51. Elliptic surfaces over $\mathbb{P}^1$ and large class groups of number fields
- Author
-
Gillibert, Jean, Levin, Aaron, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics [Lansing], Michigan State University [East Lansing], Michigan State University System-Michigan State University System, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
11R29 (Primary) 11G05, 14J27 (Secondary) ,Mathematics - Number Theory ,FOS: Mathematics ,Number Theory (math.NT) ,[MATH]Mathematics [math] ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
Given a non-isotrivial elliptic curve over $\mathbb{Q}(t)$ with large Mordell-Weil rank, we explain how one can build, for suitable small primes $p$, infinitely many fields of degree $p^2-1$ whose ideal class group has a large $p$-torsion subgroup. As an example, we show the existence of infinitely many cubic fields whose ideal class group contains a subgroup isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{11}$., 10 pages, LaTeX. Minor improvements following the referee's suggestions. To appear in Int. J. Number Theory
- Published
- 2019