reference Field (IGRF) and World Magnetic Model (WMM) global geomagnetic models were presented. The magnetic declination and its secular variation was calculated by application of expansion of spherical harmonics. The irregular and slow variation of the Earth's magnetic field long-wave component was observed for the previous century's base epochs. Estimated IGRF and WMM declination accuracy is within 1 degree, which is satisfactory for global application. Higher accuracy of the geomagnetic declination necessary for local purposes can be attained only by continuos measurements and periodic surveys of the Earth's magnetic field elements.
- Published
- 2003
91. Aeromagnetic study of peninsular India
- Author
-
Harikumar, P., Rajaram, Mita, and Balakrishnan, T. S.
- Published
- 2000
- Full Text
- View/download PDF
92. The 9th Generation International Geomagnetic Reference Field
- Published
- 2003
- Full Text
- View/download PDF
93. The Lageos Satellite: A Comprehensive Spin Model and Analysis
- Author
-
Williams, Scott Everett
- Subjects
- principal moments of inertia, spacecraft torque, thermoelastic, coefficients of magnetization, spinning conductor, magnetic moment, euler angles, magnetic torque, gravitational torque, spin angular momentum, IGRF, GCC, software development, numerical integration, parameter optimization
- Abstract
A thorough investigation into the theoretical modeling of the Laser-Ranged Geodynamics Satellite (Lageos I) spin state evolution is presented. Starting from an existing dynamical model, we analyze in detail each of the model's assumptions and explore possible enhancements. Additional concerns not considered by the original model are also scrutinized in a bottom-up approach. In particular, we re-evaluate the orbit propagation module, survey and investigate all possible space-environment effects, assess numerical implementation concerns, and perform a number of software feature modifications. In the process, a parameterized approach is adopted and corresponding non-linear optimization tools are integrated into the revamped model. The outcome is a comprehensive, open-source model of the Lageos I spin dynamics which exhibits a significant advance in predictive accuracy. A corollary of the effort is a broad survey of the important space environment effects on the attitude of passive satellites. In addition, a thorough analysis of the model results is presented along with an expanded discussion of the interesting discoveries we made. Particularly significant is the sensitivity of the spin state evolution to small changes in the principal moments of the satellite–an idea discounted by previous efforts that nevertheless can be analytically verified. A consequence of the effort is the immediate application to a number of ongoing research activities involving the Lageos I satellite. Of particular interest is the potential role of Lageos I in a proposed experiment to measure the general relativistic force known as gravitomagnetism. A precise understanding of the evolution of Lageos' spin dynamics is required so that correlated thermal effects may be properly accounted for in the evaluation of orbital motion. A related effort is the attempt to empirically measure the spin state based on optical glint data. This process must be seeded with a quality initial estimate of the spin axis orientation for proper evaluation of the data. The model we present has implications for both of these efforts.
- Published
- 2002
94. Aeromagnetic reconnaissance survey of Lake Erie
- Author
-
Myers, Christopher Park
- Subjects
- magnetic, magnetization, LAKE ERIE, IGRF, ERIE, gauss/oersted, magnetometer
- Published
- 1977
95. DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model
- Author
-
Niels Olsen Saraiva Camara, Lars Tøffner-Clausen, Christopher C. Finlay, and Nils Olsen
- Subjects
Physics ,Field (physics) ,Spherical harmonics ,Swarm behaviour ,Geology ,Geomagnetism ,Geodesy ,IGRF ,Secular variation ,Magnetic field ,Field modelling ,Acceleration ,Earth's magnetic field ,Space and Planetary Science ,Swarm ,Vector field - Abstract
We present DTU’s candidate field models for IGRF-12 and the parent field model from which they were derived,CHAOS-5. Ten months of magnetic field observations from ESA’s Swarm mission, together with up-to-date ground observatory monthly means, were used to supplement the data sources previously used to construct CHAOS-4. Theinternal field part of CHAOS-5, from which our IGRF-12 candidate models were extracted, is time-dependent up to spherical harmonic degree 20 and involves sixth-order splines with a 0.5 year knot spacing. In CHAOS-5, comparedwith CHAOS-4, we update only the low-degree internal field model (degrees 1 to 24) and the associated external field model. The high-degree internal field (degrees 25 to 90) is taken from the same model CHAOS-4h, based onlow-altitude CHAMP data, which was used in CHAOS-4.We find that CHAOS-5 is able to consistently fit magnetic field data from six independent low Earth orbit satellites:Ørsted, CHAMP, SAC-C and the three Swarm satellites (A, B and C). It also adequately describes the secular variationmeasured at ground observatories. CHAOS-5 thus contributes to an initial validation of the quality of the Swarmmagnetic data, in particular demonstrating that Huber weighted rms model residuals to Swarm vector field data arelower than those to Ørsted and CHAMP vector data (when either one or two star cameras were operating). CHAOS-5shows three pulses of secular acceleration at the core surface over the past decade; the 2006 and 2009 pulses have previously been documented, but the 2013 pulse has only recently been identified. The spatial signature of the 2013pulse at the core surface, under the Atlantic sector where it is strongest, is well correlated with the 2006 pulse, but anti-correlated with the 2009 pulse.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.