51. Tibetan mesenchymal stem cell-derived exosomes alleviate pulmonary vascular remodeling in hypoxic pulmonary hypertension rats.
- Author
-
Zhang Q, Liu H, Liu C, Wang Y, Huang P, Wang X, Ma Y, Ma L, and Ge R
- Subjects
- Animals, Rats, Rats, Sprague-Dawley, Male, Tibet, Humans, Pulmonary Artery metabolism, Pulmonary Artery pathology, Transforming Growth Factor beta1 metabolism, Cell Proliferation, Signal Transduction, Disease Models, Animal, Smad2 Protein metabolism, Exosomes metabolism, Mesenchymal Stem Cells metabolism, Vascular Remodeling physiology, Hypertension, Pulmonary metabolism, Hypertension, Pulmonary therapy, Hypertension, Pulmonary pathology, Hypoxia metabolism
- Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by progressive pulmonary vasoconstriction, vascular remodeling, and right ventricular hypertrophy, causing right heart failure. This study aimed to investigate the therapeutic effects of exosomes from Tibetan umbilical cord mesenchymal stem cells on HPH via the TGF-β1/Smad2/3 pathway, comparing them with exosomes from Han Chinese individuals. An HPH rat model was established in vivo, and a hypoxia-induced injury in the rat pulmonary artery smooth muscle cells (rPASMCs) was simulated in vitro. Exosomes from human umbilical cord mesenchymal stem cells were administered to HPH model rats or added to cultured rPASMCs. The therapeutic effects of Tibetan-mesenchymal stem cell-derived exosomes (Tibetan-MSC-exo) and Han-mesenchymal stem cell-derived exosomes (Han-MSC-exo) on HPH were investigated through immunohistochemistry, western blotting, EdU, and Transwell assays. The results showed that Tibetan-MSC-exo significantly attenuated pulmonary vascular remodeling and right ventricular hypertrophy in HPH rats compared with Han-MSC-exo. Tibetan-MSC-exo demonstrated better inhibition of hypoxia-induced rPASMCs proliferation and migration. Transcriptome sequencing revealed upregulated genes (Nbl1, Id2, Smad6, and Ltbp1) related to the TGFβ pathway. Nbl1 knockdown enhanced hypoxia-induced rPASMCs proliferation and migration, reversing Tibetan-MSC-exo-induced downregulation of TGFβ1 and p-Smad2/3. Furthermore, TGFβ1 overexpression hindered the therapeutic effects of Tibetan-MSC-exo and Han-MSC-exo on hypoxic injury. These findings suggest that Tibetan-MSC-exo favors HPH treatment better than Han-MSC-exo, possibly through the modulation of the TGFβ1/Smad2/3 pathway via Nbl1., (© The Author(s) 2024. Published by Oxford University Press. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF