51. Effects on Metallization of n + -Poly-Si Layer for N-Type Tunnel Oxide Passivated Contact Solar Cells.
- Author
-
Wang, Qinqin, Gao, Beibei, Wu, Wangping, Guo, Kaiyuan, Huang, Wei, and Ding, Jianning
- Subjects
- *
SOLAR cells , *POLYCRYSTALLINE silicon , *PHOTOVOLTAIC power systems , *CHEMICAL vapor deposition , *SHORT-circuit currents , *PHOTOVOLTAIC power generation - Abstract
Thin polysilicon (poly-Si)-based passivating contacts can reduce parasitic absorption and the cost of n-TOPCon solar cells. Herein, n+-poly-Si layers with thicknesses of 30~100 nm were fabricated by low-pressure chemical vapor deposition (LPCVD) to create passivating contacts. We investigated the effect of n+-poly-Si layer thickness on the microstructure of the metallization contact formation, passivation, and electronic performance of n-TOPCon solar cells. The thickness of the poly-Si layer significantly affected the passivation of metallization-induced recombination under the metal contact (J0,metal) and the contact resistivity (ρc) of the cells. However, it had a minimal impact on the short-circuit current density (Jsc), which was primarily associated with corroded silver (Ag) at depths of the n+-poly-Si layer exceeding 40 nm. We introduced a thin n+-poly-Si layer with a thickness of 70 nm and a surface concentration of 5 × 1020 atoms/cm3. This layer can meet the requirements for low J0,metal and ρc values, leading to an increase in conversion efficiency of 25.65%. This optimized process of depositing a phosphorus-doped poly-Si layer can be commercially applied in photovoltaics to reduce processing times and lower costs. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF