Johnston, Richard, Cahalan, Róisin Máire, Bonnett, Laura, Maguire, Matthew, Nevill, Alan M., Glasgow, Philip, O'Sullivan, Kieran, Comyns, Thomas M., Johnston, Richard, Cahalan, Róisin Máire, Bonnett, Laura, Maguire, Matthew, Nevill, Alan M., Glasgow, Philip, O'Sullivan, Kieran, and Comyns, Thomas M.
peer-reviewed, Purpose: To determine the association between training-load (TL) factors, baseline characteristics, and new injury and/or pain (IP) risk in an endurance sporting population (ESP). Methods: Ninety-five ESP participants from running, triathlon, swimming, cycling, and rowing disciplines initially completed a questionnaire capturing baseline characteristics. TL and IP data were submitted weekly over a 52-wk study period. Cumulative TL factors, acute:chronic workload ratios, and exponentially weighted moving averages were calculated. A shared frailty model was used to explore time to new IP and association to TL factors and baseline characteristics. Results: 92.6% of the ESP completed all 52 wk of TL and IP data. The following factors were associated with the lowest risk of a new IP episode: (a) a low to moderate 7-d lag exponentially weighted moving averages (0.8–1.3: hazard ratio [HR] = 1.21; 95% confidence interval [CI], 1.01–1.44; P = .04); (b) a low to moderate 7-d lag weekly TL (1200–1700 AU: HR = 1.38; 95% CI, 1.15–1.65; P < .001); (c) a moderate to high 14-d lag 4-weekly cumulative TL (5200–8000 AU: HR = 0.33; 95% CI, 0.21–0.50; P < .001); and (d) a low number of previous IP episodes in the preceding 12 mo (1 previous IP episode: HR = 1.11; 95% CI, 1.04–1.17; P = .04). Conclusions: To minimize new IP risk, an ESP should avoid high spikes in acute TL while maintaining moderate to high chronic TLs. A history of previous IP should be considered when prescribing TLs. The demonstration of a lag between a TL factor and its impact on new IP risk may have important implications for future ESP TL analysis.